Skip to main content

The Origin of the Atmosphere and of the Oceans

  • Chapter
Comets and the Origin and Evolution of Life

Abstract

The atmosphere of the Earth, its oceans as well as most carbon contained in its carbonates and in organic matter, seem to have been brought by a large bombardment of comets that lasted almost one billion years before diminishing drastically to its present-day value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, E.C., Ozima, M. (eds.) (1978), Terrestrial Rare Gases,Adv. Earth Planet. Sci., 3 (Japan Sci. Soc. Press, Tokyo ), 229.

    Chapter  Google Scholar 

  • Anders, E. (1971), Meteorites and the early solar system. Ann. Rev. Astronom. Astrophys., 9, 1–34.

    Article  ADS  Google Scholar 

  • Anders, E., Grevesse, N. (1989), Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.

    Article  ADS  Google Scholar 

  • Anderson, A.T. (1975), Some basaltic and andesitic gases. Rev. Geophys. Space Phys., 13, 37–55.

    Google Scholar 

  • Bar-Nun, A. Kleinfeld, I., Kochavi, E. (1988), Trapping of gas mixtures by amorphous water ice. Phys. Rev B, 38, 7749–7754.

    Article  Google Scholar 

  • Bar-Nun, A., Kleinfeld, I. (1989), On the temperature and gas composition in the region of comet formation. Icarus, 80, 243–253.

    Article  ADS  Google Scholar 

  • Berkner, L.V. Marshall, L.C. (1965), On the origin and rise of oxygen concentration in the earth’s atmosphere. J. Atmos. Sci., 22, 225–261.

    Google Scholar 

  • Bernal, J.D. (1968), Origins of Prebiotic Systems…. S.W. Fox (ed.) (Academic Press, New York ), pp. 65–68.

    Google Scholar 

  • Bertout, C. (1989), Annu. Rev. Astronom. Astrophys., 27, 351–395.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W. (1985), Formation and evolution of the primitive solar nebula. In D.C. Black and M.S. Matthews (eds.), Protostars & Planets II ( University of Arizona Press, Tucson ), pp. 1073–1099.

    Google Scholar 

  • Cameron, A.G.W. (1988), Origin of the solar system. Annu. Rev. Astron. Astrophys., 26, 441–472.

    Article  ADS  Google Scholar 

  • Carr, M.H., Saunders, R.W., Strom, R.G., Wilhelms, D.E. (1984), Geology of the Terrestrial Planets (NASA SP-469, Washington DC)

    Google Scholar 

  • Chamberlin, T.C. and Chamberlin, R.T. (1908), Early terrestrial conditions that may have favored organic synthesis. Science, 28, 897–910.

    Article  ADS  Google Scholar 

  • Cassen P., Shu F.H., Tereby S. (1985). In D.C. Black and M.S. Matthews (eds.), Protostars and Planets II (Univ. of Arizona Press, Tucson ), pp. 448–483.

    Google Scholar 

  • Chang, S. (1979), Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life. In M. Neugebauer, D.K. Yeomans, J.C. Brandt and R.W. Hobbs (eds.), Space Missions to Comets ( NASA SP-2089, Washington, DC ), pp. 59–111.

    Google Scholar 

  • Chyba, C.F. (1987), The cometary contribution to the oceans of primitive Earth. Nature, 330, 632–635.

    Article  ADS  Google Scholar 

  • Cronin, J.R., Pizzarello, S., Cruikshank, D.P. (1988), Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In J.F. Kerridge & M.S. Matthews (eds.), Meteorites and the Early Solar System ( Univ Arizona, Tucson ), pp. 819–857.

    Google Scholar 

  • Delsemme, A.H. (1979), Scientific returns from a program of space missions to comets,. In Neugebauer et al. (eds.) Space Missions to Comets, (NASA SP-2089, Washington DC), pp. 139–178.

    Google Scholar 

  • Delsemme, A.H. (1981), Nature and origin of organic molecues in comets. In C. Ponnamperuma (ed.), Comets and the Origin of Life (D. Reidel Publishing Company, Dordrecht, Holland ), pp. 33–42.

    Google Scholar 

  • Delsemme, A.H. (1981), In C. Ponnamperuma (ed.), Comets and the Origin of Life (D. Reidel Publishing Company, Dordrecht, Holland ), pp. 141–159.

    Google Scholar 

  • Delsemme, A.H. (1987). In Diversity and Similarity of comet (European Space Agency, ESA-SP-278, Paris), pp. 19–30.

    Google Scholar 

  • Delsemme, A.H. (1991), Nature and history of the organic compounds in comets: An astrophysical view. In R.L. Newburn, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 377–427.

    Google Scholar 

  • Delsemme, A.H. (1991 b), Origin of the biosphere of the Earth. In J. Heidmann & M.J. Klein (eds.), Lecture Notes in Physics 390: Bioastronomy ( Springer-Verlag, New York ), pp. 117–123.

    Google Scholar 

  • Delsemme, A.H. (1991c), International Halley Watch. In Z. Sekanina (ed.), The Comet Halley Archives Summary Volume (NASA-JPL, Pasadena ), pp. 317–330.

    Google Scholar 

  • Delsemme, A.H. (1992), Cometary origin of carbon, nitrogen and water on the Earth. 64 2. The Origin of the Atmosphere and of the Oceans Origins Life Evol. Biosphere, 21, 279–298.

    ADS  Google Scholar 

  • Delsemme, A.H. (1993), Cometary origin of the biosphere: A progress report. Adv. Space Res., 15, 49–57.

    Article  Google Scholar 

  • Delsemme, A.H. and Miller, D.C. (1970), Physico-chemical phenomena in comets -II: Gas adsorption in the snows of the nucleus. Planet. Space Sci, 18, 717–730.

    Article  ADS  Google Scholar 

  • Delsemme, A.H. and Wenger, A. (1970), Physico-chemical phenomena in comets -I: Ex-perimental study of snows in a cometary environment. Planet Space Sci., 18, 709–716.

    Article  ADS  Google Scholar 

  • Delsemme, A.H. and Swings, R. (1952), Gas hydrates in cometary nuclei and interstellar grains. Ann. Astrophys., 15, 1–6.

    ADS  Google Scholar 

  • Dreibus, G. and H. Wänke (1989), Supply and loss of volatile constituents during the accretion of terrestrial planets. In S.K. Atreya, J.B. Pollack, and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres (Univ. Arizona Press, Tucson ), pp. 268–288.

    Google Scholar 

  • Dymond, J. and Hogan, L. (1978), Factors controlling the noble gas abundance patterns of deep-sea basalts. Earth planet. Sci. Lett., 38, 117–128.

    Article  ADS  Google Scholar 

  • Eberhart, P. (1981). In Basaltic Volcanism Study Project (Pergamon, New York), pp 10251031.

    Google Scholar 

  • Eberhart, P. Dolder, U. and Schulte, W., Krankowsky, D., Lammerzahl, R, Hoffmann, J.H., Hodges, R.R. Bertheller, J.J, and Illiano, J.M. (1987), The D/H ratio in water from Comet P/Halley, Astron. and Astrophys.,187 435–437.

    Google Scholar 

  • Everhart, E. (1977), The evolution of comet orbits as perturbed by Uranus and Neptune. In A.H. Delsemme (ed.), Comets, Asteroids, Meteorites ( Univ. Toledo ), pp 99–104.

    Google Scholar 

  • Fernandez, J.A. and Ip, W.H. (1981), Dynamical evolution of a cometary swarm in the outer planetary region. Icarus, 47, 470–479.

    Article  ADS  Google Scholar 

  • Fernandez, J.A. and Ip, W.H. (1983), On the time-evolution of the cometary influx in the region of the terrestrial planets. Icarus, 54, 377–387.

    Article  ADS  Google Scholar 

  • Gaffey, M.J. and Mc Cord, T. B (1979), Mineralogical and petrological characteristics of asteroid surface materials. In T. Gehrels (ed.), Asteroids ( Univ. Arizona ), pp. 688–723.

    Google Scholar 

  • Geiss, J. and Reeves, H. (1981), Deuterium in the solar system. Astron. Astrophys., 93, 189–199.

    ADS  Google Scholar 

  • Goldreich, R. and Ward, W.R. (1973), The formation of planetesimals, Astrophys. J.,183 1051–1061.

    Google Scholar 

  • Grinspoon, D.H. and Lewis, J.S. (1987), Deuterium fractionation in the presolar nebula: kinetic limitations on surface catalysis. Icarus, 72, 430–436.

    Article  ADS  Google Scholar 

  • Hartmann, L.W., Kenyon, S.J. (1990), Optical veiling disk accretion, and the evolution of T Tauri Stars. Astrophys. J., 349, 190–196.

    Article  ADS  Google Scholar 

  • Horedt, G.P. (1978), Blow-off of the protoplanetary cloud by a T Tauri like solar wind. Astron. Astrophys., 64, 173–178.

    ADS  Google Scholar 

  • Hubbard, W.B. (1984), Planetary Interiors (Van Nostrand-Reinhold, New York). Ip, W.H. and Fernandez, J.A. (1988), Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion. Icarus, 74, 47–61.

    Google Scholar 

  • Jessberger, E.K., Christoforidis, A and Kissel, J. (1988), Aspects of the major element composition of Halley’s dust. Nature, 332, 691–695.

    Article  ADS  Google Scholar 

  • Kazimirchak-Polonskaya, E.I. (1972), The major planets as powerful transformers of cometary orbits. In G.A Chebotarev, E.I. Kazimirchak-Polonskaya, B.G. Marsden (eds.), The Motions, Evolution of Orbits and Origins of Comets (D. Reidel Publishing Co., Dordrecht, Holland ), pp. 373–397.

    Google Scholar 

  • Kerridge, J.F. (1991) (personal communication). See also Anders, E. and Kerridge, J.F. (1988), Future directions in meteorite research. In J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System (Univ. of Arizona, Tucson), pp. 11551186.

    Google Scholar 

  • Krueger, F.R. and Kissel, J. (1987), The chemical composition of the dust of Comet P/Halley as measured by “PUMA” on board VEGA-1. Naturwiss., 74, 312–316.

    Article  ADS  Google Scholar 

  • Laplace, P.S. (1796), Exposition du Systeme du Monde (Vve Courcier, Paris), pp. 431 in the 4th edition of 1813.

    Google Scholar 

  • Larimer, J.W. (1967), Chemical fractionations in meteorites -I: Condensation of the elements. Geochim. Cosmochim. Acta, 31, 1215–1238.

    Article  ADS  Google Scholar 

  • Larimer, J.W. (1968), An experimental investigation of oldhamite, CaS; and the petrologic significance of oldhamite in meteorites. Geochim. Cosmochim. Acta, 32, 965–982, and Experimental studies on the system Fe-MgO-SiO2–02 and their bearing on the petrology of chondritic meteorites, 1187–1207.

    Google Scholar 

  • Larson, R.B. (1984), Gravitational torques and star formation. Mon. Not. Royal Astron. Soc., 206, 197–207.

    ADS  Google Scholar 

  • Lewis, J.S. (1972 a), Low temperature condensation from the solar nebula. Icarus, 16, 241–252.

    Google Scholar 

  • Lewis, J.S. (1972 b), Metal/silicate fractionation in the solar system.Earth Planet. Sci. Lett.,15 286–290.

    Google Scholar 

  • Lewis, J.S. (1974), The temperature gradient in the solar nebula. Science, 186, 440–443.

    Article  ADS  Google Scholar 

  • Lewis, J., Barshay, S.S. and Noyes, B. (1979), Primordial retention of carbon by the terrestrial planets. Icarus, 37, 190–206.

    Article  ADS  Google Scholar 

  • Lewis, J.S. and Prinn, R.G. (1980), Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys. J., 238, 357–364.

    Article  ADS  Google Scholar 

  • Lin, D.N.C. and Papaloizou, J. (1985), On the dynamical origin of the solar system. In D.C. Black and M.S. Matthews (eds.), Protostars and Planets II) (Univ. of Arizona, Tucson), pp. 981–1072, in particular Fig 7.

    Google Scholar 

  • Lynden-Bell, D. and Pringle, J.E. (1974), The evolution of viscous discs and the origin of the nebular variables. Mon. Not. Royal Astron. Soc., 168, 603–637.

    ADS  Google Scholar 

  • Matsui, T. and Abe, Y. (1986), Impact induced atmospheres and oceans on Earth and Venus. Nature, 322, 526–528.

    Article  ADS  Google Scholar 

  • Mizuno, H. (1980), Formation of the giant planets. Progr. Theoret. Phys., 64, 544–557.

    Article  ADS  Google Scholar 

  • Morfill, G.E. (1988), Protoplanetary accretion disks with coagulation and evaporation. Icarus, 75, 371–379.

    Article  ADS  Google Scholar 

  • Morfill, G.E. and Wood, J.A. (1989), Protoplanetary accretion disc models: the effects of several meteoritic, astronomical, and physical constraints. Icarus, 82, 225–243.

    Article  ADS  Google Scholar 

  • Morgan, J.W., Wandless, G.A., Petrie, R.K., and Irving, A.J. (1981), Composition of the earth’s upper mantle. I- siderophile trace elements in ultramafic nodules. Tectonophys., 75, 47–67.

    Article  Google Scholar 

  • Morrison, D. (1977). In A.H. Delsemme (ed.), Comets, Asteroids, Meteorites (Univ. of Toledo, Ohio ), pp. 177–184.

    Google Scholar 

  • Oro, J. (1961), Comets and the formation of biochemical compounds on the primitive earth. Nature, 190, 389–390.

    Article  ADS  Google Scholar 

  • Owen, T., Bar-Nun, A., and Kleinfeld, I. (1991). In Newburn et al. (eds.), Comets in the post-Halley Era, vol. I ( Kluwer Publ., Netherlands ), pp. 429–437.

    Google Scholar 

  • Pepin, R.O. (1989), Atmospheric compositions: key similarities and differences. In Atreya et al. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres (Univ. of Arizona, Tucson ), pp. 291–305.

    Google Scholar 

  • Pepin, R.O. (1991), On the origin and early evolution of terrestrial planet atmospheres and 66 2. The Origin of the Atmosphere and of the Oceans meteoritic volatiles. Icarus, 92, 2–79.

    Article  ADS  Google Scholar 

  • Prinn, R.G. and Fegley, B. (1989). In Atreya et al. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres (Univ. of Arizona, Tucson ), pp. 78–137.

    Google Scholar 

  • Rama Murthy, V. (1991), Early differentiation of the Earth and the problem of mantle siderophile elements: a new approach. Science, 253, 303–306.

    Article  ADS  Google Scholar 

  • Reynolds, J.H., Frick, U., Neil, J.M., and Phinney, D.L. (1975), Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmoshim. Acta, 42, 1775–1797.

    Google Scholar 

  • Ringwood, A.E. (1977), Composition and Origin of the Earth, (School of Physics, Publ. 1299, Australian National Univ., Canberra ).

    Google Scholar 

  • Rowan-Robinson, M. (1985), Infrared observations of interstellar clouds. Physica Scripta, T11, 68–70.

    Article  Google Scholar 

  • Rubey, W.W. (1951), Geologic history of sea water: an attempt to state the problem. Bull. Geol. Soc. Am., 62, 1111–1147.

    Article  Google Scholar 

  • Rubey, W.W. (1955). In Poldervaart (ed.), Crust of the Earth, (Geol. Soc. of America, New York ), pp. 630–650.

    Google Scholar 

  • Safronov, V.S. (1972). In G.A Chebotarev, E.I. Kazimirchak-Polonskaya, B.G. Marsden (eds.), The Motions, Evolution of Orbits and Origins of Comets (D. Reidel Publishing Co., Dordrecht, Holland ), pp. 329–334.

    Google Scholar 

  • Safronov, V.S. (1991), Kuiper Prize Lecture: Some problems in the formation of the planets. Icarus, 94, 260–271.

    Article  ADS  Google Scholar 

  • Sears, D.W.G. and Dodd, R.T. (1988), Overview and classification of meteorites. In J.F. Kerridge and M.S.Matthews, (eds.), Meteorites and the Early Solar System (Univ. of Arizona, Tucson ), pp. 3–31.

    Google Scholar 

  • Signer, P. and Suess, H.E. (1963). In Geiss and Goldberg (eds.), Earth Science and Meteoritics (North Holland, Amsterdam), pp. 241–278.

    Google Scholar 

  • Smith, B.A. and Terrile, R.J. (1984), A circumstellar disk around ß Pictons. Science, 226, 1421–1424.

    Google Scholar 

  • Stevenson, D.J. and Lunine, J.I. (1988), Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula. Icarus, 75, 146–155.

    Article  ADS  Google Scholar 

  • Turekian, K.K. (1972). In Chemistry of the Earth (Holt, Rinehart & Winston, New York ), pp. 102.

    Google Scholar 

  • Van Hise, N. (1904). In A Treatise on Metamorphism (United States Geological Survey, Mon. 40), pp. 970, 973, & 974.

    Google Scholar 

  • Vidal-Madjar, A. (1983). In Audouze et al. (eds.), Diffuse Matter in Galaxies (ASI Series C No 110, Reidel Dordrecht), pp. 57–94.

    Google Scholar 

  • Von Weiszacker (1944) quoted by Kuiper in A. Hyneck (ed.), Astrophysics: a topical symposium ( Univ. of Chicago Press, Chicago).

    Google Scholar 

  • Wänke, H. (1981), Constitution of terrestrial planets, Phil. Trans. Roy. Soc. London, Ser.A, 303, 287–302.

    Google Scholar 

  • Wänke, H. Dreibus, G., and Jagouts, E. (1984). In Kroner et al. (eds.), Archaean Geochemistry (Springer Verlag, Berlin), pp. 1–24.

    Google Scholar 

  • Weidenschilling, S.J. (1988), Formation processes and time scales for meteorite parent bodies. In J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System (Univ. of Arizona, Tucson ), pp. 348–371.

    Google Scholar 

  • Weissman, R (1989). In Atreya et al. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres (Univ. of Arizona, Tucson), pp. 230–267.

    Google Scholar 

  • Wetherill, G.W. (1975), Late heavy bombardment of the moon and terrestrial planets. In Proceedings of the 6th Lunar Science Conference ( Lunar and Planetary Institute, Houston ), 1539–1561.

    Google Scholar 

  • Wetherill, G.W. (1980), Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys., 18, 77–113.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. (1989). In Binzel et al. (eds.), Asteroids II (Univ. Arizona, Tucson ), pp. 666–670.

    Google Scholar 

  • Wetherill, G.W. (1990), Comparison of analytical and physical modeling of planetesimal accumulation. Icarus, 88, 336–354.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. (1991), Occurrence of Earth-like bodies in planetary systems. Science, 253, 535–538.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. and Champman, C.R. (1988), Asteroids and meteorites. In J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System (Univ. Arizona, Tucson ), pp. 35–67.

    Google Scholar 

  • Wetherill, G.W. and Cox, L.P. (1985), The range of validity of the two-body approximation in models of terrestrial planet accumulation. Icarus, 63, 290–303.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. and Stewart, G.R. (1989), Accumulation of a swarm of small planetesimals. Icarus, 77, 330–357.

    Article  ADS  Google Scholar 

  • Whipple, F.L. (1979), Scientific need for a cometary mission. In Neugebauer et al. (eds.), Space Missions to Comets (NASA SP-2089, Washington DC), pp. 1–32.

    Google Scholar 

  • Wood, J.A., Morfill, G.E. (1988), A review of solar nebula models. In J. F. Kerridge and M.S.

    Google Scholar 

  • Matthews (eds), Meteorites and the Early Solar System (Univ. of Arizona, Tucson), pp. 329–347.

    Google Scholar 

  • Zellner, B. (1979). In Asteroids,T. Gehrels (ed.), University of Arizona Press, Tucson, pp. 783–806.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Delsemme, A. (1997). The Origin of the Atmosphere and of the Oceans. In: Thomas, P.J., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2688-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2688-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2690-9

  • Online ISBN: 978-1-4757-2688-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics