Skip to main content

Yield and Strength Properties of Metals and Alloys at Elevated Temperatures

  • Chapter
Shock-Wave Phenomena and the Properties of Condensed Matter

Abstract

The main driving force behind high-strain-rate testing is the need to obtain values for the parameters in the various material constitutive models used in the numerical simulation of the impact or shock response of materials and structures. Information about the high-strain-rate properties of materials at elevated temperatures is important for problems such as penetration and high-rate metallurgical treatment by cutting or forging, since the transient loading processes are accompanied by irreversible heating. The knowledge of the temperature dependencies of dynamic responses of materials would also help us better understand the nature of thermomechanical instabilities as manifested by the formation of shear bands. The existing theory on formation of shear bands is based on a competition between the strain hardening and the thermal softening of material during an adiabatic deformation process. There is a general agreement that the tendency to form adiabatic shear bands increases when the strain hardening decreases and the thermal softening increases. Since high strain rates create the adiabatic conditions for the induced deformation, shear banding is usually associated with impact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoun, T., L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin (2003). Spall. Fracture. Springer, New York

    Google Scholar 

  • Asay, J.R. (1974). “Shock-Induced Melting in Bismuth,” J. Appl. Phys. 45, p. 4441.

    Article  ADS  Google Scholar 

  • Asay, J.R., and D.B. Hayes (1975). “Shock compression and release behavior near melt states in aluminum,” J. Appl. Phys. 46(11), pp. 4789–4800.

    Article  ADS  Google Scholar 

  • Berner, R., and H. Kronmuller (1965). Plastische Verformung von Einkristallen, Springer-Verlag, Berlin.

    Google Scholar 

  • Besold, G., and O.G. Mouritsen (1994). “Grain-boundary melting: a Monte Carlo study,” Physical Review B 50(10), pp. 6573–6576.

    Article  ADS  Google Scholar 

  • Bhate, N., R.J. Clifton, and R. Phillips (2002). “Atomistic simulations of the motion of an edge dislocation in aluminum using embedded atom method,” in: Shock Compression of Condensed Matter2001 (eds. M.D. Furnish, N.N. Thadhani, and Y. Horie) American Institute of Physics, New York, pp. 339–342.

    Google Scholar 

  • Bogach, A.A., G.I. Kanel, S.V. Razorenov, A.V. Utkin, S.G. Protasova, and V.G. Sursaeva (1998). “Resistance of zinc crystals to shock deformation and fracture at elevated temperatures,” Phys. Solid State 40(10), pp. 1676–1680 [trans. from Fiz. Tverd. Tela 40, pp. 1849–1854(1998)].

    Article  ADS  Google Scholar 

  • Boyer, L.L. (1985). “Theory of melting based on lattice instability” Phase Transitions 5(1), pp. 1–48.

    Article  Google Scholar 

  • Brooks, C.R., M. Cash, and A. Garcia (1978). “The heat capacity of Inconel 718 from 313 to 1053K,” J. Nuclear Materials 78(2), pp. 419–421.

    Article  ADS  Google Scholar 

  • Cahn, R.W. (1986). “Melting and the surface,” Nature 323, pp. 668–669.

    Article  ADS  Google Scholar 

  • Cheremskoy, P. G., V.V. Slezov, and V.I. Betehtin (1990). “Pores in Solids,” Energoatomizdat, 376 p. (in Russian).

    Google Scholar 

  • Clifton, R.J. (1971). “Plastic waves: theory and experiment,” in: Shock Waves and the Mechanical Properties of Solids (eds. J.J. Burke and V. Weiss), Syracuse University Press, pp. 73–116.

    Google Scholar 

  • Cotterill, R.M. (1980). J. Cryst. Growth 48, p. 582.

    Article  ADS  Google Scholar 

  • Curran, D.R., L. Seaman, and D.A. Shockey (1987). “Dynamic failure of solids,” Physics Reports 147(5&6), pp. 254–388.

    ADS  Google Scholar 

  • Dash, J.D. (1999). “History of the search of continuous melting,” Rev. Mod. Phys. 71(5), pp. 1737–1743.

    Article  MathSciNet  ADS  Google Scholar 

  • Fecht, H.J. and W.L. Johnson (1988). Nature 334, p. 50.

    Article  ADS  Google Scholar 

  • Follansbee, P.S. and J. Weertman (1982). “On the question of flow stress at high strain rates controlled by dislocation viscous flow” Mech. Mater. 1, pp. 345–350.

    Article  Google Scholar 

  • Fukuhara, M. and A. Sanpei (1993). “Elastic moduli and internal frictions of Inconel 718 and Ti-6A1–4V as a function of temperature,” J. Mater. Sci. Lett. 12(14), pp. 1122–1124.

    Article  Google Scholar 

  • Gu, Zhuowei, and Xiaogang Jin (1998). “Temperature dependence on shock response of stainless steel,” In: Shock compression of condensed matter1997, in: Shock Compression of Condensed Matter—1997 (eds S.C. Schmidt, D.D. Dandekar, and J.W. Forbes) American Institute of Physics, New York, pp. 467–470.

    Google Scholar 

  • Guinan, M.W., and D.J. Steinberg (1974). “Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements,” J. Phys. Chem. Solids 35, pp. 1501–1512.

    Article  ADS  Google Scholar 

  • Iwamatsu, M. (1999). “Homogeneous nucleation for superheated crystal,” J. Phys-Condensed Matter 11(1), pp. L1–5.

    Article  ADS  Google Scholar 

  • Johnson, J.N. (1981). “Dynamic fracture and spallation in ductile solids,” J. Appl. Phys. 52(4), pp. 2812–2825.

    Article  ADS  Google Scholar 

  • Johnson, J.N., and D.L. Tonks (1992). “Dynamic plasticity in transition from thermal activation to viscous drag,” in: Shock Compression of Condensed Matter1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes and D.G. Tasker) North-Holland, Amsterdam, pp. 371–378.

    Google Scholar 

  • Kanel, G.I. (2000). “The temperature limit of the dynamic strength of metals,” High Temp. 38(3), pp. 481–491 [trans. from Teplofiz. Vys. Temp. 38(3), pp. 512–514 (2000)].

    MathSciNet  Google Scholar 

  • Kanel, G.I., S.V. Razorenov, K. Baumung, and J. Singer (2001). “Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point,” J. Appl. Phys. 90(1), pp. 136–143.

    Article  ADS  Google Scholar 

  • Kanel, G.I., S.V. Razorenov, A.A. Bogatch, A.V. Utkin, V.E. Fortov, and D.E. Grady (1996). “Spall Fracture Properties of Aluminum and Magnesium at High Temperatures,” J. Appl. Phys. 79(11), pp. 8310–8317.

    Article  ADS  Google Scholar 

  • Krüger, L., G.I. Kanel, S.V. Razorenov, L. Meyer, and G.S. Bezrouchko (2002). “Yield and strength properties of the Ti-6–22-22S alloy over a wide strain rate and temperature range,” in: Shock Compression of Condensed Matter—2001 (eds. M.D. Furnish, N.N. Thadhani, and Y. Horie) American Institute of Physics, New York, pp. 1327–1330.

    Google Scholar 

  • Kumar, A., and R.G. Kumble (1969). “Viscous drag on dislocations at high strain rates in copper” J. Appl. Phys. 40(9), p. 3475.

    Article  ADS  Google Scholar 

  • Lu, K., and Y. Li (1998). “Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal,” Phys. Rev. Lett. 80(20), pp. 4474–4477.

    Article  ADS  Google Scholar 

  • Lu, X., and J.A. Szpunar (1995). “Molecular dynamics simulation of the melting of a twist grain boundary,” Interface Sci. 3(2), pp. 143–150.

    Article  Google Scholar 

  • Lynden-Bell, R.M. (1995). “A simulation study of induced disorder, failure and fracture of perfect metal crystals under uniaxial tension,” J. Phys.-Condensed Matter 7, pp. 4603–4624.

    Article  ADS  Google Scholar 

  • Ma, D., and Y. Lip (2000). “Heterogeneous nucleation catastrophe on dislocations in superheated crystals,” J. Phys.-Condensed Matter 12(43), pp. 9123–9128.

    Article  ADS  Google Scholar 

  • Mabire, C., and P.L. Hereil (2000). “Shock induced polymorphic transition and melting of tin” in: Shock Compression of Condensed Matter—1999 (eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixon) American Institute of Physics, New York, pp. 93–96

    Google Scholar 

  • Ninomura, T. (1974). J. Phys. Soc. Jpn. 36, p. 399.

    Article  ADS  Google Scholar 

  • Razorenov, S.V., G.I. Kanel, K. Baumung, and H. Bluhm (2002). “Hugoniot elastic limit and spall strength of aluminum and copper single crystals over a wide range of strain rates and temperatures,” in: Shock Compression of Condensed Matter2001 (eds. M.D. Furnish, N.N Thadhani, and Y. Horie) American Institute of Physics, New York, pp. 503–506.

    Google Scholar 

  • Razorenov, S.V., G.I. Kanel, E. Kramshonkov, and K. Baumung (2002). “Shock compression and spalling of cobalt at normal and elevated temperatures,” Comb. Expl. Shock Waves 38(5), pp. 598–601 [trans. From Fiz. Goreniya Vzryva 38(5), pp. 119–123(2002)].

    Article  Google Scholar 

  • Rohde, R.W. (1969). “Dynamic Yield Behavior of Shock-Loaded Iron from 76 to 573°K,” Acta. Met. 17, pp. 353–363.

    Article  Google Scholar 

  • Sakino, K. (2000). “Transition in the rate controlling mechanism of FCC metals at very high strain rates and high temperatures,” J. Phys. IV France 10, Pr 9–57–62.

    Article  Google Scholar 

  • Talion, J. L. (1989). Nature 342, p. 658.

    Article  ADS  Google Scholar 

  • Talion, J.L., and A. Wolfeden (1979). “Temperature dependence of the elastic constants of aluminum,” J. Phys. Chem. Solids 40, pp. 831–837.

    Article  ADS  Google Scholar 

  • Ubbelohde, A.R. (1965). Melting and Crystal Structure, Clarendon Press, Oxford.

    Google Scholar 

  • Zwicker, U. (1974). Titan und Titanlegierungen, Springer-Verlag, Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanel, G.I., Fortov, V.E., Razorenov, S.V. (2004). Yield and Strength Properties of Metals and Alloys at Elevated Temperatures. In: Shock-Wave Phenomena and the Properties of Condensed Matter. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4282-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4282-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1916-8

  • Online ISBN: 978-1-4757-4282-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics