Skip to main content

Ramanujan’s Formula and Modular Forms

  • Chapter
Number Theoretic Methods

Part of the book series: Developments in Mathematics ((DEVM,volume 8))

Abstract

In the theory of zeta-functions, which are defined wherever there are defined norms or substitutes thereof, the ingredients — modular relations, functional equations, incomplete gamma series, and the like — are placed like nodes on the woofs. Some of them are woven by warps as Hecke theory or Lavrik’s theory. The former connects the modular relation to the functional equation, thus making it possible to go to and from between the more orderly world of automorphic forms and the less orderly one of zeta-functions while the latter relates functional equations and incomplete gamma series in the same vein, the idea originating from Riemann. We have found a warp stitching all of these nodes-ingredients, enabling us to warp from one node to another as well as providing us with a guiding principle to locate the exact position and direction of research, a guiding thread to give a clear picture of the whole scene through opaque mist of complexity. We shall illustrate the principle by examples of various zeta-functions satisfying Hecke’s functional equation, i.e. the one with a single gamma factor, in which category many of the important zeta-functions are contained, notably, the Riemann zeta-, Dirichlet L-, Epstein zeta-, the automorphic zeta-functions, etc. In particular, we shall be concerned with the automorphic zeta-functions, the zeta functions arising from automorphic forms, evaluating their special values and obtaining incomplete gamma series.

The authors are supported by Grant-in-Aid for Scientific Research No. 14540051, 14540021 and 14005245 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Akiyama and Y. Tanigawa, Calculation of values of L-functions associated to elliptic curves, Math. Comp. 68 (1999), no. 227, 1201–1231.

    Article  MathSciNet  Google Scholar 

  2. T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17 (1950), 147–157.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. M. Apostol, Theorems on generalized Dedekind sums, Pacific J. Math. 2 (1952), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. M. Apostol and A. Sklar, The approximate functional equation of Hecke’s Dirichlet series, Trans. Amer. Math. Soc. 86 (1957), 446–462.

    MathSciNet  MATH  Google Scholar 

  5. L. Atkin and J. Lehner, Hecke operators on I’0(m), Math. Ann. 185 (1970), 134–160.

    Article  MathSciNet  MATH  Google Scholar 

  6. F.V. Atkinson, The Riemann zeta-function, Duke Math. J. 17 (1950), 63–38.

    Article  MathSciNet  MATH  Google Scholar 

  7. F.V. Atkinson, The mean value of the Riemann zeta-function, Acta Math. 81 (1949), 353–376.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Barner, Über die Werte der Ringklassen-L-Funktionen reelle-quadratischer Zahlkorper an naturlichen Argumentstellen, J. Number Theory 1 (1969), 2864.

    Google Scholar 

  9. P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373.

    MathSciNet  Google Scholar 

  10. R. Bellman, An analog of an identity due to Wilton, Duke Math. J. 16 (1949), 539–545.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. C. Berndt, Generalized Dirichlet series and Hecke’s functional equation, Proc. Edinburgh Math. Soc. 15 (1967), 309–313.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series I, Trans. Amer. Math. Soc. 137 (1969), 345–359.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series II, Trans. Amer. Math. Soc. 137 (1969), 361–374.

    Article  MathSciNet  Google Scholar 

  14. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series III, Trans. Amer. Math. Soc. 146 (1969), 323–348.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series IV, Trans. Amer. Math. Soc. 149 (1970), 179–185.

    MathSciNet  MATH  Google Scholar 

  16. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series V, Trans. Amer. Math. Soc. 160 (1971), 139–156.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series VI, Trans. Amer. Math. Soc. 160 (1971), 157–167.

    MathSciNet  MATH  Google Scholar 

  18. B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums, Trans. Amer. Math. Soc. 178 (1973), 495–508.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. C. Berndt, Generalized Eisenstein series and modified Dedekind sums, J. Reine Angew. Math. 272 (1975), 182–193.

    MathSciNet  MATH  Google Scholar 

  20. B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math. 7 (1977), 147–189.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. C. Berndt, Analytic Eisenstein series, theta functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332–365.

    Google Scholar 

  22. B. C. Berndt, Ramanujan’s Notebooks Part I, Springer Verlag, New York, 1985.

    Book  Google Scholar 

  23. B. C. Berndt, Ramanujan’s Notebooks Part II, Springer Verlag, New York, 1989.

    Book  Google Scholar 

  24. B. C. Berndt, Ramanujan’s Notebooks Part IV, Springer Verlag, New York, 1994.

    Book  Google Scholar 

  25. B. C. Berndt and Ae Ja Yee, Ramanujan’s contributions to Eisenstein series, especially in his lost notebook, this volume.

    Google Scholar 

  26. S. Bochner, Some properties of modular relations. Ann. of Math. (2) 53 (1951), 332–363.

    MathSciNet  MATH  Google Scholar 

  27. S. Bochner and K. Chandrasekharan, On Riemann’s functional equation, Ann. of Math. 63 (1956), 336–360.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Borwens and B. Borwens, Pi and the AGM, John Willey and Sons, Inc., New York, 1987.

    Google Scholar 

  29. H. H. Chan, On the equivalence of Ramanujan’s partition identities and a connection with the Rogers-Ramanujan continued fraction, J. Math. Anal. Appli. 198 (1996), 111–120.

    Article  MATH  Google Scholar 

  30. H. H. Chan and K. S. Chua, Representations of integers as sums of 32 squares, submitted for publication.

    Google Scholar 

  31. A. N. Chaba and R. K. Pathria, Evaluation of a class of lattice sums in arbitrary dimensions, J. Math. Phys. 16 (1975), 1457–1460.

    Article  MathSciNet  Google Scholar 

  32. K. Chandrasekharan and S. Mandelbrot, On Riemann’s functional equation, Ann. of Math. 66 (1957), 285–296.

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Chandrasekharan and Raghavan Narasimhan, Hecke’s functional equation and arithmetical identities. Ann. of Math. (2) 74 (1961), 1–23.

    MathSciNet  MATH  Google Scholar 

  34. K. Chandrasekharan and Raghavan Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. of Math. (2) 76 (1962), 93–136.

    MathSciNet  MATH  Google Scholar 

  35. S. Chowla and A. Selberg, On Epstein’s zeta-function (I), Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 371–374 = Collected Papers of Atle Selberg, Vol. I, 367–370, Springer, 1989.

    Google Scholar 

  36. J. B. Conrey and D. W. Farmer, An extension of Hecke’s converse theorem, International Math. Research Notices 9 (1995), 445–463.

    Article  MathSciNet  Google Scholar 

  37. K. Doi and T. Miyake, Number Theory and A’utomorphic Forms, Kinokuniya Pub. Tokyo, (in Japanese ) 1976.

    MATH  Google Scholar 

  38. H. M. Edwards, Riemann’s Zeta-function, Academic Press, New York-London, 1974.

    Google Scholar 

  39. S. Egami, A x-analogue of a formula of Ramanujan for ç(1/2), Acta Arith. 69 (1995), 189–191.

    MathSciNet  MATH  Google Scholar 

  40. M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267–298.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Epstein, Zur Theorie allgemeiner Zetafunktionen, Math. Ann. 56 (1903), 615–644=Arch. Math. u. Phys. 7 (1902), 614–644; II, ibid. 63 (1907), 205216.

    Google Scholar 

  42. A. Erdélyi, Higher Transcendental Functions I, McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  43. A. Erdélyi, Higher Transcendental Functions II, McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  44. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricorni, Tables of integral transforms. Vol. I. McGraw-Hill Book Company, Inc., New York-TorontoLondon, 1954.

    Google Scholar 

  45. L. Euler, Exercitationes analyticae, Novi Comment. Acad. Sci. Petropol 17 (1772), 173–204 = Opera omnia, Ser. I, Vol. 15, Leipzig (1927), 131–167.

    Google Scholar 

  46. S. Ferminger, Zéros des fonction L de courbres elliptiques, Experimental Math., 1 (1992), 167–173.

    Article  Google Scholar 

  47. A. O. Gel’fond, Some functional equations implied by equations of Riemann type, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 469–474.

    MathSciNet  MATH  Google Scholar 

  48. M. L. Glasser and I. J. Zucker, Lattice sums, Theoretical Chemistry: Advances and Perspectives, Vol. 5, ed. by D. Henderson, Academic Press 1980, 67–139.

    Google Scholar 

  49. D. Goldfeld and C. Viola, Mean values of L-functions associated to elliptic, Fermat and other curves at the center of the critical strip, J. of Number Theory 11 (1979), 305–320.

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Goldstein, Zeta functions and Eichler integrals, Acta Arith. 36 (1980), 229256.

    Google Scholar 

  51. L. J. Goldstein and P. de la Torre, On the transformation of log ?AT), Duke Math. J. 41 (1974). 291–297.

    Article  MathSciNet  MATH  Google Scholar 

  52. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Translated from the fourth Russian edition. Fifth edition. Translation edited and with a preface by Alan Jeffrey. Academic Press, Inc., Boston, MA, 1994.

    Google Scholar 

  53. E. Grosswald, Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1970), 9–13.

    Google Scholar 

  54. E. Grosswald, Comments on some formulae of Ramanujan. Acta Arith. 21 (1972), 25–34.

    MathSciNet  MATH  Google Scholar 

  55. E. Grosswald, Relations between the values at integral arguments of Dirichlet series that satisfy functional equations. Proc. Sympos. Pure Math., Vol. 24, Amer. Math. Soc., Providence, 1973, 111–122.

    Google Scholar 

  56. A. P. Guinand, Functional equations and self-reciprocal functions connected with Lambert series. Quart. J. Math. Oxford Ser. 15 (1944), 11–23.

    Article  MathSciNet  MATH  Google Scholar 

  57. A. P. Guinand, Some rapidly convergent series for the Riemann -function. Quart. J. Math. Oxford Ser. (2) 6 (1955), 156–160.

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Guthman, The Riemann-Siegel integral formula for Dirichlet series associated to cusp forms, in Analytic and Elementary Number Theory, Vienna, 1996, 53–69.

    Google Scholar 

  59. A. Guthman, Die Riemann-Siegel-Integralformel für die Mellintransformation von Spitzenformen. (German) Arch. Math. (Basel) 69 (1997), 391–402.

    Article  Google Scholar 

  60. A. Guthman, New integral representations for the square of the Riemann zeta-function. Acta Arith. 82 (1997), 309–330.

    MathSciNet  Google Scholar 

  61. A. Guthman, Asymptotic expansions for Dirichlet series associated to cusp forms. Publ. Inst. Math. (Beograd) (N.S.) 65 (79) (1999), 69–96.

    Google Scholar 

  62. H. Hamburger, Über die Riemannsche Funktionalgleichung der (-Funktion I,II,III, Math. Zeit. 10 (1921), 240–254; 11 (1922), 224–245; 13 (1922) 283–311.

    Article  MathSciNet  MATH  Google Scholar 

  63. G. H. Hardy and J. E. Littlewood, The zeros of Riemann’s zeta-function on the critical line, Math. Zeit. 10 (1921), 283–317.

    Article  MathSciNet  MATH  Google Scholar 

  64. E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 11 (1936),664–699.

    Google Scholar 

  65. E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Edwards, Ann Arbor, 1938.

    Google Scholar 

  66. E. Hecke, Herleitung des Euler-Produkts der Zetafuncktion und einiger L-Reihen aus ihr Funktionalgleichung, Math. Ann. 119 (1944), 266–287.

    Article  MathSciNet  MATH  Google Scholar 

  67. T. Hiramatsu, Y. Mimura and I. Takada, Dedekind sum and automorphic forms, RIMS Kokyuroku 572 (1985), 151–175 (in Japanese).

    Google Scholar 

  68. J-I. Igusa, Lectures on forms of higher degree, Tata Institute of Fundamental Research, Bombay, 1978.

    MATH  Google Scholar 

  69. A. Ivie, The Riemann Zeta-Function, John Wiley and Sons, New York, 1985.

    Google Scholar 

  70. M. Jutila, On the approximate functional equation for (2(s) and other Dirichlet series, Quart. J. Math. Oxford(2) 37 (1986), 193–209.

    MathSciNet  MATH  Google Scholar 

  71. S. Kanemitsu, M. Katsurada and M. Yoshimoto, On the Hurwitz-Lerch zeta function, Aeq. Math. 59 (2000), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  72. S. Kanemitsu, H. Kumagai and M. Yoshimoto, Sums involving the Hurwitz zeta function, The Ramanujan J. 5 (2001), 5–19.

    Article  MathSciNet  MATH  Google Scholar 

  73. S. Kanemitsu, H. Kumagai and M. Yoshimoto, On rapidly convergent series expressions for zeta-and L-values, and log sine integrals, The Ramanujan J. 5 (2001), 91–104.

    Article  MathSciNet  MATH  Google Scholar 

  74. S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On zeta-and L-function values at special rational arguments via the modular relation, Proc. Int. Conf. SSFA, Vol. I (2001), 21–42.

    Google Scholar 

  75. S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On the values of the Riemann zeta-function at rational arguments, Hardy Ramanujan J. 24 (2001), 10–18.

    MathSciNet  MATH  Google Scholar 

  76. S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On rapidly convergent series for Dirichlet L-function values via the modular relation, Proc. of the International Conference on Number Theory and Discrete Mathematics in honour of Srinivasa Ramanujan, 114–133, Hindustan Book Agency, 2002.

    Google Scholar 

  77. S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On rapidly convergent series for the Riemann zeta-values via the modular relation, preprint.

    Google Scholar 

  78. S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On multiple Hurwitz zeta-function values at rational arguments, preprint.

    Google Scholar 

  79. M. Katsurada, Rapidly convergent series representations for ((2n+1) and their X-analogue, Acta Arith. 90 (1999), 79–89.

    MathSciNet  MATH  Google Scholar 

  80. M. Katsurada, On an asymptotic formula of Ramanujan for a certain theta-type series, Acta Arith. 97 (2001), 157–172.

    Article  MathSciNet  MATH  Google Scholar 

  81. D. Klusch, On Entry 8 of Chapter 15 of Ramanujan’s Notebook II, Acta Arith. 58 (1991), 59–64.

    MathSciNet  MATH  Google Scholar 

  82. M. Knopp, Hamberger’s theorem on ç(s) and the abundance principle for Dirichlet series with functional equations, Number Theory (ed. by R. P. Barn-bah et al.), 201–216, Hindustan Book Agency, New Delhi, 2000.

    Google Scholar 

  83. N. Koshlyakov, Investigation of some questions of analytic theory of the rational and quadratic fields, I-III (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 18 (1954), 113–144, 213–260, 307–326; Errata 19 (1955), 271.

    Google Scholar 

  84. N. Kurokawa, 100 years of zeta regularized product, The 39th algebra symposium (1994), 153–166 (in Japanese).

    Google Scholar 

  85. R. Kuz’min, Contributions to the theory of a class of Dirichlet series (Russian), Izv. Akad. Nauk SSSR, Ser. Math. Nat. Sci. 7 (1930), 115–124.

    Google Scholar 

  86. R. Kuz’min, On the roots of Dirichlet series, Izv. Akad. Nauk SSSR, Ser. Math. Nat. Sci. 7 (1934), 1471–1491.

    Google Scholar 

  87. S. Lang, Introduction to Modular Forms, Springer, Berlin-New York, 1976.

    MATH  Google Scholar 

  88. A. F. Lavrik, Approximate functional equations of Dirichlet functions (Russian). Izv. Akad. Nauk SSSR, Ser. Mat. 32 (1968), 134–185; English translation in Math. USSR-Izv. 2 (1968), 129–179.

    Article  Google Scholar 

  89. A. F. Lavrik, An approximate functional equation for the Dirichlet L-function, Trudy Moskov Mat. Obsc. 18 (1968), 91–104 =Trans. Moscow Math. Soc. 18 (1968), 101–115.

    MathSciNet  MATH  Google Scholar 

  90. A. F. Lavrik, The principle of the theory of nonstandard functional equation for Dirichlet functions, consequences and applications of it, Trudy Mat. Inst. Steklov 132 (1973), 70–76= Proc. Steklov Int. Math. 132 (1973), 77–85.

    MathSciNet  Google Scholar 

  91. A. F. Lavrik, Functional equations with a parameter for zeta-functions (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 501–521; English translation in Math. USSR-Izv. 36 (1991), 519–540.

    Article  MathSciNet  MATH  Google Scholar 

  92. Ju. V. Linnik, An asymptotic formula in an additive problem of Hardy and Littlewood, lzv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 629–706; English transl., Amer. Math. Soc. Transi. (2) 46 (1965), 65–148.

    Google Scholar 

  93. Ju. V. Linnik, All large numbers are sum of a prime and two squares (A problem of Hardy and Littlewood) II Mat. Sb. 53 (1961), 3–38; English transi., Amer. Math. Soc. Transi. (2) 37 (1964), 197–240.

    Google Scholar 

  94. J. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (1971), no. 6, 7–71.

    Article  MathSciNet  MATH  Google Scholar 

  95. J. Manin, Parabolic points and zeta functions of modular curves, Math. USSR Izvestia 6 (1972), 19–64.

    Article  MathSciNet  Google Scholar 

  96. J. Manin, Periods of parabolic forms and p-adic Hecke series, Math. USSR Sbornik 21 (1973), 371–393.

    Article  Google Scholar 

  97. B. Mazur and H.P.F. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  98. Y. Motohashi, Lectures on the Riemann-Siegel Formula, Ulam Seminar, Dept. of Math., Univ. of Colorado, Boulder 1987.

    Google Scholar 

  99. A. P. Ogg, Modular Forms and Dirichlet Series, Benjamin, New York, 1969.

    MATH  Google Scholar 

  100. S. Raghavan, On certain identities due to Ramanujan, Quart. J. Math. Oxford (2) 37 (1986), 221–229.

    Article  MathSciNet  MATH  Google Scholar 

  101. R. A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge, 1977.

    Book  MATH  Google Scholar 

  102. M. J. Razar, Values of Dirichlet series at integers in the critical strip, Modular Functions of One Variable VI, Bonn 1976, Lecture Notes in Math. 627, Springer-Verlag, Berlin (1977), 1–10.

    Google Scholar 

  103. B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. der Berliner Akad. (1859), 671–680= Ges. Math. Werke, 145–153, Dover, New York, 1953.

    Google Scholar 

  104. F. Sato, Searching for the origin of prehomogeneous vector spaces, at annual meeting of the Math. Soc. Japan 1992 (in Japanese).

    Google Scholar 

  105. A. Selberg and S. Chowla, On Epstein’s zeta-function, J. Reine Angew. Math. 227 (1967)86–110= Collected Papers of Atle Selberg, Vol. I, 521–545, Springer, 1989.

    Google Scholar 

  106. J. P. Serre, A course in Arithmetic, Springer-Verlag, New York, 1973.

    Google Scholar 

  107. G. Shimura, Sur les intégral attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291–311.

    Article  MathSciNet  MATH  Google Scholar 

  108. G. Shimura, Introduction to the Theory of Automorphic Functions, Princeton University Press, Princeton, N. J. (1971).

    Google Scholar 

  109. C. L. Siegel, Über Riemanns Nachlaß zur analytischen Zahlentheorie, Quellen u. Studien zur Geschichte der Math., Astr. Phys., 2 (1932), 45–80 =Ges. Abh., I, 275–310, Springer, Berlin-New York 1966.

    Google Scholar 

  110. C. L. Siegel, Contribution to the theory of the Dirichlet L-series and the Epstein zeta-functions, Ann. of Math. 44 (1943), 143–172 = Ges. Abh., II, 360–389, Springer, Berlin-New York 1966.

    Google Scholar 

  111. C. L. Siegel, A simple proof of i (-1/r) = 7 7 (r) T/i, Mathematika 1 (1954), p.4 =Ges. Abh., III, 188, Springer, Berlin-New York 1966.

    Google Scholar 

  112. J. R. Smart, On the values of thè Epstein zeta function, Galsgow Math. J. 14 (1973), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  113. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001.

    MATH  Google Scholar 

  114. H. M. Stark, L-functions and character sums for quadratic forms (I) and (II), Acta Arith. 14 (1968), 35–50, and ibid. 15 (1969), 307–317.

    MATH  Google Scholar 

  115. A. Terras, Bessel series expansion of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477–486.

    Article  MathSciNet  MATH  Google Scholar 

  116. A. Terras, Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function, Acta Arith. 29 (1976), 181–189.

    MathSciNet  MATH  Google Scholar 

  117. A. Terras, The Fourier expansion of Epstein’s zeta function for totally real algebraic number fields and some consequences for Dedekind’s zeta function, Acta Arith. 30 (1976), 187–197.

    MathSciNet  MATH  Google Scholar 

  118. A. Terras, Applications of special functions for the general linear group to number theory, Séminaire Delange-Pisot-Poitou, 18e année, 1976/77, No. 23, 1–16.

    Google Scholar 

  119. A. Terras, The Fourier expansion of Epstein’s zeta function over an algebraic number field and its consequences for algebraic number theory. Acta Arith. 32 (1977), 37–53.

    MathSciNet  MATH  Google Scholar 

  120. A. Terras, A relation between ç(s) and ç(s — 1) for any algebraic number field, in Algebraic Number Fields A. Frohlich (Ed.), Academic Press, N.Y., 1977, 475–483.

    Google Scholar 

  121. A. Terras, The minima of quadratic forms and the behavior of Epstein and Dedekind zeta functions, J. Number Theory 12 (1980), 258–272.

    Article  MathSciNet  MATH  Google Scholar 

  122. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, II, Springer Verlag, New York-Berlin-Heidelberg, 1985.

    Book  MATH  Google Scholar 

  123. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, (second edition revised by D. R. Heath-Brown ), OUP 1986.

    Google Scholar 

  124. M. Toyoizumi, Ramanujan’s formulae for certain Dirichlet series. Comment. Math. Univ. St. Paul. 30 (1981), 149–173; 31 (1982), 87.

    MathSciNet  Google Scholar 

  125. A. Weil, Sur une formule classique, J. Math. Soc. Japan 20 (1968), 400–402 = Coll. Papers, III, 198–200, Springer, New York, 1980.

    Google Scholar 

  126. A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156 = Coll. Papers, III, 165–172, Springer, New York, 1979.

    Google Scholar 

  127. A. Weil, Remarks on Hecke’s lemma and its use, Algebraic Number Theory, Intern. Symposium Kyoto 1976, S. Iyanaga (ed.), Jap. Soc. for the Promotion of Science 1977, pp. 267–274=Coll. Papers III, 405–412, Springer, New York, 1980.

    Google Scholar 

  128. J. R. Wilton, A proof of Burnside’s formula for log I’(x + 1) and certain allied properties of Riemann’s (-function. Messenger Math. 52 (1922/1923), 90–93.

    Google Scholar 

  129. D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic forms, Modular Functions of One Variable VI, Bonn 1976, Lecture Notes in Math. 627, Springer-Verlag, Berlin (1977), 105–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Jonas Kubilius on his eightieth birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kanemitsu, S., Tanigawa, Y., Yoshimoto, M. (2002). Ramanujan’s Formula and Modular Forms. In: Kanemitsu, S., Jia, C. (eds) Number Theoretic Methods. Developments in Mathematics, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3675-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3675-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5239-4

  • Online ISBN: 978-1-4757-3675-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics