Skip to main content

The Role of the Pinhole in Confocal Imaging System

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

Confocal scanning microscopes are particularly attractive by virtue of their enhanced lateral resolution, purely coherent image formation (in reflection) and optical sectioning (Wilson and Sheppard, 1984). It is probably the latter property that is most useful, as it gives rise to the ability to image a thick specimen in three dimensions. This is possible because the optical system detects information only from a thin region in the neighborhood of the focal plane. This permits us to store many image slices in a computer to give a three-dimensional (3D) data set that describes the object. Many sophisticated computer software systems are now available to display these data in various ways. Obvious examples include the extended-focus technique (Wilson and Hamilton, 1982), in which we merely add up (integrate) the images from various depths to provide an image of greatly extended depth of field. We may also produce images in which object height is coded as brightness, or combine the whole data set to provide an isometric view of the object (Fig. 1). It is also possible to use false color to label features of interest or, by simple processing, to obtain stereoscopic pairs (van der Voort, et al., 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awamura, D., Ode, T., and Tonezawa, M., 1987, Colour laser microscope, SPIED 765:53–60.

    Article  CAS  Google Scholar 

  • Corle, T.R., Chou, C.H., and Kino, G.S., 1986, Depth response of confocal optical microscopes, Opt. Lett. 11:770–772.

    Article  PubMed  CAS  Google Scholar 

  • Cox, I.J., and Sheppard, C. J.R., 1986, Image capacity and resolution in an optical system, J. Opt. Soc. Am (A) 3:1152–1158.

    Article  Google Scholar 

  • Egger, M.D., and Petráň, M., 1967, New reflected light microscope for viewing unstained brain and ganglian cells, Science 157:305–308.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, D.K., and Wilson, T., 1982a, Surface profile measurement using the confocal microscope, J. Appl. Phys. 53:5320–5322.

    Article  Google Scholar 

  • Hamilton, D.K., and Wilson, T., 1982b, Three dimensional surface measurement using the confocal scanning microscope, Appl. Phys. B 27:211–213.

    Article  Google Scholar 

  • Juskaitis, R., and Wilson, T., 1992a, Differential confocal scanning microscope using a two mode fibre, Appl. Opt. 31:898–902.

    Article  PubMed  CAS  Google Scholar 

  • Juskaitis, R., and Wilson, T., 1992b, Imaging in reciprocal fibre-optic based confocal scanning microscopes, Opt. Commun. 92:315–325.

    Article  Google Scholar 

  • Juskaitis, R., and Wilson, T., 1992c, Surface profiling with scanning optical microscopes using two-mode optical fibres, Appl. Opt. 31:4569–4574.

    Article  PubMed  CAS  Google Scholar 

  • Juskaitis, R., Reinholz, F., and Wilson, T., 1992, Fibre-optic based confocal scanning microscopy with semiconductor laser excitation and detection, Electron. Lett. 28:986–987.

    Article  Google Scholar 

  • Juskaitis, R., Rea, N.P., and Wilson, T., 1993a, Fibre optic based confocal scanning microscopy using laser detection. Opt. Commun. 99:105–113.

    Article  Google Scholar 

  • Juskaitis, R., Wilson, T. and Reinholtz, F., 1993b, Spatial filtering by laser detection in confocal microscopy, Opt. Lett. 18:1135–1137.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, S., and Wilson, T., 1991, Confocal scanning optical microscopes using single mode fibre for signal detection, Appl. Opt. 30:2143–2150.

    Article  PubMed  CAS  Google Scholar 

  • Koester, C.J., 1980, A scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology, Appl. Opt. 19:1749.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, H.J., 1987, Confocal microscopy, D.Phil thesis, Oxford University, Oxford.

    Google Scholar 

  • Schutt, W., 1988, Type III microscopy. In: Proceedings of a Conference on Physical Characterisation of Biological Cells, Rostock, Germany.

    Google Scholar 

  • Sheppard, C.J.R., and Wilson T., 1981a, The theory of the direct-view confocal microscope, J. Microsc. 124:107–117.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, C.J.R., and Wilson, T., 1981b, Effects of high angles of convergence on V(z) in the scanning acoustic microscope, Appl. Phys. Lett. 38:858–859.

    Article  Google Scholar 

  • van der Voort, H.T.M., Brakenhoff, G. J., Valkenburg, J.A.C., and Nanninga, N., 1985, Design and use of a computer controlled confocal microscope, Scanning 7:66–78.

    Article  Google Scholar 

  • Wilson, T., 1989, Optical sectioning in confocal fluorescent microscopes, J. Microsc. 154:143–156.

    Article  Google Scholar 

  • Wilson, T., 1993a, Image formation in two-mode fibre based confocal microscopy, J. Opt. Soc. Am. 10:1535–1543.

    Article  CAS  Google Scholar 

  • Wilson, T., 1993b, Fluorescence imaging modes in fibre-optic based confocal scanning microscopes, Opt. Commun. 96:133–141.

    Article  Google Scholar 

  • Wilson, T., and Carlini, A.R., 1987, Size of the detector in confocal imaging systems, Opt. Lett. 12:227–229.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T., and Carlini, A.R., 1988, Three dimensional imaging in confocal imaging systems with finite-sized detectors, J. Microsc. 149:51–66.

    Article  Google Scholar 

  • Wilson, T., and Carlini, A.R., 1989, The effect of aberrations on the axial response of confocal imaging-systems, J. Microsc. 154:243–256.

    Article  Google Scholar 

  • Wilson, T., and Hamilton, D.K., 1982, Dynamic focussing in the scanning microscope, J. Microsc. 128:139–143.

    Article  Google Scholar 

  • Wilson, T., and Hamilton, D.K., 1984, Differential confocal scanning micros copy, Opt. Acta 31:453–465.

    Article  Google Scholar 

  • Wilson, T., and Hewlett, S. J., 1991, Optical sectioning strength of the direct-view microscope employing finite-sized pin-hole arrays, J. Microsc. 163:131–150.

    Article  Google Scholar 

  • Wilson, T., and Sheppard, C.J.R., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, T. (1995). The Role of the Pinhole in Confocal Imaging System. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics