Skip to main content

Gaussian Models

  • Chapter
Air Pollution Modeling

Abstract

The Gaussian plume model is the most common air pollution model. It is based on a simple formula that describes the three-dimensional concentration field generated by a point source under stationary meteorological and emission conditions. The Gaussian plume model is visualized in Figure 7-1, where, for simplicity, the plume is advected toward the positive x-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benkley, C.W., and A. Bass (1979): Development of mesoscale air quality simulation models; Volume 3, User’s Guide to MESOPUFF (Mesoscale Puff) model. EPA Document 600/7-79—XXX, Research Triangle Park, North Carolina. (See also Scire et al. (1984): User’s guide to the MESOPUFF II model and related processor programs. EPA Document 600/8-84-013.)

    Google Scholar 

  • Best, P.R., M. Kanowski, L. Stumer, and D. Green (1986): Convection dispersion modeling utilizing acoustic sounder information. Atmos. Res., 20: 173.

    Article  Google Scholar 

  • Bowers, J., J. Bjorklund, and C. Cheney (1979): Industrial source complex (ISC) dispersion model user’s guide, Vol. I. Research Triangle Park, North Carolina. EPA Document EPA-450/4-79-030. NTIS Publication PB80-133044.

    Google Scholar 

  • Briggs, G.A. (1973): Diffusion estimation for small emissions, in environmental research laboratories. Air Resources Atmospheric Turbulence and Diffusion Laboratory 1973 Annual Report. USAEC Report ATDL-106, National Oceanic and Atmospheric Administration, December 1974.

    Google Scholar 

  • Briggs, G.A. (1985): Analytical parameterization of diffusion: The convective boundary layer. J.Climate and Appl. Meteor., 24: 1167.

    Article  Google Scholar 

  • Calder, K.L. (1971): Proceedings, 2nd Meeting of Expert Panel Air Pollution Modeling, NATO/CCMS Air Pollution, No. 5.

    Google Scholar 

  • Chan, M.W., and I.H. Tombach (1978): AVACTA - Air pollution model for complex terrain applications. AeroVironment Inc., Monrovia, California.

    Google Scholar 

  • Chan, M.W. (1979): A tracer experiment to determine the transport and diffusion of an elevated plume in complex terrain. Proceedings, 72nd Annual APCA Meeting, Cincinnati, Ohio, June.

    Google Scholar 

  • Chan, M.W., S.J. Head, and S. Machiraju (1979): Development and validation of an air pollution model for complex terrain application. Paper presented at NATO/CCMS Air Pollution Pilot Study. Rome, Italy. AeroVironment Technical Paper 9559, Monrovia, California.

    Google Scholar 

  • DeMarrais, G.A. (1978): Atmospheric stability class determinations on a 481—meter tower in Oklahoma. Atmos. Environ., 12: 1957 - 1964.

    Google Scholar 

  • Dobbins, R.A. (1979): Atmospheric Motion and Air Pollution. John Wiley Sons, New York.

    Google Scholar 

  • Draxler, R.R. (1976): Determination of atmospheric diffusion parameters. Atmos. Environ., 10: 99 - 105.

    Article  Google Scholar 

  • Draxler, R.R., and J.L. Heffler (1981): Workbook for estimating the climatology of regional—continental scale atmospheric dispersion and deposition over the United States. NOAA Technical Memorandum ERL ARL-96, Air Resources Laboratories, Silver Spring, Maryland.

    Google Scholar 

  • Environmental Research and Technology, Inc. (1984): User’s guide to the rough terrain diffusion model (RTDM). Environmental Research and Technology Document M2209 - 585, Concord, Massachusetts.

    Google Scholar 

  • Fabrick, A., R.C. Sklarew, and J.D. Wilson (1977): Point Source Modeling. Form Substance, Inc., Westlake Village, California.

    Google Scholar 

  • Gifford, F.A. (1961): Use of routine meteorological observations for estimating the atmospheric dispersion. Nucl. Safety, 2 (4): 47 - 57.

    Google Scholar 

  • Gifford, F.A. (1976): Consequences of effluent release. Nucl. Safety, 17 (1): 68 - 86.

    Google Scholar 

  • Green, A.E., R.P. Singhal, and R. Venkateswar (1980): Analytic extensions of the Gaussian plume model. JAPCA, 30 (7): 773 - 776.

    Google Scholar 

  • Gryning, S.E., A.A. Holtslag, J.S. Irwin, and B. Sivertsen (1987): Applied dispersion modeling based on meteorological scaling parameters. Atmos. Environ., 21: 79 - 89.

    Article  Google Scholar 

  • Hales, J.M., D.C. Powell, and T.D. Fox (1977): STRAM - An air pollution model incorporating non-linear chemistry, variable trajectories, and plume segment diffusion. U.S. EPA Document 450/3-77-012, Research Triangle Park, North Carolina.

    Google Scholar 

  • Hanna, S.R., et al. (1977): AMS Workshop on Stability Classification Schemes and Sigma Curves - Summary of Recommendations. J. Climate and Appl. Meteor., 58 (12): 1305 - 1309.

    Google Scholar 

  • Hanna, S.R., G.A. Briggs, and R.P. Hosker, Jr. (1982): Handbook on atmospheric diffusion. U.S. Department of Energy Document DOE/TIC-11223 (DE82002045), Office of Health and Environmental Research.

    Google Scholar 

  • Hanna, S.R., L.L. Schulman, R.J. Paine, and J.E. Pleim (1984): Users guide to the offshore and coastal dispersion (OCD) model. Environmental Research and Technology, Concord, Massachusetts. Contract No. 14-08-0001-21138.

    Google Scholar 

  • Hanna, S.R. (1989): Plume dispersion and concentration fluctuations in the atmosphere. Chapt. 14 Encyclopedia of Environmental Control Techology. Vol. 2. P.N. Cheremisinoff, editor. Houston, Texas: Gulf Publishing Company.

    Google Scholar 

  • Harvey, Jr., R.B., and J.N. Hamawi (1986): A modification of the Gaussian dispersion equation to accommodate restricted lateral dispersion in deep river valleys. APCA Note-Book, 36: 171.

    Google Scholar 

  • Huang, C.H. (1979): A theory of dispersion in turbulent shear flow. Atmos. Environ., 13: 453.

    Article  Google Scholar 

  • Irwin, J.S. (1979): Estimating plume dispersion - A recommended generalized scheme. Presented at 4th AMS Symposium on Turbulence and Diffusion, Reno, Nevada.

    Google Scholar 

  • Irwin, J.S. (1980): Dispersion estimates suggestion #9: Processing of wind data. U.S. EPA Docket Reference No. II-B-33, Research Triangle Park, North Carolina.

    Google Scholar 

  • Ludwig, F.L., L.S. Gasiorek, and R.E. Ruff (1977): Simplification of a Gaussian puff model for real-time minicomputer use. Atmos. Environ. 11: 431 - 436.

    Article  Google Scholar 

  • Lupini, R. and T. Tirabassi (1979): Gaussian plume model and advection-diffusion equation: An attempt to connect the two approaches. Atmos. Environ., 13: 1169 - 1174.

    Article  Google Scholar 

  • Lyons, W.A., and H.S. Cole (1983): Fumigation and plume trapping on the shores of Lake Michigan during stable onshore flow. J. Appl. Meteor., 12: 494 - 510.

    Article  Google Scholar 

  • Lamb, R.G. (1969): An air pollution model of Los Angeles. M.S. thesis, University of California, Los Angeles, 120 pp. (see Lamb, R.G., and M. Neiburger (1971): An interim version of a generalized urban diffusion model. Atmos. Environ., 5: 239 - 264 ).

    Google Scholar 

  • Martin, D.O. (1971): An urban diffusion model for estimating long-term average values of air quality. JAPCA, 21: 16 - 23.

    Google Scholar 

  • McElroy, J.L., and F. Pooler (1968): St. Louis dispersion study; Volume II, Analysis. National Air Pollution Control Administration, Publication AP-53, 51. U.S. Dept. of Health, Education and Welfare, Arlington, Virginia.

    Google Scholar 

  • Melli, P., and E. Runca (1979): Gaussian plume model parameters for ground-level and elevated sources derived from the atmospheric diffusion equation in a neutral case. J. Appl. Meteor., 18: 1216 - 1221.

    Article  Google Scholar 

  • Pasquill, F. (1971): Atmospheric dispersion of pollution. J. Roy. Meteor. Soc., 97: 369 - 395.

    Article  Google Scholar 

  • Panofsky, H.A., and J.A. Dutton (1984): Atmospheric Turbulence. New York: John Wiley.

    Google Scholar 

  • Pasquill, F. (1976): Atmospheric dispersion parameters in Gaussian plume modeling; Part 2, Possible requirements for change in the Turner Workbook values. U.S. EPA Document EPA-600/4-76-030b, Washington, D.C.

    Google Scholar 

  • Phillips, P., and H.A. Panofsky (1982): A reexamination of lateral dispersion from continuous sources. Atmos. Environ., 16: 1851 - 1859.

    Article  Google Scholar 

  • Roberts, J.J., E.S. Croke, and A.S. Kennedy (1970): An urban atmospheric dispersion model. Proceedings, Symposium on Multiple-Source Urban Diffusion Models. Air Pollution Control Office Publication AP-86, pp. 6. 1-6. 72.

    Google Scholar 

  • Robson, R.E. (1983): On the theory of plume trapping by an elevated inversion. Atmos. Environ., 17: 1923 - 2930.

    Article  Google Scholar 

  • Runca, E. (1977): Transport and diffusion of air pollutants from a point source. Proceedings, IFIP Working Conference on Modeling and Simulation of Land, Air and Water Resource System, Ghent, Belgium.

    Google Scholar 

  • Schulman, L.L., and J.S. Scire (1980): Development of an air quality dispersion model for aluminum reduction plants. Environmental Research and Technology. Document P-7304A, Concord, Massachusetts.

    Google Scholar 

  • Schulman, L.L., and S.R. Hanna (1986): Evaluation of downwash modification to the industrial source complex model. JAPCA, 36: 256 - 264.

    Google Scholar 

  • Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley Sons.

    Google Scholar 

  • Sheih, C.M. (1978): A puff pollutant dispersion model with wind shear and dynamic plume rise. Atmos. Environ., 12: 1933 - 1938.

    Article  Google Scholar 

  • Smith, M.E. (1968): Recommended guide for the prediction of the dispersion of airborne effluents. 1st edition. American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Stern, A.C., Ed. (1976): Air Pollution. Volume I, 3rd Edition. New York: Academic Press.

    Google Scholar 

  • Strimaitis, D.G., D.C. DiCristofaro, and T.F. Lavery (1986): The complex terrain dispersion model. EPA Document EPA-600-D-85/220, Atmospheric Sciences Research Laboratory, Research Triangle Park, North Carolina.

    Google Scholar 

  • Turner, D.B. (1970): Workbook of atmospheric dispersion estimates. EPA, Research Triangle Park, North Carolina. U.S. EPA Ref. AP-26 (NTIS PB 191-482.)

    Google Scholar 

  • U.S. Environmental Protection Agency (1978): Guideline on air quality models. EPA Document EPA-450/2-78-025. Research Triangle Park, North Carolina.

    Google Scholar 

  • U.S. Environmental Protection Agency (1986): Guideline on air quality models (Revised). U.S. EPA Document EPA-450/2-78-027R. Research Triangle Park, North Carolina.

    Google Scholar 

  • van Dop, H., R. Steenkist, and F.T. Nieuwstadt (1979): Revised estimates for continuous shoreline fumigation. J. Appl. Meteor., 18: 133 - 137.

    Google Scholar 

  • Veigele, W.J., and J.H. Head (1978): Derivation of the Gaussian plume model. JAPCA, 28: 1139 - 1141.

    Google Scholar 

  • Yamartino, R.J. (1977): A new method for computing pollutant concentrations in the presence of limited vertical mixing. APCA Note-Book, 27 (5): 467.

    Google Scholar 

  • Zannetti, P. (1981): An improved puff algorithm for plume dispersion simulation. J. Applied Meteor., 20 (10): 1203 - 1211.

    Article  Google Scholar 

  • Zannetti, P., and N. Al-Madani (1983a): Numerical simulations of Lagrangian particle diffusion by Monte-Carlo techniques. VIth World Congress on Air Quality ( IUAPPA ), Paris, May.

    Google Scholar 

  • Zannetti, P., and N. Al-Madani (1983b): Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. Fourteenth ITM Meeting on Air Pollution Modeling and Its Application. Copenhagen, Denmark, September.

    Google Scholar 

  • Zannetti, P. (1986): A new mixed segment-puff approach for dispersion modeling. Atmos. Environ., 20: 1121 - 1130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zannetti, P. (1990). Gaussian Models. In: Air Pollution Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4465-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4465-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4467-5

  • Online ISBN: 978-1-4757-4465-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics