Skip to main content

Skeletal muscle angiogenesis

A possible role for hypoxia

  • Chapter
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 502))

Abstract

Skeletal muscle is one of the most plastic tissues in the body. Repeated exercise causes several muscle adaptations, among which the development of additional capillaries (angiogenesis) is prominent. Conversely, inactivity and some chronic diseases result in loss of muscle capillaries. Since (endurance) exercise depends on adequate O2 supply, it is reasonable to hypothesize that hypoxia occurring within muscle during exercise may provide the stimulus to angiogenesis. However, there are other potential stimuli including physical effects of increased muscle blood flow, or of muscle contraction; release of molecules such as NO that could transcriptionally activate angiogenic growth factors; and perhaps changes in the biochemical milieu of the muscle cell such as acidosis. This brief review will address evidence collected to date mostly at the molecular biological level that does in fact implicate reduced intracellular Po2 as a major stimulus to the angiogenic process resulting from exercise. In particular, it is shown that VEGF message and protein are increased in muscle with exercise, more so in hypoxia, and that HIF-1α correlates with VEGF as would be expected if hypoxia were the major stimulus. In addition, we show that muscle intracellular PO2 falls to very low levels during exercise (3–4 Torr), providing a degree of hypoxia compatible with a strong role for low Po2 in angiogenic growth factor response. However, the definitive experiments using acute gene manipulation to establish a cause and effect relationship between hypoxia and muscle angiogenesis remain to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhikary G, Premkumar DR, Prabhakar NR. Dual influence of nitric oxide on gene regulation during hypoxia. Adv Exp Med Biol 475:285–292, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Bebout DE, Hogan MC, Hempleman SC, Wagner PD. Effects of training and immobilization on VO2 and DO2 in dog gastrocnemius muscle in situ. J Appl Physiol 74:1697–1703, 1993.

    CAS  Google Scholar 

  3. Benoit H, Jordan M, Wagner H, Wagner PD. Effect of NO, vasodilator prostaglandins and adenosine on skeletal muscle angiogenic growth factor gene expression. J Appl Physiol 86:1513–1518, 1999.

    PubMed  CAS  Google Scholar 

  4. Breen EC, Johnson EC, Wagner H, Tseng H-M, Sung LA, Wagner PD. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J Appl Physiol 81:355–361,1996.

    PubMed  CAS  Google Scholar 

  5. Carmeliet P, Collen D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann NY Acad Sci 902:249–264, 2000.

    Article  PubMed  CAS  Google Scholar 

  6. Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 10:907–919, 1999

    PubMed  CAS  Google Scholar 

  7. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivationofthe VEGF gene. Nature 380:439–442, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW. The vascular endothelial growth factor family of polypeptides. J Cell Biol 47:211–218, 1991.

    CAS  Google Scholar 

  9. Forsythe JA, Jiang B-H, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia- inducible factor 1. Mol Cell Biol 16:4604–4613, 1996.

    PubMed  CAS  Google Scholar 

  10. Gavin TP, Wagner PD. Effects of exercise and nitric oxide synthase inhibition on skeletal muscle VEGF receptor mRNA. Am J Physiol (Heart Circ Physiol), submitted for publication, 2001.

    Google Scholar 

  11. Gourley M, Williamson JS. Angiogenesis: new targets for the development of anticancer chemotherapies. Curr Pharm Design 6:417–439, 2000.

    Article  CAS  Google Scholar 

  12. Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases and chronic inflammation. Pharmacol Rev 52:237–268, 2000.

    PubMed  CAS  Google Scholar 

  13. Groebe K, Thews G. Theoretical analysis of oxygen supply to contracted skeletal muscle. Adv Exp Med Biol 200:495–514, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Hepple RT, Hogan MC, Stary CM, Bebout DE, Mathieu-Costello O, Wagner PD. Structural basis of muscle O2 diffusing capacity: evidence from muscle function in situ. J Appl Physiol 88:560–566, 2000.

    CAS  Google Scholar 

  15. Hogan MC, Bebout DE, Wagner PD. Effect of increased Hb-O2 affinity on VO2max at constant O2 delivery in dog muscle in situ.J Appl Physiol 70:2656–2662, 1991.

    PubMed  CAS  Google Scholar 

  16. Homma S, Gavin TP, Mathieu-Costello O, Wagner PD: Influence of chronic nitric oxide inhibition on muscle capillarization. The Physiologist 43:350, 2000.(Abstract)

    Google Scholar 

  17. Honig CR, Gayeski TEJ, Federspiel WJ, Clark A, Jr., Clark P. Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Adv Exp Med Biol 169:23–38, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Krogh A. The number and distribution of capillaries in muscle with calculations of the pressure head necessary for supplying the tissue. J Physiol (Lond) 52:409–415, 1919.

    CAS  Google Scholar 

  19. Marth JD. Molecular medicine in genetically engineered animals. Recent advances in gene mutagenesis by site-directed recombination. J Clin Invest 97:1999–2002, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Mathieu-Costello O, Agey PJ, Wu L, Hang J, Adair TH. Capillary-to-fiber surface ratio in rat fast-twitch hindlimb muscles after chronic electrical stimulation. J Appl Physiol 80:904–909, 1996.

    PubMed  CAS  Google Scholar 

  21. Moore GE, Parsons B, Stray-Gundersen J, Painter PL, Brinker KR, Mitchell JH. Uremic myopathy limits aerobic capacity in hemodialysis patients. Am J Kidney Dis 22:277–287, 1993.

    PubMed  CAS  Google Scholar 

  22. Noakes TD. Challenging beliefs: ex Africa semper aliquid novi. Med Sci Sports Exerc 29:571–590, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Noakes TD. Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398, 1998.

    PubMed  CAS  Google Scholar 

  24. O’Leary DS, Dunlap RC, Glover KW. Role of endothelium-derived relaxing factor in hindlimb reactive and active hyperemia in conscious dogs. Am J Physiol 266:R1213–R1219, 1994.

    PubMed  Google Scholar 

  25. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise: evidence of limited O2 transport. J Clin Invest 96:1916–1926, 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Richardson RS, Tagore K, Haseler L, Jordan M, Wagner PD. Increased VO2max with a right shifted Hb-O2 dissociation curve at a constant O2 delivery in dog muscle in situ. J Appl Physiol 84:995–1002, 1998.

    PubMed  CAS  Google Scholar 

  27. Roca J, Hogan MC, Story D, Bebout DE, Haab P, Gonzalez R, Ueno O, Wagner PD. Evidence for tissue diffusion limitation of VO2max in normal humans. J Appl Physiol 67:291–299, 1989.

    PubMed  CAS  Google Scholar 

  28. Saltin B, Gollnick PD: Skeletal muscle adaptability: significance for metabolism and performance. In: Handbook of Physiology. Skeletal Muscle, edited by Peachy, et al. Bethesda, MD: Am.Physiol.Soc, 1983, p. 555–631.

    Google Scholar 

  29. Semenza GL, Agani F, Iyer N, Kotch L, Laughner E, Leung S, Yu A. Regulation of cardiovascular development and physiology by hypoxia-inducible factor 1. Ann NY Acad Sci 874:262–268, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845, 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Sullivan MJ, Green HJ, Cobb FR. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81:518–527, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Tang K, Breen EC, Wagner H, Chen Q, Brutsaert TD, Gassmann M, Wagner PD. Relationship between HIF and VEGF responses to moderate hypoxia and to sciatic nerve stimulation in rat gastrocnemius muscle. Am J Physiol Reg Int Comp Physiol, submitted for publication, 2001.

    Google Scholar 

  33. Wagner PD. Determinants of maximal oxygen transport and utilization. Annu Rev Physiol 58:21–50, 1996.

    Article  PubMed  CAS  Google Scholar 

  34. Wagner PD, Hoppeler H, Saltin B: Determinants of maximal oxygen uptake. In: The Lung: Scientific Foundations, edited by Crystal RG, West JB, Barnes PJ, Cherniack NS, Weibel ER. New York: Raven Press, 1991, p. 1585–1593.

    Google Scholar 

  35. Wagner PD, Masanes F, Wagner H, Sala E, Miro O, Campistol JM, Marrades RM, Casademont J, Torregrosa JV, Roca J. Muscle angiogenic growth factor gene responses to exercise in chronic renal failure. Am J Physiol Reg Int Comp Physiol, submitted for publication, 2001.

    Google Scholar 

  36. Weibel ER: The Pathway for Oxygen. Structure and Function in the Mammalian Respiratory System. Cambridge, MA: Harvard University Press, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagner, P.D. (2001). Skeletal muscle angiogenesis. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 502. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3401-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3401-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3374-4

  • Online ISBN: 978-1-4757-3401-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics