Skip to main content

Abstract

While traditional analog systems still form the vast majority of television sets today, production studios, broadcasters and network providers have been installing digital video equipment at an ever-increasing rate. The border line between analog and digital video is moving closer and closer to the consumer. Digital satellite and cable service have been available for a while, and recently terrestrial digital television broadcast has been introduced in a number of locations around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Ahumada, Jr., B. L. Beard, R. Eriksson: “Spatio-temporal discrimination model predicts temporal masking function.” in Proc. SPIE, vol. 3299, pp. 120–127, San Jose, CA, 1998.

    Google Scholar 

  2. D. G. Albrecht, W. S. Geisler: “Motion selectivity and the contrast-response function of simple cells in the visual cortex.” Vis. Neurosci. 7: 531–546, 1991.

    Article  Google Scholar 

  3. V. Baroncini, A. Pierotti: “Single-ended objective quality assessment of DTV” in Proc. SPIE, vol. 3845, Boston, MA, 1999.

    Google Scholar 

  4. V. Bhaskaran, K. Konstantinides: Image and Video Compression Standards. Algorithms and Architectures. Kluwer Academic Publishers, 2nd edn., 1997.

    Google Scholar 

  5. P. Bretillon, J. Baina: “Method for image quality monitoring on digital television networks.” in Proc. SPIE, vol. 3845, Boston, MA, 1999.

    Google Scholar 

  6. C. A. Burbeck, D. H. Kelly: “Spatiotemporal characteristics of visual mechanisms: Excitatory-inhibitory model.” J. Opt. Soc. Am. 70(9):11211126, 1980.

    Google Scholar 

  7. T. Carney, S. A. Klein, Q. Hu: “Visual masking near spatiotemporal edges.” in Proc. SPIE, vol. 2657, pp. 393–402, San Jose, CA, 1996.

    Google Scholar 

  8. G. R. Cole, C. F. Stromeyer, III., R. E. Kronauer: “Visual interactions with luminance and chromatic stimuli.” J. Opt. Soc. Am. A 7 (1): 128–140, 1990.

    Google Scholar 

  9. S. Comes, B. Macq, M. Mattavelli: “Postprocessing of images by filtering the unmasked coding noise.” IEEE Trans. Image Processing 8(8):10501062, 1999.

    Google Scholar 

  10. D. Costantini et al.: “Motion rendition quality metric for MPEG coded video.” in Proc. ICIP, vol. 1, pp. 889–892, Lausanne, Switzerland, 1996.

    Google Scholar 

  11. I. Dalgiç, H. Fang: “Comparison of H.323 and SIP for internet telephony signaling.” in Proc. SPIE, vol. 3845, Boston, MA, 1999.

    Google Scholar 

  12. S. Daly: “The visible differences predictor: An algorithm for the assessment of image fidelity.” in Digital Images and Human Vision, ed. A. B. Watson, pp. 179–206, MIT Press, 1993.

    Google Scholar 

  13. S. Daly: “Engineering observations from spatiovelocity and spatiotemporal visual models.” in Proc. SPIE, vol. 3299, pp. 180–191, San Jose, CA, 1998.

    Google Scholar 

  14. J. G. Daugman: “Two-dimensional spectral analysis of cortical receptive field profiles.” Vision Res. 20 (10): 847–856, 1980.

    Article  Google Scholar 

  15. G. de Haan, E. B. Betters: “Deinterlacing — an overview.” Proc. IEEE 86 (9): 1839–1857, 1998.

    Article  Google Scholar 

  16. J. M. Foley: “Human luminance pattern-vision mechanisms: Masking experiments require a new model.” J. Opt. Soc. Am. A 11 (6): 1710–1719, 1994.

    Article  Google Scholar 

  17. K. H. Foster et al.: “Spatial and temporal frequency selectivity of neurons in visual cortical areas V1 and V2 of the macaque monkey.” J. Physiol. 365: 331–363, 1985.

    Google Scholar 

  18. R. E. Fredericksen, R. F. Hess: “Temporal detection in human vision: Dependence on stimulus energy.” J. Opt. Soc. Am. A 14 (10): 2557–2569, 1997.

    Google Scholar 

  19. R. E. Fredericksen, R. F. Hess: “Estimating multiple temporal mechanisms in human vision.” Vision Res. 38 (7): 1023–1040, 1998.

    Article  Google Scholar 

  20. P. Frossard, O. Verscheure: Joint Source/FEC Rate Selection for Quality-Optimal MPEG-2 Video Delivery. Tech. Rep. 1999–04, Signal Processing Lab, Swiss Federal Institute of Technology, Lausanne, 1999.

    Google Scholar 

  21. B. Girod: “The information theoretical significance of spatial and temporal masking in video signals.” in Proc. SPIE, vol. 1077, pp. 178–187, Los Angeles, CA, 1989.

    Google Scholar 

  22. M. W. Greenlee, J. P. Thomas: “Effect of pattern adaptation on spatial frequency discrimination.” J. Opt. Soc. Am. A 9 (6): 857–862, 1992.

    Google Scholar 

  23. T. Hamada, S. Miyaji, S. Matsumoto: “Picture quality assessment system by three-layered bottom-up noise weighting considering human visual perception.” SMPTE J. 108(1):20–26 1999.

    Google Scholar 

  24. S. T. Hammett, A. T. Smith: “Two temporal channels or three? A reevaluation.” Vision Res. 32 (2): 285–291, 1992.

    Article  Google Scholar 

  25. D. J. Heeger: “Half-squaring in responses of cat striate cells.” Vis. Neurosci. 9: 427–443, 1992.

    Article  Google Scholar 

  26. D. J. Heeger: “Normalization of cell responses in cat striate cortex” Vis. Neurosci. 9: 181–197, 1992.

    Article  Google Scholar 

  27. R. F. Hess, R. J. Snowden: “Temporal properties of human visual filters: Number, shapes and spatial covariation.” Vision Res. 32 (1): 47–59, 1992.

    Article  Google Scholar 

  28. ITU-R Recommendation BT.500–10: “Methodology for the subjective assessment of the quality of television pictures.” ITU, Geneva, Switzerland, 2000.

    Google Scholar 

  29. ITU-R Recommendation BT.601–5: “Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios.” ITU, Geneva, Switzerland, 1995.

    Google Scholar 

  30. ITU-T Recommendation H.323: “Visual telephone systems and equipment for local area networks which provide a non-guaranteed quality of service.” ITU, Geneva, Switzerland, 1998.

    Google Scholar 

  31. D. H. Kelly: “Motion and vision. I. Stabilized images of stationary gratings.” J. Opt. Soc. Am. 69 (9): 1266–1274, 1979.

    Google Scholar 

  32. D. H. Kelly: “Motion and vision. II. Stabilized spatio-temporal threshold surface.” J. Opt. Soc. Am. 69 (10): 1340–1349, 1979.

    Article  Google Scholar 

  33. D. H. Kelly: “Spatiotemporal variation of chromatic and achromatic contrast thresholds.” J. Opt. Soc. Am. 73 (6): 742–750, 1983.

    Google Scholar 

  34. J. J. Koenderink, A. J. van Doorn: “Spatiotemporal contrast detection threshold surface is bimodal.” Opt. Letters 4 (1): 32–34, 1979.

    Article  Google Scholar 

  35. P. Lindh, C. J. van den Branden Lambrecht: “Efficient spatio-temporal decomposition for perceptual processing of video sequences.” in Proc. ICIP, vol. 3, pp. 331–334, Lausanne, Switzerland, 1996.

    Google Scholar 

  36. M. A. Losada, K. T. Mullen: “The spatial tuning of chromatic mechanisms identified by simultaneous masking.” Vision Res. 34 (3): 331–341, 1994.

    Article  Google Scholar 

  37. J. Lubin, D. Fibush: “Sarnoff JND vision model.” T1A1.5 Working Group Document #97–612, ANSI T1 Standards Committee, 1997.

    Google Scholar 

  38. F. X. J. Lukas, Z. L. Budrikis: “Picture quality prediction based on a visual model.” IEEE Trans. Comm. 30 (7): 1679–1692, 1982.

    Article  Google Scholar 

  39. M. B. Mandler, W. Makous: “A three-channel model of temporal frequency perception.” Vision Res. 24 (12): 1881–1887, 1984.

    Article  Google Scholar 

  40. MOSAIC: A New Single Stimulus Quality Assessment Methodology. RACE R2111, 1996.

    Google Scholar 

  41. E. Peli: “Contrast in complex images.” J. Opt. Soc. Am. A 7(10):20322040, 1990.

    Google Scholar 

  42. E. Peli: “In search of a contrast metric: Matching the perceived contrast of Gabor patches at different phases and bandwidths.” Vision Res. 37 (23): 3217–3224, 1997.

    Article  Google Scholar 

  43. A. B. Poirson, B. A. Wandell: “Appearance of colored patterns: Pattern-color separability.” J. Opt. Soc. Am. A 10 (12): 2458–2470, 1993.

    Google Scholar 

  44. A. B. Poirson, B. A. Wandell: “Pattern-color separable pathways predict sensitivity to simple colored patterns” Vision Res. 36 (4): 515–526, 1996.

    Article  Google Scholar 

  45. C. Poynton: “The rehabilitation of gamma” in Proc. SPIE, vol. 3299, pp. 232–249, San Jose, CA, 1998.

    Google Scholar 

  46. R. F. Quick, Jr.: “A vector-magnitude model of contrast detection.” Kybernetik 16: 65–67, 1974.

    Article  Google Scholar 

  47. J. G. Robson: “Spatial and temporal contrast-sensitivity functions of the visual system.” J. Opt. Soc. Am. 56: 1141–1142, 1966.

    Article  Google Scholar 

  48. A. M. Rohaly et al.: “Video Quality Experts Group: Current results and future directions.” in Proc. SPIE, vol. 4067, Perth, Australia, 2000.

    Google Scholar 

  49. J. Ross, H. D. Speed: “Contrast adaptation and contrast masking in human vision.” Proc. R. Soc. Lond. B 246: 61–70, 1991.

    Article  Google Scholar 

  50. H. Schulzrinne, J. Rosenberg: “Internet telephony: Architecture and protocols — an IETF perspective.” Computer Networks and ISDN Systems 31: 237–255, 1999.

    Google Scholar 

  51. H. Schulzrinne et al.: RTP: A Transport Protocol for Real-Time Applications. Tech. Rep. RFC 1889, IETF, 1996.

    Google Scholar 

  52. A. J. Seyler, Z. L. Budrikis: “Measurements of temporal adaptation to spatial detail vision.” Nature 184: 1215–1217, 1959.

    Article  Google Scholar 

  53. A. J. Seyler, Z. L. Budrikis: “Detail perception after scene changes in television image presentations.” IEEE Trans. Inform. Theory 11 (1): 3143, 1965.

    Article  Google Scholar 

  54. E. P. Simoncelli et al.: “Shiftable multi-scale transforms.” IEEE Trans. Inform. Theory 38 (2): 587–607, 1992.

    Article  MathSciNet  Google Scholar 

  55. R. J. Snowden, S. T. Hammett: “Spatial frequency adaptation: Threshold elevation and perceived contrast” Vision Res. 36 (12): 1797–1809, 1996.

    Article  Google Scholar 

  56. E. Switkes, A. Bradley, K. K. De Valois: “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings.” J. Opt. Soc. Am. A 5(7):1149–1162,1988.

    Google Scholar 

  57. W. J. Tam et al.: “Visual masking at video scene cuts.” in Proc. SPIE, vol. 2411, pp. 111–119, San Jose, CA, 1995.

    Google Scholar 

  58. P. C. Teo, D. J. Heeger: “Perceptual image distortion.” in Proc. SPIE, vol. 2179, pp. 127–141, San Jose, CA, 1994.

    Google Scholar 

  59. G. Thomas: “A comparison of motion-compensated interlace-toprogressive conversion methods.” Signal Processing: Image Communication 12 (3): 209–229, 1998.

    Article  Google Scholar 

  60. C. J. van den Branden Lambrecht: Perceptual Models and Architectures for Video Coding Applications. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 1996.

    Google Scholar 

  61. C. J. van den Branden Lambrecht et al.: “Automatically assessing MPEG coding fidelity.” IEEE Design and Test Magazine 12 (4): 28–33, 1995.

    Article  Google Scholar 

  62. O. Verscheure: User-Oriented QoS in MPEG-2 Video Delivery. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 1999.

    Google Scholar 

  63. VQEG: “Final report from the Video Quality Experts Group on the validation of objective models of video quality assessment.” 2000, available at http://www.crc.ca/vqeg/.

    Google Scholar 

  64. A. B. Watson: “Temporal sensitivity.” in Handbook of Perception and Human Performance, eds. K. R. Boff, L. Kaufman, J. P. Thomas, vol. 1, chap. 6, John Wiley Sons, 1986.

    Google Scholar 

  65. A. B. Watson: “DCTune: A technique for visual optimization of DCT quantization matrices for individual images.” in SID Symposium Digest, vol. 24, pp. 946–949, 1993.

    Google Scholar 

  66. A. B. Watson: “Toward a perceptual video quality metric.” in Proc. SPIE, vol. 3299, pp. 139–147, San Jose, CA, 1998.

    Google Scholar 

  67. A. B. Watson, J. A. Solomon: “Model of visual contrast gain control and pattern masking.” J. Opt. Soc. Am. A 14 (9): 2379–2391, 1997.

    Google Scholar 

  68. M. A. Webster, E. Miyahara: “Contrast adaptation and the spatial structure of natural images.” J. Opt. Soc. Am. A 14 (9): 2355–2366, 1997.

    Google Scholar 

  69. M. A. Webster, J. D. Mollon: “Adaptation and the color statistics of natural images.” Vision Res. 37 (23): 3283–3298, 1997.

    Article  Google Scholar 

  70. S. J. P. Westen, R. L. Lagendijk, J. Biemond: “Spatio-temporal model of human vision for digital video compression” in Proc. SPIE, vol. 3016, pp. 260–268, San Jose, CA, 1997.

    Google Scholar 

  71. H. R. Wilson, R. Humanski: “Spatial frequency adaptation and contrast gain control.” Vision Res. 33 (8): 1133–1149, 1993.

    Article  Google Scholar 

  72. S. Winkler: “A perceptual distortion metric for digital color images.” in Proc. ICIP, vol. 3, pp. 399–403, Chicago, IL, 1998.

    Google Scholar 

  73. S. Winkler: “Issues in vision modeling for perceptual video quality assessment.” Signal Processing 78 (2): 231–252, 1999.

    Article  MATH  Google Scholar 

  74. S. Winkler: “A perceptual distortion metric for digital color video.” in Proc. SPIE, vol. 3644, pp. 175–184, San Jose, CA, 1999.

    Google Scholar 

  75. S. Winkler: “Quality metric design: A closer look.” in Proc. SPIE, vol. 3959, pp. 37–44, San Jose, CA, 2000.

    Google Scholar 

  76. S. Winkler, P. Vandergheynst: “Computing isotropic local contrast from oriented pyramid decompositions.” in Proc. ICIP, vol. 4, pp. 420–424, Kyoto, Japan, 1999.

    Google Scholar 

  77. J. Yang, W. Makous: “Spatiotemporal separability in contrast sensitivity.” Vision Res. 34 (19): 2569–2576, 1994.

    Article  Google Scholar 

  78. J. Yang, W. Makous: “Implicit masking constrained by spatial inhomogeneities.” Vision Res. 37 (14): 1917–1927, 1997.

    Article  Google Scholar 

  79. M. Yuen, H. R. Wu: “A survey of hybrid MC/DPCM/DCT video coding distortions.” Signal Processing 70 (3): 247–278, 1998.

    Article  MATH  Google Scholar 

  80. W. Y. Zou: “Performance evaluation: From NTSC to digitally compressed video.” SMPTE J. 103 (12): 795–800, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winkler, S., Kunt, M., van den Branden Lambrecht, C.J. (2001). Vision and Video: Models and Applications. In: van den Branden Lambrecht, C.J. (eds) Vision Models and Applications to Image and Video Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3411-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3411-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4905-9

  • Online ISBN: 978-1-4757-3411-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics