Skip to main content

Phylogenetic comparison and artificial selection

Two approaches in evolutionary physiology

  • Chapter
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 502))

Abstract

Interspecific comparison has a long and productive history in physiology. Conceptual and statistical advances over the last 15 years have demonstrated several ways in which comparisons can be enhanced by consideration of phylogenetic information, i.e., empirical estimates of the ways in which organisms are related (evolutionary trees). Choice of species to be compared should be informed by phylogenetic information. For example, a comparison of three species that inhabit high altitude with three that live at low altitude would be suspect if each of the two groups were composed of closely-related species (e.g., within single genera). To avoid such “phylogenetic pseudoreplication,” one might instead study species from three different genera, each containing one high-altitude and one low-altitude inhabitant. Unfortunately, many studies have not been so carefully designed, sometimes because organisms were not accessible or because the studies incorporated data from the literature. Fortunately, several new statistical methods correct for problems caused by phylogenetic relatedness and descent with modification, the most common being phylogenetically independent contrasts. Another tool that can be used in comparative physiology is selective breeding, which has been practiced for millennia and applied in scientific contexts for over a century. In the last 20 years, ecological and evolutionary physiologists have begun using selection experiments to study processes of genetic adaptation in physiological and behavioral traits. For example, house mice have been maintained in the cold for multiple generations to see what adaptations may occur naturally in response to reduced ambient temperature (“laboratory natural selection”). Our own laboratory has used selective breeding to create four replicate lines of mice that exhibit high levels of voluntary wheel-running behavior, as well as various morphological and physiological characteristics that cause or allow the elevated locomotor activity. Similar experiments could be used to study adaptation to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackerly DD. Comparative plant ecology and the role of phylogenetic information. In: Physiological plant ecology, edited by Press MC, Scholes JD, and Braker MG. Oxford, UK: Blackwell Science, 1999, p. 391–413.

    Google Scholar 

  2. Ackerly DD. Taxon sampling, correlated evolution, and independent contrasts. Evolution 54: 1480–1492,2000.

    PubMed  CAS  Google Scholar 

  3. Alexander R McN. Optima for animals. (Revised ed.) Princeton: Princeton Univ. Press, 1996.

    Google Scholar 

  4. Barnett SA, and Dickson, RG. Changes among wild house mice (Mus musculus) bred for ten generations in a cold environment, and their evolutionary implications. J Zool, Lond 203: 163–180, 1984a.

    Article  Google Scholar 

  5. Barnett SA, and Dickson, RG. Milk production and consumption and growth of young of wild mice after ten generations in a cold environment. J Physiol 346: 409–417, 1984b.

    CAS  Google Scholar 

  6. Barnett SA., and Dickson, RG. Wild mice in the cold: some findings on adaptation. Biol Rev 64: 317–340, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Barnett SA., Munro KMH, Smart JL, and Stoddart RC. House mice bred for many generations in two environments. J Zool, Lond 177: 153–169, 1975.

    Article  Google Scholar 

  8. Bell, G. Selection: the mechanism of evolution. New York: Chapman & Hall, 1997.

    Book  Google Scholar 

  9. Bennett AF. Adaptation and the evolution of physiological characters. In: Handbook of physiology. Section 13: comparative physiology. Vol. I., edited by Dantzler WH. New York: Oxford Univ. Press, 1997, p. 3–16.

    Google Scholar 

  10. Bennett AF., and Lenski RE. Experimental evolution and its role in evolutionary physiology. Am Zool 39: 346–362, 1999.

    Google Scholar 

  11. Blomberg S. Fels-Rand: an Xlisp-Stat program for the comparative analysis of data under phylogenetic uncertainty. Bioinformatics 16: 1010–1013, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Bradley TJ, and Zamer W. Introduction to the Symposium: What is evolutionary physiology? Am Zool 39: 321–322, 1999.

    Google Scholar 

  13. Brown JH, and West GB, eds. Scaling in biology. New York: Oxford Univ. Press, 2000.

    Google Scholar 

  14. Brutsaert TD. Limits on inferring genetic adaptation to high altitude in Himalayan and Andean populations. High Alt Med Biol 2: in press, 2001.

    Google Scholar 

  15. Brutsaert TD. Genetic and environmental adaptation in high altitude natives: conceptual, methodological, and statistical concerns, 2001. This volume.

    Google Scholar 

  16. Bult A, and Lynch CB. Breaking through artificial selection limits of an adaptive behavior in mice and the consequences for correlated responses. Behav Gen 30: 193–206, 2000.

    Article  CAS  Google Scholar 

  17. Burggren WW, and Bemis WE. Studying physiological evolution: paradigms and pitfalls. In: Evolutionary innovations, edited by Nitecki MH. Chicago: Univ. Chicago Press, 1990, p. 191–238.

    Google Scholar 

  18. Calder WA. Size, function and life history. Cambridge: Harvard Univ. Press, 1984.

    Google Scholar 

  19. Carter PA, Garland T Jr., Dohm MR, and Hayes JP. Genetic variation and correlations between genotype and locomotor physiology in outbred laboratory house mice (Mus domesticus). Comp Biochem Physiol A 123: 155–162, 1999.

    Article  CAS  Google Scholar 

  20. Crabbe JC, Young ER, Deutsch CM, Tam BR, and Kosobud A. Mice genetically selected for differences in open-field activity after ethanol. Pharmacol Biochem Behav 27: 577–581, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Daniels CB, and Orgeig S. Proceedings of the satellite symposium for the Australian Physiological and Pharmacological Society: the evolution of physiological processes. Clinical Exp Pharmacol Physiol 25: 715, 1998. (and following papers)

    Article  Google Scholar 

  22. Diamond JM. Evolutionary physiology. In: The logic of life: the challenge of integrative physiology, Boyd CAR, and Noble D. Oxford: Oxford Univ. Press, 1993, p. 89–111.

    Google Scholar 

  23. Diaz-Uriarte R, and Garland T Jr. Testing hypotheses of correlated evolution using phylogenetically independent contrasts: sensitivity to deviations from Brownian motion. Syst Biol 45: 27–47, 1996.

    Article  Google Scholar 

  24. Diaz-Uriarte R, and Garland T Jr. Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst Biol 47: 654–672, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Dudley R, and Gans C. A critique of symmorphosis and optimality models in physiology. Physiol Zool 64: 627–637, 1991.

    Google Scholar 

  26. Dumke CL, Swallow JG, Rhodes JS, Garland T, Maslowski E, Gazdag AC, and Cartee GD. Effects of genetic selection and voluntary wheel running on glucose transport in mice. Med Sci Sports Exercise 31(5 Supplement): S127, 1999. (Abstract)

    Google Scholar 

  27. Falconer DS, and Mackay TFC. Introduction to quantitative genetics. (4th. ed.) Essex, England: Longman, 1996.

    Google Scholar 

  28. Feder ME. Engineering candidate genes in studies of adaptation: the heat-shock protein Hsp70 in Drosophila melanogaster. Am Nat 154 (Supplement): S55–S66, 1999.

    Article  Google Scholar 

  29. Feder ME, Bennett AF, Burggren WW, and Huey RB, eds. New directions in ecological physiology. New York: Cambridge Univ. Press, 1987.

    Google Scholar 

  30. Feder ME, Bennett AF, and Huey RB. Evolutionary physiology. Annu Rev Ecol Syst 31: 315–341, 2000.

    Article  Google Scholar 

  31. Feder ME, and Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61: 243–282, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Felsenstein J. Phylogenies and the comparative method. Am Nat 125: 1–15, 1985.

    Article  Google Scholar 

  33. Freeman S, and Herron JC. Evolutionary analysis. Upper Saddle River, New Jersey: Prentice Hall, 1998.

    Google Scholar 

  34. Futuyma DJ. Evolutionary biology. (3rd ed.) Sunderland, Mass.: Sinauer Associates, 1998.

    Google Scholar 

  35. Garland T Jr. Testing the predictions of symmorphosis: conceptual and methodological issues. In: Principles of animal design: the optimization and symmorphosis debate, edited by Weibel ER, Bolis L, and Taylor CR. New York: Cambridge Univ. Press, 1998, 40–47.

    Google Scholar 

  36. Garland T Jr., and Adolph SC. Physiological differentiation of vertebrate populations. Annu Rev Ecol Syst 22: 193–228, 1991.

    Article  Google Scholar 

  37. Garland T Jr., and Adolph SC. Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol Zool 67: 797–828, 1994.

    Google Scholar 

  38. Garland T Jr., and Carter PA. Evolutionary physiology. Annu Rev Physiol 56: 579–621, 1994.

    Article  PubMed  Google Scholar 

  39. Garland T Jr., and Diaz-Uriarte R. Polytomies and phylogenetically independent contrasts: an examination of the bounded degrees of freedom approach. Syst Biol 48: 547–558, 1999.

    Article  PubMed  Google Scholar 

  40. Garland T Jr., Dickerman AW, Janis CM, and Jones JA. Phylogenetic analysis of covariance by computer simulation. Syst Biol 42: 265–292, 1993.

    Google Scholar 

  41. Garland T Jr., and Ives AR. Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155: 346–364, 2000.

    Article  Google Scholar 

  42. Garland T Jr., Martin KLM, and Diaz-Uriarte R. Reconstructing ancestral trait values using squared-change parsimony: plasma osmolarity at the origin of amniotes. In: Amniote origins: completing the transition to land, edited by Sumida SS, and Martin KLM. San Diego: Academic Press, 1997, p. 425–501.

    Chapter  Google Scholar 

  43. Garland, T Jr, Midford PE, and Ives AR. An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39: 374–388, 1999.

    Google Scholar 

  44. Garland T Jr., Swallow JG, Girard I, Rhodes JS, Houle-Leroy P, Guderley H, Freeman PW, Dumke CL, Cartee GD, Koteja P, McAleer MW, Hosack GR, Belter JG, and Carter PA. Exercise adaptations in lines of house mice genetically selected for high voluntary wheel-running behavior. The Physiologist 43: 328, 2000. (Abstract)

    Google Scholar 

  45. Gibbs AG. Laboratory selection for the comparative physiologist. J Exp Biol 202: 2709–2718, 1999.

    PubMed  CAS  Google Scholar 

  46. Gilchrist GW, Huey RB, and Partridge L. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol Zool 70: 403–414, 1997.

    Article  PubMed  CAS  Google Scholar 

  47. Hayes JP, Garland T Jr., and Dohm MR. Metabolic rates and reproduction of Mus: are energetics and life history linked? Funct Ecol 6: 5–14, 1992.

    Article  Google Scholar 

  48. Henderson ND. Spurious associations in unreplicated selected lines. Behav Genet 27: 145–154, 1997.

    Article  PubMed  CAS  Google Scholar 

  49. Hill WG, and Caballero A. Artificial selection experiments. Annu Rev Ecol Syst 23: 287–310, 1992.

    Article  Google Scholar 

  50. Hopkins SR, and Powell FL. Common themes of adaptation to hypoxia. 2001. This volume.

    Google Scholar 

  51. Houle-Leroy P, Garland T Jr., Swallow JG, and Guderley H. Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice Mus domesticus. J Appl Physiol 89: 1608–1616, 2000.

    CAS  Google Scholar 

  52. Huey RB, and Bennett AF. Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41: 1098–1115, 1987.

    Article  Google Scholar 

  53. Hutchinson JR, and Gatesy S. Adductors, abductors, and the evolution of archosaur locomotion. Paleobiol 26: 734–751, 2000.

    Article  Google Scholar 

  54. Kellogg EA., and Shaffer HB. Model organisms in evolutionary studies. Syst Biol 42: 409–414, 1993.

    Article  Google Scholar 

  55. Kohane MJ, and Parsons PA. Domestication: evolutionary changes under stress. Evol Biol 23:31–48, 1988.

    Article  Google Scholar 

  56. Koteja P, Swallow JG, Carter PA, and Garland T Jr. Energy cost of wheel running in house mice: implications for coadaptation of locomotion and energy budgets. Physiol Biochem Zool 72: 238–249, 1999.

    Article  PubMed  CAS  Google Scholar 

  57. Koteja P, Swallow JG, Carter PA, and Garland T Jr. Maximum cold-induced food consumption in mice selected for high locomotor activity: implications for the evolution of endotherm energy budgets. J Exp Biol 204: 1177–1190, 2001.

    PubMed  CAS  Google Scholar 

  58. Lacy RC, Lynch CB, and Lynch GR. Developmental and adult acclimation effects of ambient temperature on temperature regulation of mice selected for high and low levels of nest-building. J Comp Physiol 123: 185–192, 1978.

    Google Scholar 

  59. Lauder GV. Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. Am Zool 40: 101–122, 2000.

    Article  Google Scholar 

  60. Lynch CB. Response to divergent selection for nesting behavior in Mus musculus. Genetics 96: 757–765, 1980.

    PubMed  CAS  Google Scholar 

  61. Lynch CB. Genetic basis of cold adaptation in laboratory and wild mice, Mus domesticus. In: Living in the cold: physiological and biochemical adaptations, edited by Heller HC, Musacchia XJ, and Wang LCH. New York: Elsevier Science, 1986, p. 497–504.

    Google Scholar 

  62. Lynch CB. Clinal variation in cold adaptation in Mus domesticus: verification of predictions from laboratory populations. Am Nat 139: 1219–1236, 1992.

    Article  Google Scholar 

  63. Lynch CB. Evolutionary inferences from genetic analyses of cold adaptation in laboratory and wild populations of the house mouse, Mus domesticus. In: Quantitative genetic studies of behavioral evolution, edited by Boake CRB. Chicago: Univ. Chicago Press, Chicago., 1994, p. 278–301.

    Google Scholar 

  64. Lynch M, and Walsh JB. 1998. Genetics and analysis of quantitative traits. Sunderland, Mass.: Sinauer Associates, 1998.

    Google Scholar 

  65. Marden JH., O’Donnell BC, Thomas MA, and Bye JY. Surface-skimming stoneflies and mayflies: The taxonomic and mechanical diversity of two-dimensional aerodynamic locomotion. Physiol Biochem Zool 73: 751–764, 2000.

    Article  PubMed  CAS  Google Scholar 

  66. Marley RJ, Arros DM, Henricks KK, Marley ME, and Miner LL. Sensitivity to cocaine and amphetamine among mice selectively bred for differential cocaine sensitivity. Psychopharmacol 140: 42:51, 1998.

    Google Scholar 

  67. Martins EP, and Garland T Jr. Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution 45: 534–557, 1991.

    Article  Google Scholar 

  68. Mayr E. 1963. Animal species and evolution. Cambridge, Mass.: The Belknap Press of Harvard Univ. Press, 1963.

    Google Scholar 

  69. Nagy KA, Girard IA, and Brown TK. Energetics of free-ranging mammals, reptiles, and birds. Annu Rev Nutr 19: 247–277, 1999.

    Article  CAS  Google Scholar 

  70. Nishikawa KC. Neuromuscular control of prey capture in frogs. Phil Trans R Soc B 354: 941–954, 1999.

    Article  PubMed  CAS  Google Scholar 

  71. Powell JR. Progress and perspectives in evolutionary biology: the Drosophila model. New York: Oxford Univ. Press, 1997.

    Google Scholar 

  72. Promislow DEL. The evolution of mammalian blood parameters: patterns and their interpretation. Physiol Zool 64: 393–431, 1991.

    Google Scholar 

  73. Purvis A., and Webster AJ. Phylogenetically independent comparisons and primate phylogeny. In: Comparative primate socioecology, edited by Lee PC. Cambridge, U.K.: Cambridge Univ. Press, 1999, p. 44–70.

    Chapter  Google Scholar 

  74. Reynolds PS, and Lee RM III. Phylogenetic analysis of avian energetics: passerines and nonpasserines do not differ. Am Nat 147: 735–759, 1996.

    Article  Google Scholar 

  75. Rhodes JS, Koteja P, Swallow JG, Carter PA, and Garland T Jr. Body temperatures of house mice artificially selected for high voluntary wheel-running behavior: repeatability and effect of genetic selection. J Therm Biol 25: 391–400, 2000.

    Article  PubMed  Google Scholar 

  76. Rice MC, and O’Brien SJ. Genetic variance of laboratory outbred Swiss mice. Nature 283: 157–161, 1980.

    Article  PubMed  CAS  Google Scholar 

  77. Robertson A., ed. Selection experiments in laboratory and domestic animals. Farnam Royal, Slough, U.K.: Commonwealth Agricultural Bureau, 1980.

    Google Scholar 

  78. Roff DA. Evolutionary quantitative genetics. New York: Chapman & Hall, 1997.

    Book  Google Scholar 

  79. Rose MR, Graves JL Jr., and Hutchinson EW. The use of selection to probe patterns of pleiotropy in fitness characters. In: Insect life cycles: genetics, evolution and coordination, edited by Gilbert F. London: Springer-Verlag, 1990, p. 29–42.

    Chapter  Google Scholar 

  80. Schlager G, and Weibust RS. Selection for hematocrit percent in the house mouse. J Heredity 67:295–99, 1976.

    CAS  Google Scholar 

  81. Schmidt-Nielsen K. Scaling: why is animal size so important? Cambridge: Cambridge Univ. Press, 1984.

    Book  Google Scholar 

  82. Silver LM. Mouse genetics. Concepts and applications. New York.: Oxford Univ. Press, 1995.

    Google Scholar 

  83. Swallow JG, Carter PA, and Garland T Jr. Artificial selection for increased wheel-running behavior in house mice. Behav Genet 28: 227–237, 1998a.

    Article  CAS  Google Scholar 

  84. Swallow JG, Garland T Jr., Carter PA, Zhan W-Z, and Sieck GC. Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J Appl Physiol 84: 69–76, 1998b.

    CAS  Google Scholar 

  85. Swallow JG, Koteja P, Carter PA, and Garland T Jr. Artificial selection for increased wheel-running activity in house mice results in decreased body mass at maturity. J Exp Biol 202:2513–2520, 1999.

    PubMed  CAS  Google Scholar 

  86. Swallow JG, Koteja P, Carter PA, and Garland T Jr. Food consumption and body composition in mice selected for high wheel-running activity. J Comp Physiol B In press, 2001.

    Google Scholar 

  87. Thomason JJ, ed. Functional morphology in vertebrate paleontology. Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

  88. Thompson GG, and Withers PC. Standard and maximal metabolic rates of goannas (Squamata: Varanidae). Physiol Zool 70: 307–323, 1997. Correction 71: 126, 1998.

    PubMed  CAS  Google Scholar 

  89. Vanhooydonck B, and Van Damme R. Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol Ecol Res 1: 785–805, 1999.

    Google Scholar 

  90. Wainwright PC, and Turingan RG. Evolution of pufferfish inflation behavior. Evolution 51:506–518, 1997.

    Article  Google Scholar 

  91. Weibel ER. Symmorphosis: on form and function in shaping life. Cambridge, Mass: Harvard Univ. Press, 2000.

    Google Scholar 

  92. Weibel ER, Taylor CR, and Bolis L, eds. Principles of animal design: the optimization and symmorphosis debate. Cambridge, U.K.: Cambridge Univ. Press, 1998.

    Google Scholar 

  93. Withers PC. Comparative animal physiology. Fort Worth, Saunders College, 1992.

    Google Scholar 

  94. Zera AJ, and Harshman LG. Physiology of life history trade-offs. Annu Rev Ecol Syst 32: in press, 2001.

    Google Scholar 

  95. Zera AJ, Sanger T, and Cisper GL. Direct and correlated responses to selection on JHE activity in adult and juvenile Gryllus assimilis: implications for stage-specific evolution of insect endocrine traits. Heredity 80: 300–309, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garland, T. (2001). Phylogenetic comparison and artificial selection. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 502. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3401-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3401-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3374-4

  • Online ISBN: 978-1-4757-3401-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics