Skip to main content

Role of the Transcription Factor BSAP (Pax-5) in B-Cell Development

  • Chapter
Molecular Biology of B-Cell and T-Cell Development

Part of the book series: Contemporary Immunology ((CONTIM))

Abstract

The development of B-lymphocytes from hematopoietic stem cells is a highly ordered and coordinated process that results in antigen-responsive B-cells with individual immunoglobulin receptors. This developmental pathway can be dissected into several stages according to the differential expression of specific cell surface markers, the distinctive growth factor requirements, and the sequential rearrangement of immunoglobulin heavy (IgH) and light (IgL) chain genes (reviewed in ref. 1). To date, two different classification schemes are in use that rely on the analysis of different sets of cell surface markers (Fig. 1). Hardy et al. (2,3) have employed the differential expression of CD43, heat stable antigen (HSA), BP-1, IgM, and IgD to divide B-cell development into seven distinct stages (A—F) (Fig. 1, bottom). Instead, Rolink et al. (4) have ordered the different B-lymphocyte subpopulations in the bone marrow by cell size and expression of c-kit,CD25, and the surrogate light chains VpreB and λ5 (Fig. 1, top). These analyses demonstrated that the earliest B-cell progenitors are large cycling cells and are in the process of DH-to-JH rearrangement of the IgH locus and can be cloned in vitro on stromal cells in the presence of IL-7. An important checkpoint in early B-cell development ensures the positive selection of those late pro-B- (pre-Bll-) cells that have completed a productive VH-to-DHJH rearrangement, and thus transiently express the µ protein as part of the preB-cell receptor complex (Fig. 1). Signaling through this pre-B-cell receptor promotes allelic exclusion at the IgH locus, triggers proliferative cell expansion and induces differentiation to small pre-B-cells, which undergo IgL (κ or λ) gene rearrangements. Immature B-cells subsequently emerge that synthesize the IgM form of the B-cell receptor and become subjected to selection by antigen. The expression of homing receptors enables these cells to populate peripheral lymphoid organs where they participate as mature B-cells in immunological reactions and undergo terminal differentiation to immunoglobulin-secreting plasma cells (reviewed in ref. 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rolink, A. and Melchers, F. (1991) Molecular and cellular origins of B lymphocyte diversity. Cell 66, 1081–1094.

    Article  PubMed  CAS  Google Scholar 

  2. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D., and Kayakawa, K. (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225.

    Article  PubMed  CAS  Google Scholar 

  3. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178 951–960.

    Google Scholar 

  4. Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., and Melchers, F. (1994) IL-2 receptor a chain (CD25,TAC) expression defines a crucial stage in pre-B cell development. Int. Immunol. 6, 1257–1264.

    Article  PubMed  CAS  Google Scholar 

  5. Melchers, F., Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., Ghia, P., and Andersson, J. (1995) Positive and negative selection events during B lymphopoiesis. Curr. Opin. Immunol. 7, 214–227.

    Google Scholar 

  6. Hagman, J. and Grosschedl, R. (1994) Regulation of gene expression at early stages of B-cell differentiation. Curr. Opin. Immunol. 6, 222–230.

    Article  PubMed  CAS  Google Scholar 

  7. Busslinger, M. and Urbânek, P. (1995) The role of BSAP (Pax-5) in B cell development. Curr. Opin. Genet. Dey. 5, 595–601.

    Article  CAS  Google Scholar 

  8. Clevers, H. C. and Grosschedl, R. (1996) Transcriptional control of lymphoid development: lessons from gene targeting. Immunol. Today 17, 336–343.

    Article  PubMed  CAS  Google Scholar 

  9. Singh, H. (1996) Gene targeting reveals a hierarchy of transcription factors regulating specification of lymphoid cell fates. Curr. Opin. Immunol. 8, 160–165.

    Article  PubMed  CAS  Google Scholar 

  10. Barberis, A., Superti-Furga, G., Vitelli, L., Kemler, I., and Busslinger, M. (1989) Developmental and tissue-specific regulation of a novel transcription factor of the sea urchin. Genes Dey. 3, 663–675.

    Google Scholar 

  11. Barberis, A., Widenhorn, K., Vitelli, L., and Busslinger, M. (1990) A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dey. 4, 849–859.

    Google Scholar 

  12. Adams, B., Dörfler, P., Aguzzi, A., Kozmik, Z., Urbânek, P., Maurer-Fogy. I., and Busslinger, M. (1992) Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dey. 6, 1589–1607.

    Google Scholar 

  13. Bopp, D., Burri, M., Baumgartner, S., Frigerio, G., and Noll, M. (1986) Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47, 1033–1040.

    Article  CAS  Google Scholar 

  14. Treisman, J., Harris, E., and Desplan, C. (1991) The paired box encodes a second DNA-binding domain in the Paired homeo domain protein. Genes Dey. 5, 594–604.

    Article  CAS  Google Scholar 

  15. Czerny, T., Bouchard, M., Kozmik, Z, and Busslinger, M. (1997) The characterization of novel Pax genes of the sea urchin and Drosophila reveal an ancient evolutionary origin of the Pax2/5/8 family. Mech. Dey. 67, 179–192.

    CAS  Google Scholar 

  16. Weaver, D. and Baltimore, D. (1987) B lymphocyte-specific protein binding near an immunoglobulin x-chain gene J segment. Proc. Natl. Acad. Sci. USA 84, 1516–1520.

    Article  PubMed  CAS  Google Scholar 

  17. Waters, S. J., Saikh, K. U., and Stavnezer, J. (1989) A B-cell-specific nuclear protein that binds to DNA sites 5’ to immunoglobulin Sa tandem repeats is regulated during differentiation. Mol. Cell. Biol. 9, 5594–5601.

    PubMed  CAS  Google Scholar 

  18. Liao, F., Giannini, S. L., and Birshtein, B. K. (1992) A nuclear DNA-binding protein expressed during early stages of B-cell differentiation interacts with diverse segments within and 3’ of the IgH chain gene cluster. J. Immunol. 148, 2909–2917.

    PubMed  CAS  Google Scholar 

  19. Xu, L., Kim, M. G., and Marcu, K. B. (1992) Properties of B cell stage specific and ubiquitous nuclear factors binding to immunoglobulin heavy chain gene switch regions. Int. Immunol. 4, 875–887.

    Article  PubMed  CAS  Google Scholar 

  20. Okabe, T., Watanabe, T., and Kudo, A. (1992) A pre-B- and B cell-specific DNA-binding protein, EBB-1, which binds to the promoter of the V rB1 gene. Eur. J. Immunol. 22, 37–43.

    Article  PubMed  CAS  Google Scholar 

  21. Czerny, T., Schaffner, G., and Busslinger, M. (1993) DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dey. 7, 2048–2061.

    Article  CAS  Google Scholar 

  22. Liao, F., Birshtein, B. K., Busslinger, M., and Rothman, P. (1994) The transcription factor BSAP (NF-HB) is essential for immunoglobulin germ-line transcription. J. Immunol. 152, 2904–2911.

    PubMed  CAS  Google Scholar 

  23. Tian, J., Okabe, T., Miyazaki, T., Takeshita, S., and Kudo, A. (1997) Pax-5 is identical to EBB-1 /KLP and binds to the VpreB and X5 promoters as well as the KI and KII sites upstream of the Jic genes. Eur. J. Immunol. 27, 750–755.

    Article  PubMed  CAS  Google Scholar 

  24. Dörfler, P. and Busslinger, M. (1996) C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J. 15, 1971–1982.

    PubMed  Google Scholar 

  25. Chalepakis, G., Fritsch, R., Fickenscher, H., Deutsch, U., Goulding, M., and Gruss, P. (1991) The molecular basis of the undulated/Pax-1 mutation. Cell 66, 873–884.

    Article  PubMed  CAS  Google Scholar 

  26. Xu, W., Rould, M. A., Jun, S., Desplan, C., and Pabo, C. O. (1995) Crystal structure of the paired domain-DNA complex at 2.5 resolution reveals structural basis for Pax developmental mutations. Cell 80, 639–650.

    Article  PubMed  CAS  Google Scholar 

  27. Borst, J., Jacobs, H., and Brouns, G. (1996) Composition and function of T-cell receptor and B-cell receptor complexes on precursor lymphocytes. Curr. Opin. Immunol. 8, 181–190.

    Article  PubMed  CAS  Google Scholar 

  28. Rolink, A., ten Boekel, E., Melchers, F., Fearon, D. T., Krop, I., and Andersson, J. (1996) A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194.

    Article  PubMed  CAS  Google Scholar 

  29. Li, Y.-S., Wasserman, R., Hayakawa, K., and Hardy, R. R. (1996) Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535.

    Article  PubMed  CAS  Google Scholar 

  30. Shaffer, A. L., Peng, A., and Schlissel, M. S. (1997) In vivo occupancy of the x light chain enhancers in primary pro-and pre-B cells: a model of x locus activation. Immunity 6, 131–143.

    Article  PubMed  CAS  Google Scholar 

  31. Wakatsuki, Y. W., Neurath, M. F., Max, E. E., and Strober, W. (1994) The B cell-specific transcription factor BSAP regulates B cell proliferation. J. Exp. Med. 179, 1099–1108.

    Article  PubMed  CAS  Google Scholar 

  32. Harada, H., Kawano, M. M., Huang, N., Harada, Y., Iwato, K., Tanabe, 0., Tanaka, H., Sakai, A., Asaoku, H., and Kuramoto, A. (1993) Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 81, 2658–2663.

    Google Scholar 

  33. Pellat-Deceunynck, C., Bataille, R., Robillard, N., Harousseau, J.-L., Rapp, M.-J., JugeMorineau, N., Wijdenes, J., and Amiot, M. (1994) Expression of CD28 and CD40 in human myeloma cells: a comparative study wit normal plasma cells. Blood 84, 2597–2603.

    PubMed  CAS  Google Scholar 

  34. Mahmoud, M. S., Huang, N., Nobuyoshi, M., Lisukov, I. A., Tanaka, H., and Kawano, M. M. (1996) Altered expression of Pax-5 gene in human myeloma cells. Blood 87, 4311–4315.

    PubMed  CAS  Google Scholar 

  35. Andersson, T., Neurath, M. F., Grant, P. A., and Pettersson, S. (1996) Physiological activation of the IgH 3’ enhancer in B lineage cells is not blocked by Pax-5. Eur. J. Immunol. 26, 2499–2507.

    Google Scholar 

  36. Stüber, E., Neurath, M., Calderhead, D., Fell, H. P., and Strober, W. (1995) Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2, 507–521.

    Article  PubMed  Google Scholar 

  37. Busslinger, M., Klix, N., Pfeffer, P., Graninger, P. G., and Kozmik, Z. (1996) Deregulation of PAX-5 by translocation of the Eµ enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc. Natl. Acad. Sci. USA 93, 6129–6134.

    Article  PubMed  CAS  Google Scholar 

  38. Urbânek, P., Wang, Z.-Q., Fetka, I., Wagner, E. F., and Busslinger, M. (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking PaxS/BSAP. Cell 79, 901–912.

    Article  PubMed  Google Scholar 

  39. Urbânek, P., Fetka, I., Meister, M. H., and Busslinger, M. (1997) Cooperation ofPax2 and Pax5 in midbrain and cerebellum development. Proc. Natl. Acad. Sci. USA 94, 5703–5708.

    Article  PubMed  Google Scholar 

  40. Nutt, S. L., Urbânek, P., Rolink, A., and Busslinger, M. (1997) Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dey. 11, 476–491.

    Google Scholar 

  41. Wang, J.-H., Nichogiannopoulou, A., Wu, L., Sun, L., Sharpe, A. H., Bigby, M., and Georgopoulos, K. (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549.

    Article  PubMed  CAS  Google Scholar 

  42. Bain, G., Maandag, E. C. R., Izon, D. J., Amsen, D., Kruisbeek, A. M., Weintraub, B. C., Krop, I., Schlissel, M. S., Feeney, A. J., van Roon, M., van der Valk. M., to Riele, H. P. J., Berns, A., and Murre, C. (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892.

    Google Scholar 

  43. Zhuang, Y., Soriano, P., and Weintraub, H. (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884.

    Article  PubMed  CAS  Google Scholar 

  44. Lin, H. and Grosschedl, R. (1995) Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267.

    Article  PubMed  CAS  Google Scholar 

  45. Schlissel, M., Voronova, A., and Baltimore, D. (1991) Helix-loop-helix transcription factor E47 activates germ-line immunoglobulin heavy-chain gene transcription and rearrangement in a pre-T cell line. Genes Dev. 5, 1367–1376.

    Article  PubMed  CAS  Google Scholar 

  46. Ehlich, A., Schaal, S., Gu, H., Kitamura, D., Müller, W., and Rajewsky, K. (1993) Immunoglobulin heavy and light chain genes rearrange independently at early stages ofB cell development. Cell 72, 695–704.

    Google Scholar 

  47. Gong, S. and Nussenzweig, M. C. 1996. Regulation of an early developmental checkpoint in the B cell pathway by Igß. Science 272, 411–414.

    Article  PubMed  CAS  Google Scholar 

  48. Kitamura, D., Kudo, A., Schaal, S., Müller, W., Melchers, F., and Rajewsky, K. (1992) A critical role of X5 protein in B cell development. Cell 69, 823–831.

    Article  PubMed  CAS  Google Scholar 

  49. Kitamura, D., Roes, J., Kühn, R., and Rajewsky, K. (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin µ chain gene. Nature 350, 423–426.

    Article  PubMed  CAS  Google Scholar 

  50. Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877.

    Article  PubMed  CAS  Google Scholar 

  51. Shinkai, Y., Rathbun, G., Lam, K.-P., Oltz, E. M., Stewart, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A. M., and Alt, F. W. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867.

    Article  PubMed  CAS  Google Scholar 

  52. Papavasiliou, F., Misulovin, Z., Suh, H., and Nussenzweig, M. C. (1995) The role of Igß in precursor B cell transition and allelic exclusion. Science 268, 408–411.

    Article  PubMed  CAS  Google Scholar 

  53. Spanopoulou, E., Roman, C. A. J., Corcoran, L. M., Schlissel, M. S., Silver, D. P., Nemazee, D., Nussenzweig, M. C., Shinton, S. A., Hardy, R. R., and Baltimore, D. (1994) Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-l-deficient mice. Genes Dey. 8, 1030–1042.

    Google Scholar 

  54. Young, F., Ardman, B., Shinkai, Y., Landford, R., Blackwell, T. K., Mendelsohn, M., Rolink, A., Melchers, F., and Alt, F. W. (1994) Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation. Genes Dey. 8, 1043–1057.

    Article  CAS  Google Scholar 

  55. Grosschedl, R., Weaver, D., Baltimore, D., and Costantini, F. (1984) Introduction of a µ immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibodies. Cell 38, 647–658.

    Article  PubMed  CAS  Google Scholar 

  56. Sanchez, M., Misulovin, Z., Burkhardt, A. L., Mahajan, S., Costa, T., Franke, R., Bolen, J. B., and Nussenzweig, M. (1993) Signal transduction by immunoglobulin is mediated through Iga and Igß. J. Exp. Med. 178, 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  57. Schlissel, M. S. and Baltimore, D. (1989) Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline kappa gene transcription. Cell 58, 1001–1007.

    Article  PubMed  CAS  Google Scholar 

  58. Yancopoulos, G. D. and Alt, F. W. (1985) Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271–281.

    Article  PubMed  CAS  Google Scholar 

  59. Van Ness, B. G., Weigert, M., Coleclough, C., Mather, E. L., Kelley, D. E., and Perry, R. P. (1981) Transcription of the unrearranged mouse CK locus: sequence of the initation region and comparison of activity with a rearranged VK CK gene. Cell 27, 593–602.

    Article  PubMed  Google Scholar 

  60. Martin, D. J. and Van Ness, B. G. (1990) Initiation and processing of two kappa immunoglobulin germ line transcripts in mouse B cells. Mol. Cell. Biol. 10, 1950–1958.

    PubMed  CAS  Google Scholar 

  61. Leclercq, L., Butkeraitis, P., and Reth, M. (1989) A novel germ-line JK transcript starting immediately upstream of JKl. Nucleic Acids Res. 17, 6809–6819.

    Article  PubMed  CAS  Google Scholar 

  62. Lauster, R., Reynaud, C.-A., Mârtensson, I.-L., Peter, A., Bucchini, D., Jami, J., and Weill, J.-C. (1993) Promoter, enhancer and silencer elements regulate rearrangement of an immunoglobulin transgene. EMBO J. 12, 4615–4623.

    PubMed  CAS  Google Scholar 

  63. Ferradini, L., Gu, H., De Smet, A., Rajewsky, K., Reynaud, C.-A., and Weill, J.-C. (1996) Rearrangement-enhancing element upstream of the mouse immunoglobulin kappa chain J cluster. Science 271, 1416–1420.

    CAS  Google Scholar 

  64. Kozmik, Z., Wang, S., Dörfler, P., Adams, B., and Busslinger, M. (1992) The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol. Cell. Biol. 12, 2662–2672.

    PubMed  CAS  Google Scholar 

  65. Fitzsimmons, D., Hodsdon, W., Wheat, W., Maira, S.-M., Wasylyk, B., and Hagman, J. (1996) Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary cornplexes on a B-cell-specific promoter. Genes Dey. 10, 2198–2211.

    Article  CAS  Google Scholar 

  66. Zwollo, P. and Desiderio, S. (1994) Specific recognition of the blk promoter by the B-lymphoid transcription factor B-cell-specific activator protein. J. Biol. Chem. 269, 15,310–15, 317.

    Google Scholar 

  67. Reimold, A. M., Ronath, P. D., Li, Y.-S., Hardy, R. R., David, C. S., Strominger, J. L., and Glimcher, L. H. (1996) Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393–401.

    Article  PubMed  CAS  Google Scholar 

  68. Nutt, S. L., Morrison, A., Dörfler, P., Rolink, A., and Busslinger, M. (1998) Identification of BSAP (Pax-5) target genes in early B-cell development by loss-and gain-of-function experiments. EMBO J.,in press.

    Google Scholar 

  69. Tedder, T. F., Inaoki, M., and Sato, S. (1997) The CD19—CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6, 107–118.

    Article  PubMed  CAS  Google Scholar 

  70. Carter, R. H. and Fearon, D. T. (1992) CD19, Lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107.

    Article  PubMed  CAS  Google Scholar 

  71. Engel, P., Zhou, L.-J., Ord, D. C., Sato, S., Koller, B., and Tedder, T. F. (1995) Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50.

    Article  PubMed  CAS  Google Scholar 

  72. Rickert, R. C., Rajewsky, K., and Roes, J. (1995) Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19—deficient mice. Nature 376, 352–355.

    Article  PubMed  CAS  Google Scholar 

  73. Hagman, J. and Grosschedl, R. (1992) An inhibitory carboxyl-terminal domain of Ets-1 and Ets-2 mediates differential binding of ETS family factors to promoter sequences of the mb-1 gene. Proc. Natl. Acad. Sci. USA 89 8889–8893.

    Google Scholar 

  74. Hagman, J., Travis, A., and Grosschedl, R. (1991) A novel lineage-specific nuclear factor regulates mb-1 gene transcription at the early stages of B cell differentiation. EMBO J. 10, 3409–3417.

    PubMed  CAS  Google Scholar 

  75. Travis, A., Hagman, J., and Grosschedl, R. (1991) Heterogeneously initiated transcription from the pre-B- and B-cell-specific mb-1 promoter: analysis of the requirement for upstream factor-binding sites and initiation site sequences. Mol. Cell. Biol. 11, 5756–5766.

    PubMed  CAS  Google Scholar 

  76. Torres, P. M., Flaswinkel, H., Reth, M., and Rajewsky, K. (1996) Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 272, 1804–1808.

    Article  PubMed  CAS  Google Scholar 

  77. Zimmerman, K. A., Yancopoulos, G. D., Collum, R. G., Smith, R. K., Kohl, N. E., Denis, K. A., Nau, M. M., Witte, O. N., Toran-Allerand, D., Gee, C. E., Minna, J. D., and Alt, F. W. (1986) Differential expression of myc family genes during murine development. Nature 319, 780–783.

    Article  PubMed  CAS  Google Scholar 

  78. Morrow, M. A., Lee, G., Gillis, S., Yancopoulos, G. D., and Alt, F. W. (1992) Interleukin-7 induces N-myc and c-myc expression in normal precursor B lymphocytes. Genes Dey. 6, 61–70.

    Article  CAS  Google Scholar 

  79. Malynn, B. A., Demengeot, J., Stewart, W., Charron, J., and Alt, F. W. (1995) Generation of normal lymphocytes dereived from N-myc-deficient embryonic stem cells. Int. Immunol. 7, 1637–1647.

    Article  PubMed  CAS  Google Scholar 

  80. Stavnezer, J. (1996) Immunoglobulin class switching. Curr. Opin. Immunol. 8, 199–205.

    Article  PubMed  CAS  Google Scholar 

  81. Rothman, P., Li, S.C., Gorham, B., Glimcher, L., Alt, F., and Boothby, M. (1991) Identification of a conserved lipopolysaccharide-plus-interleukin-4-responsive element located at the promoter of the germ line e transcript. Mol. Cell. Biol. 11, 5551–5561.

    PubMed  CAS  Google Scholar 

  82. Delphin, S. and Stavnezer, J. (1995) Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline e promoter: regulation by NF-IL-4, a C/ EBP family member and NF-xB/p50. J. Exp. Med. 181, 181–192.

    Article  PubMed  CAS  Google Scholar 

  83. Kim, J., Reeves, R., Rothman, P., and Boothby, M. (1995) The non-histone chromosomal protein HMG-I(Y) contributes to the repression of the immunoglobulin heavy chain germ-line s RNA promoter. Eur. J. Immunol. 25, 798–808.

    Article  PubMed  CAS  Google Scholar 

  84. Thienes, C., De Monte, L., Monticelli, S., Busslinger, M., Gould, H. J., and Vercelli, D. (1997) The transcription factor B cell-specific activator protein (BSAP) enhances both IL-4- and CD40-mediated activation of the humans germline promoter. J. Immunol., 158, 5874–5882.

    PubMed  CAS  Google Scholar 

  85. Niles, M. J., Matsuuchi, L., and Koshland, M. E. (1995) Polymer IgM assembly and secretion in lymphoid and nonlymphoid cell lines: Evidence that J chain is required for pentamer IgM synthesis. Proc. Natl. Acad. Sci. USA 92, 2884–2888.

    Article  CAS  Google Scholar 

  86. Blackman, M. A., Tigges, M. A., Minie, M. E., and Koshland, M. E. (1986) A model system for peptide hormone action in differentiation: interleukin 2 induces a B lymphoma to transcribe the J chain gene. Cell 47, 609–617.

    Article  CAS  Google Scholar 

  87. Lansford, R. D., McFadden, H. J., Siu, S. T., Cox, J. S., Cann, G. M., and Koshland, M. E. (1992) A promoter element that exerts positive and negative control of the interleukin 2-responsive J-chain gene. Proc. Natl. Acad. Sci. USA 89, 5966–5970.

    Google Scholar 

  88. Shin, M. K. and Koshland, M. E. (1993) Ets-related protein PU.1 regulates expression of the immunoglobulin J-chain gene through a novel Ets-binding element. Genes Dey. 7, 2006–2015.

    Article  CAS  Google Scholar 

  89. Rinkenberger, J. L.,Wallin, J. J., Johnson, K. W., and Koshland, M. E. (1996) An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 5, 377–386.

    CAS  Google Scholar 

  90. Kulseth, M. A. and Rogne, S. (1994) Cloning and characterization of the bovine immunoglobulin J chain cDNA and its promoter region. DNA Cell Biol. 13, 37–42.

    CAS  Google Scholar 

  91. Madisen, L. and Groudine, M. (1994) Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt’s lymphoma cells. Genes Dey. 8, 2212–2226.

    Article  CAS  Google Scholar 

  92. Dariavach, P., Williams, G. T., Campbell, K., Pettersson, S., and Neuberger, M. S. (1991) The mouse IgH 3’-enhancer. Eur. J. Immunol. 21, 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  93. Arulampalam, V., Grant, P. A., Samuelsson, A., Lendahl, U., and Pettersson, S. (1994) Lipopolysaccharide-dependent transactivation of the temporally regulated immunoglobulin heavy chain 3’ enhancer. Eur. J. Immunol. 24, 1671–1677.

    Article  PubMed  CAS  Google Scholar 

  94. Lieberson, R., Ong, J., Shi, X., and Eckhardt, L. A. (1995) Immunoglobulin gene transcription ceases upon deletion of a distant enhancer. EMBO J. 14, 6229–6238.

    PubMed  CAS  Google Scholar 

  95. Cogné, M., Lansford, R., Bottaro, A., Zhang, J., Gorman, J., Young, F., Cheng, H.-L., and Alt, F. W. (1994) A class switch control region at the 3’ end of the immunoglobulin heavy chain locus. Cell 77, 737–747.

    Article  PubMed  Google Scholar 

  96. Michaelson, J. S., Singh, M., and Birshtein, B. K. (1996) B cell lineage-specific activator protein (BSAP): a player at multiple stages of B cell development. J. Immunol. 156, 2349–2351.

    PubMed  CAS  Google Scholar 

  97. Neurath, M. F., Stüber, E. R., and Strober, W. (1995) BSAP: a key regulator of B-cell development and differentiation. Immunol. Today 16, 564–569.

    Article  PubMed  CAS  Google Scholar 

  98. Neurath, M. F., Strober, W., and Wakatsuki, Y. (1994) The murine Ig 3’a enhancer is a target site with repressor function for the B cell lineage-specific transcription factor BSAP (HF-HB, Sa-BP). J. Immunol. 153, 730–742.

    PubMed  CAS  Google Scholar 

  99. Singh, M. and Birshtein, B. K. (1993) NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3’a enhancer at early stages of B cell differentiation. Mol. Cell. Biol. 13, 3611–3622.

    PubMed  CAS  Google Scholar 

  100. Pettersson, S., Cook, G. P., Brüggemann, M., Williams, G. T., and Neuberger, M. S. (1990) A second B cell-specific enhancer 3’ of the immunoglobulin heavy-chain locus. Nature 344, 165–168.

    Article  PubMed  CAS  Google Scholar 

  101. Neurath, M. F., Max, E. E., and Strober, W. (1995) Pax5 regulates the murine immunoglobulin 3’a enhancer by affecting binding of NF-aP, a protein that controls heavy chain transcription. Proc. Natl. Acad. Sci. USA 92, 5336–5340.

    Article  PubMed  CAS  Google Scholar 

  102. Singh, M. and Birshtein, B. K. (1996) Concerted repression of an immunoglobulin heavy-chain enhancer, 3’aE(hs1,2). Proc. Natl. Acad. Sci. USA 93, 4392–4397.

    Article  PubMed  CAS  Google Scholar 

  103. Michaelson, J. S., Singh, M., Snapper, C. M., Sha, W. C., Baltimore, D., and Birshtein, B. K. (1996) Regulation of 3’ IgH enhancers by a common set of factors including KB-binding proteins. J. Immunol. 156, 2828–2839.

    Google Scholar 

  104. Meyer, K. B., and Neuberger, M. S. (1989) The immunoglobulin K locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO J. 8, 1959–1964.

    PubMed  CAS  Google Scholar 

  105. Meyer, K. B., Sharpe, M. J., Surani, M. A., and Neuberger, M. S. (1990) The importance of the 3’-enhancer in immunoglobulin x gene expression. Nucleic Acids Res. 18, 5609–5615.

    Article  PubMed  CAS  Google Scholar 

  106. Pongubala, J. M. R. and Atchison, M. L. (1991) Functional characterization of the developmentally controlled immunoglobulin kappa 3’ enhancer: regulation by Id, a repressor of helix-loophelix transcription factors. Mol. Cell. Biol. 11, 1040–1047.

    PubMed  CAS  Google Scholar 

  107. Betz, A. G., Milstein, C., Gonzalez-Fernandez, A., Pannell, R., Larson, T., and Neuberger, M. S. (1994) Elements regulating somatic hypermutation of an immunoglobulin x gene: a critical role for the enhancer/matrix attachment region. Cell 77, 239–248.

    Article  PubMed  CAS  Google Scholar 

  108. Hiramatsu, R., Akagi, K., Matsuoka, M., Sakumi, K., Nakamura, H., Kingsbury, L., David, C., R.Hardy, R., Yamamura, H.-I., and Sakano, H. (1995) The 3’ enhancer region determines the B/T specificity and pro-B/pre-B specificity of immunoglobulin VK JK joining. Cell 83, 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  109. Gorman, J. R., van der Stoep, N., Monroe, R., Cogne, M., Davidson, L., and Alt, F. W. (1996) The Igx 3’ enhancer influences the ratio of Igx versus Igo, B lymphocytes. Immunity 5, 241–252.

    Article  PubMed  CAS  Google Scholar 

  110. Eisenbeis, C. F., Singh, H., and Storb, U. (1995) Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dey. 9, 1377–1387.

    Article  CAS  Google Scholar 

  111. Judde, J.-G. and E.Max, E. (1992) Characterization of the human immunoglobulin kappa gene 3’ enhancer: functional importance of three motifs that demonstrate B-cell-specific in vivo footprints. Mol. Cell. Biol. 12, 5206–5216.

    PubMed  CAS  Google Scholar 

  112. Pongubala, J. M.R., Nagulapalli, S., Klemsz, M. J., McKercher, S. R., Maki, R. A., and Atchison, M. L. (1992) PU.1 recruits a second nuclear factor to a site important for immunoglobulin x 3’ enhancer activity. Mol. Cell. Biol. 12, 368–378.

    PubMed  CAS  Google Scholar 

  113. Pongubala, J. M. R. and M.Atchison, L. (1995) Activating transcription factor 1 and cyclic AMP response element modulator can modulate the activity of the immunoglobulin x 3’ enhancer. J. Biol. Chem. 270, 10304–10313.

    Article  PubMed  CAS  Google Scholar 

  114. Park, K. and Atchison, M. L. (1991) Isolation of a candidate repressor/activator, NF-El (YY1, S), that binds to the immunoglobulin x 3’ enhancer and the immunoglobulin heavy-chain µE 1 site. Proc. Natl. Acad. Sci. USA 88, 9804–9808.

    Article  PubMed  CAS  Google Scholar 

  115. Roque, M. C., Smith, P. A., and Blasquez, V. C. (1996) A developmentally modulated chromatin structure at the mouse immunoglobulin k 3’ enhancer. Mol. Cell. Biol. 16, 3138–3155.

    PubMed  CAS  Google Scholar 

  116. Müller, B., Stappert, H., and Reth, M. (1990) A physical map and analysis of the murine Cic-RS region show the presence of a conserved element. Eur. J. Immunol. 20, 1409–1411.

    Article  PubMed  Google Scholar 

  117. Davis, R. J., D’ Cruz, C. M., Lovell, M. A., Biegel, J. A., and Barr, F. G. (1994) Fusion ofPAX7 to FKHR by the variant t(1;13)(p36;g14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54, 2869–2872.

    PubMed  CAS  Google Scholar 

  118. Galili, N., Davis, R. J., Fredericks, W. J., Mukhopadhyay, S., Rauscher III, F. J., Emanuel, B. S., Rovera, G., and Barr, F. G. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nature Genet. 5, 230–235.

    Google Scholar 

  119. Kozmik, Z., Sure, U., Rüedi, D., Busslinger, M., and Aguzzi, A. (1995) Deregulated expression of PAX-5 in medulloblastoma. Proc. Natl. Acad. Sci. USA 92, 5709–5713.

    Article  PubMed  CAS  Google Scholar 

  120. Stapleton, P., Weith, A., Urbanek, P., Kozmik, Z., and Busslinger, M. (1993) Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nature Genet. 3, 292–298.

    CAS  Google Scholar 

  121. Offit, K., Parsa, N. Z., Filippa, D., Jhanwar, S. C., and Chaganti, R. S. K. (1992) t(9;14)(p 13;g32) denotes a subset of low-grade non-Hodgkin’s lymphoma with plasmacytoid differentiation. Blood 80, 2594–2599.

    Google Scholar 

  122. Ohno, H., Furukawa, T., Fukuhara, S., Zong, S. Q., Kamesaki, H., Shows, T. B., Le Beau, M. M., McKeithan, T. W., Kawakami, T., and Honjo, T. (1990) Molecular analysis of a chromosomal translocation, t(9;14)(p 13;g32), in a diffuse large-cell lymphoma cell line expressing the Ki-1 antigen. Proc. Natl. Acad. Sci. USA 87, 628–632.

    Article  PubMed  CAS  Google Scholar 

  123. lida, S., Rao, P. H., Nallasivam, P., Hibshoosh, H., Butler, M., Louie, D. C., Dyomin, V, Ohno, H., Chaganti, R. S. K., and Dalla-Favera, R. (1996) The t(9;14)(p13;g32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 88, 4110–4117.

    CAS  Google Scholar 

  124. Morrison, A., Jäger, U., Chott, A., and Busslinger, M. (1998) Deregulated PAX-5 transcription from a translocated IgH promotes in marginal zone lymphoma. Mol. Cell. Biol., submitted.

    Google Scholar 

  125. Strachan, T. and Read, A. P. (1994) PAX genes. Curr. Opin. Genet. Dey. 4, 427–438.

    Article  CAS  Google Scholar 

  126. Nutt, S. L., Vambrie, S., Steinlein, P., Weith, A., and Busslinger, M. (1997) Monoallelic expression of Pax-5 (BSAP) is responsible for the haploinsufficient phenotype of heterozygous Pax-5 mutant mice. Nature, submitted.

    Google Scholar 

  127. Vorechovsky, I., Koskinen, S., Paganelli, R., Smith, E. C. I., Busslinger, M., and Hammarström, L. (1995) The PAX5 gene: a linkage and mutation analysis in candidate human primary immunodeficiencies. Immunogenet. 42, 149–152.

    Google Scholar 

  128. Czerny, T. and Busslinger, M. (1995) DNA-binding and transactivation properties of Pax-6, three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol. Cell. Biol. 15, 2858–2871.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Busslinger, M., Nutt, S.L. (1998). Role of the Transcription Factor BSAP (Pax-5) in B-Cell Development. In: Monroe, J.G., Rothenberg, E.V. (eds) Molecular Biology of B-Cell and T-Cell Development. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2778-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2778-4_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-065-6

  • Online ISBN: 978-1-4757-2778-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics