Skip to main content

The interactions between living organisms and metals in intertidal and subtidal sediments

  • Chapter
Metal Metabolism in Aquatic Environments

Abstract

Although it may not be readily apparent to the casual observer, intertidal and subtidal sediments are highly structured chemical environments. In the absence of physical disturbances, the chemical structure is simple and consists of layers of gradually changing composition parallel to the sediment—water interface. Benthic animals and rooted plants disrupt this simple structure by burrowing into the sediment or by growing roots. This affects the rates of transport of gases, solutes and particulate matter within the sediment and between the sediment and the overlying water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C. (1977) The influence of macrobenthos on chemical diagenesis of marine sediments. PhD thesis, Yale University, New Haven, Connecticut, 600 pp.

    Google Scholar 

  • Aller, R.C. (1978) The influence of animal—sediment interactions on geochemical processes near the sediment—water interface, in Estuarine Interactions, (ed. M.L. Wiley), Academic Press, New York, pp. 157–172.

    Google Scholar 

  • Aller, R.C. (1980) Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochimica et Cosmochimica Acta 44, 1955–1965.

    Article  CAS  Google Scholar 

  • Aller, R.C. (1982) The effects of macrobenthos on chemical properties of marine sediment and overlying water, in Animal—Sediment Relations, (eds P.L. McCall and M.J.S. Tevsz), Plenum Press, New York, pp. 53–102.

    Google Scholar 

  • Aller, R.C. (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures, in Nitrogen Cycling in Coastal Marine Environments, (eds T.H. Blackburn and J. Sçrensen), Wiley, New York, pp. 301–338.

    Google Scholar 

  • Aller, R.C. and Cochran, J.K. (1976) Th-234/U-238 disequilibrium in nearshore sediment: particle reworking and diagenetic time scales. Earth and Planetary Science Letters 20, 37–50.

    Article  Google Scholar 

  • Aller, R.C. and Rude, P.D. (1988) Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochimica et Cosmochimica Acta 52,751–765.

    Article  CAS  Google Scholar 

  • Aller, R.C. and Yingst, J.Y. (1978) Biogeochemistry of tube-dwellings: a study of the sedentary poly chaete Amphitrite ornata (Leidy). Journal of Marine Research 36, 201–254.

    CAS  Google Scholar 

  • Anderson, CE. (1974) A review of structure in several North Carolina salt marsh plants, in Ecology ofHalophytes, (eds R.J. Reimold and W.H. Queen), Academic Press, New York, pp. 307–344.

    Google Scholar 

  • Armstrong, W. (1967) The oxidising activity of roots in waterlogged soils. Physiology of Plants 20, 920–926.

    Article  CAS  Google Scholar 

  • Armstrong, W. (1970) Rhizosphere oxidation in rice and other species: a mathematical model based on the oxygen flux component. Physiology of Plants 23, 623–630.

    Article  CAS  Google Scholar 

  • Armstrong, W. (1978) Root aeration in the wetland condition, in Plant Life in Anaerobic Environments, (eds D.D. Hook and R.M.M. Crawforth), Ann Arbor Science Publishers, Ann Arbor, Michigan, pp. 269–298.

    Google Scholar 

  • Bartlett, R.J. (1961) Iron oxidation proximate to plant roots. Soil Science 92, 372–379.

    Article  CAS  Google Scholar 

  • Berner, R.A. (1980) Early Diagenesis. A Theoretical Approach, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Caçador, I. (1994) Accumulação e retenção de metais pesados no sapais do estuario do Tejo. PhD thesis, University of Lisbon, Lisbon, 142 pp.

    Google Scholar 

  • Caçador, I., Vale, C. and Catarino, F. (1996a) Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus estuary salt marshes, Portugal. Estuarine, Coastal and Shelf Science 42, 393–403.

    Article  Google Scholar 

  • Caçador, I., Vale, C. and Catarino, F. (1996b) The influence of plants on concentration and fractionation of Zn, Pb, and Cu in salt marsh sediments (Tagus estuary, Portugal). Journal of Ecosystem Health 5, 193–198.

    Article  Google Scholar 

  • Di Toro, D.M. (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environmental Toxicology and Chemistry 9, 1487–1502.

    Article  Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L. et al. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta 43, 1075–1090.

    Article  CAS  Google Scholar 

  • Gobeil, C, Silverberg, N., Sundby, B. and Cossa, D. (1987) Cadmium diagenesis in Laurentian Trough sediments. Geochimica et Cosmochimica Acta 51, 589–596.

    Article  CAS  Google Scholar 

  • Goldberg, E.D. and Koide, M. (1962) Geochronological studies of deep sea sediments by the ionium/thorium method. Geochimica et Cosmochimica Acta 26, 417–450.

    Article  CAS  Google Scholar 

  • Green, M.S. and Etherington, J.R. (1977) Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance? Journal of Experimental Botany 104, 678–690.

    Article  Google Scholar 

  • Luther, G.W. and Church, T.M. (1992) An overview of the environmental chemistry of sulphur in wetland systems, in Sulphur Cycling on the Continents, (eds R.W. Howarth, J.W.B. Stewart and M.V. Ivanov), John Wiley, New York, pp. 125–142.

    Google Scholar 

  • Madureira M.J., Vale, C. and Simoes-Gonçalves M.L. (1997) Effect of plants on sulphur geochemistry in the Tagus salt-marsh sediments. Marine chemistry, 58, 27–37.

    Article  CAS  Google Scholar 

  • McCall, P.L. and Tevesz, M.J.S. (1982) Animal—Sediment Relations. The Biogenic Alteration of Sediments, Plenum Press, New York.

    Google Scholar 

  • Nye, P.H. and Tinker, P.B. (1977) Solute Movement in the Soil—Root System, University of California Press, Berkeley, CA.

    Google Scholar 

  • Orson, R.A., Simpson, R.L. and Good, R.E. (1992) A mechanism for the accumulation and retention of heavy metals in tidal freshwater marshes of the upper Delaware River Estuary. Estuarine, Coastal and Shelf Science 34, 171–186.

    Article  CAS  Google Scholar 

  • Otte, M.L., Rozema, J., Koster, L. et al. (1989) Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytology 111, 309–317.

    Article  CAS  Google Scholar 

  • Pearson, T.H. and Rosenberg, R. (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review 16, 229–311.

    Google Scholar 

  • Rhoads, D.C. (1974) Organism—sediment relations on the muddy sea floor. Oceanography and Marine Biology Annual Review 12, 263–300.

    CAS  Google Scholar 

  • Rhoads, D.C. and Boyer, L.F. (1982) The effects of marine benthos on physical properties of sediments. A successional perspective, in Animal-Sediment Relations (eds P.L. McCall and M.J.S. Tevesz), Plenum Press, New York, pp. 3–52.

    Google Scholar 

  • Rice, D.L. (1986) Early diagenesis in bioadvective sediments: relationships between the diagenesis of berylium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. Journal of Marine Research 44, 149–184.

    Article  Google Scholar 

  • Rice, D.C. and Whitlow, S.I. (1985) Diagenesis of transition metals in bioadvective marine sediments, in Heavy Metals in the Environment, (ed. D.T. Lekkas), C.E.C. Consultants, Edinburgh, pp. 353–355.

    Google Scholar 

  • Schink, D.R. and Guinasso, N.L. (1977) Effects of bioturbation on sediment-seawater interaction. Marine Geology 23, 133–154.

    Article  CAS  Google Scholar 

  • Silverberg, N., Nguyen, H.V., Delibrias, G. et al. (1986) Radionuclide profiles, sedimentation rates, and bioturbation in modern sediments of the Laurentian Trough, Gulf of St Lawrence. Oceanologica Acta 9, 285–290.

    CAS  Google Scholar 

  • Sundby, B. and Silverberg, N. (1985) Manganese fluxes in the benthic boundary layer. Limnology and Oceanography 30, 374–382.

    Article  Google Scholar 

  • Taylor, G.J., Crowder, A.A. and Rodden, R. (1984) Formation and morphology of an iron plaque on the roots of Typha latifolia L. grown in solution culture. American Journal of Botany 71, 666–675.

    Article  CAS  Google Scholar 

  • Teal, J.M. and Kanwisher, J.W. (1966) Gas transport in the marsh grass, Spartina alterniflora. Journal of Experimental Botany 11, 355–361.

    Article  Google Scholar 

  • Tenore, K.R. and Coull, B.C. (1980) Marine Benthic Dynamics, University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Tinker, P.B. and Barraclough, P.B. (1988) Root-soil interactions, in The Handbook of Environmental Chemistry, Vol. 2, Part D: Reactions and Processes, (ed. O. Hutzinger), Springer Verlag, New York, pp. 154–171.

    Google Scholar 

  • Vale, C, Catarino, F., Cortesäo, C. and Caçador, I. (1990) Presence of metal-rich rhi-zoconcretions on the roots of Spartina maritima from the salt marshes of the Tagus estuary, Portugal. Science of the Total Environment 97/98, 617–626.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vale, C., Sundby, B. (1998). The interactions between living organisms and metals in intertidal and subtidal sediments. In: Langston, W.J., Bebianno, M.J. (eds) Metal Metabolism in Aquatic Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2761-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2761-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4731-4

  • Online ISBN: 978-1-4757-2761-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics