Skip to main content

Circular Dichroism Using Synchrotron Radiation

From Ultraviolet to X Rays

  • Chapter
Circular Dichroism and the Conformational Analysis of Biomolecules

Abstract

Since 1960 circular dichroism (CD) has been one of the spectroscopic tools at the disposal of scientists studying the conformation of biological molecules (Grosjean and Legrand, 1960). Most of the spectrometers that measure CD have relied on conventional laboratory sources of broad-spectrum UV and visible light, particularly the high-pressure xenon arc. Around 1970, the frontiers of CD spectroscopy were extended into the vacuum UV by spectrometers with hydrogen-discharge sources (Feinleib and Bovey, 1968; Schnepp et al., 1970; Johnson, 1971), and into the infrared by spectrometers based on blackbody sources (Osborne et al., 1973; Chabay and Holzwarth, 1975). Synchrotron sources, which offer superior performance, particularly for wavelengths less than roughly 190 nm, were first used to record CD in the vacuum UV about 1980 (Snyder and Rowe, 1980; Sutherland et al., 1980). Regardless of the light source employed, these vacuum-UV CD spectrometers are inherently limited to wavelengths greater than 105 nm, the transmission limit of lithium fluoride (Sampson, 1967), although ~ 130 nm has been the practical limit. We are, however, on the threshold of a new era in which synchrotron radiation will make it possible to extend measurements of CD into the extreme UV and x-ray regions (λ ≤ ~100 nm), a capability that may prove important in the analysis of the conformation of biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abu-Shumays, A., Hooper, G. E., and Duffield, J. J., 1971, Measurement of magnetic circular dichroism using alternating magnetic fields, Appl. Spectrosc. 25: 238–242.

    Article  CAS  Google Scholar 

  • Bahrdt, J., Gaupp, A., Gudat, W., Mast, M., Molter, K., Peatman, W. B., Scheer, M., Schroter, T., and Wang, C., 1992, Circularly polarized synchrotron radiation from the crossed undulator at BESSY, Rev. Sci. Instrum. 63: 339–342.

    Article  Google Scholar 

  • Balcerski, J. S., Pysh, E. S., Bonora, G. M., and Toniolo, C., 1976, Vacuum ultraviolet circular dichroism of I3-forming alkyl oligopeptides, J. Am. Chem. Soc. 98: 3470–3473.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, L., and Schneider, C. M., 1990, Magnetic x-ray dichroism in core-level photoemission from ferromagnets, Phys. Rev. Lett. 65: 492–495.

    Article  PubMed  CAS  Google Scholar 

  • Blewett, J. P., 1988, Synchrotron radiation-1873 to 1947, Mwl. Instrum. Methods Phys. Res. A266: 1–9.

    Article  Google Scholar 

  • Blewett, J. P., and Chasman, R., 1977, Orbits and fields in the helical wiggler, J. Appl. Phys. 48: 2692–2698.

    Article  Google Scholar 

  • Carr, R., and Lidia, S., 1993, The adjustable phase planar helical undulator, SPIE Conference on Electron Beam Sources of High Brightness Radiation 2013.

    Google Scholar 

  • Carr, R., Kortright, J. B., Rice, M., Lidia, S., and Coffman, F., 1995, Performance of the elliptically polarizing undulator on SPEAR, Rev. Sci. Instrum. 66: 1862–1865.

    Article  CAS  Google Scholar 

  • Castellani, A., and Quercia, I. F., 1979, Synchrotron Radiation Applied to Biophysical and Biochemical Research, Plenum Press, New York.

    Google Scholar 

  • Chabay, I., and Holzwarth, G., 1975, Infrared circular dichroism and linear dichroism spectrometer, Appl. Opt. 14: 454–459.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. T., 1987, Concept and design procedure for cylindrical element monochromators for synchrotron radiation, Nucl. Instrum. Methods Phys. Res. A 256: 595–604.

    Article  Google Scholar 

  • Chen, C. T., 1992, Raytracing, chopper, and guideline for double-headed Dragon monochromators, Rev. Sci. Instrum. 63: 1229–1233.

    Article  Google Scholar 

  • Chen, C. T., and Sette, F., 1989, Performance of the Dragon soft x-ray beamline, Rev. Sci. Instrum. 60: 1616–1621.

    Article  CAS  Google Scholar 

  • Chen, C. T., Sette, F., and Smith, N. V., 1990, Double-headed Dragon monochromator for soft x-ray circular dichroism studies, Appl. Opt. 29: 4535–4536.

    Article  PubMed  CAS  Google Scholar 

  • Chothia, C., 1973, Conformation of twisted 13-pleated sheets in proteins, J. Mol. Biol. 75: 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F. H. C., 1953, The packing of a-helices: Simple coiled coils, Acta Crystallogr. 6: 689–697.

    Article  CAS  Google Scholar 

  • Ditchburn, R. W., 1963, Light, Interscience, New York.

    Google Scholar 

  • Diviacco, D., and Walker, R. P., 1990, Fields and trajectories in some new types of permanent magnet helical undulator, Nucl. Instrum. Methods Phys. Res. A 292: 517–529.

    Article  Google Scholar 

  • Doniach, S., Eisenberger, P., and Hodgson, K. O., 1980, X-ray absorption spectroscopy of biological molecules, in: Synchrotron Radiation Research ( H. Winick and S. Doniach, eds.), pp. 425–458, Plenum Press, New York.

    Chapter  Google Scholar 

  • Drake, A. F., Gould, J. M., and Mason, S. F., 1980, Simultaneous monitoring of light-absorption and optical activity in the liquid chromatrography of chiral substances, J. Chromatogr. 202: 239–245.

    Article  CAS  Google Scholar 

  • Duben, A. J., and Buch, A., 1980, Vacuum ultraviolet circular dichroism spectrometer and its application to N-acetylamino saccharides, Anal. Chem. 52: 635–638.

    Article  PubMed  CAS  Google Scholar 

  • Elias, L. R., and Madey, J. M., 1979, Superconducting helically wound magnet for the free-electron laser, Rev. Sci. Instrum. 50: 1335–1340.

    Article  PubMed  CAS  Google Scholar 

  • Elleaume, P., 1990, A flexible planar/helical undulator design for synchrotron sources, Nucl. Instrum. Methods Phys. Res. A 291: 371–377.

    Article  Google Scholar 

  • Elleaume, P., 1994, Helios: A new type of linear/helical undulator, J. Synchrotron Radiat. 1: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Elleaume, P., Chavanne, J., Marécchal, X., Goulon, J., Braicovich, L., Malgrange, C., Emerich, H., Marot, G., and Susini, J., 1991, An ESRF beamline dedicated to polarization-sensistive XAS at low excitation energies, Nucl. Instrum. Methods Phys. Res. A 308: 382–389.

    Article  Google Scholar 

  • Feinleib, S., and Bovey, F. A., 1968, Vapour-phase vacuum-ultraviolet circular-dichroism spectrum of (+)-3-methylcyclopentanone, Chem. Commun. 1968: 978–979.

    Google Scholar 

  • Friedman, A., Krinsky, S., and Blum, E., 1992, Polarized wiggler for NSLS x-ray ring: Design consideration, Brookhaven National Laboratory BNL-47317.

    Google Scholar 

  • Gaupp, A., and Mast, M., 1989, First experimental experience with a VUV polarimeter at BESSY, Rev. Sci. Instrum. 60: 2213–2215.

    Article  CAS  Google Scholar 

  • Giles, C., Malgrange, C., Goulon, J, Vettier, J., de Bergevin, F., Freund, A., Elleaume, P., Dartyge, E., Fontaine, A., Giorgetti, C., and Pizzini, S., 1993, X-ray phase plate for energy dispersive and monochromatic experiments, Soc. Photo-Opt. Instrum. Eng. 2010: 136–149.

    Google Scholar 

  • Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, C. J., Fontaine, A., Dartyge, E., and Pizzini, S., 1994a, Energy and polarization-tunable x-ray quarter-wave plates for energy dispersive absorption spectrometer, Nucl. Instrum. Methods Phys. Res. A 349: 622–625.

    Article  CAS  Google Scholar 

  • Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, J., Dartyge, E., Fontaine, A., Giorgetti, C., and Pizzini, S., 1994b, Energy-dispersive phase plate for magnetic circular dichroism experiments in the x-ray range, J. Appl. Crystallogr. 27: 232–240.

    Article  CAS  Google Scholar 

  • Giles, C., Malgrange, C., de Bergevin, F., Goulon, J., Baudelet, F., Vettier, C., and Freund, A., 1995a, Mosaic crystals as x-ray phase plates, Nucl. Instrum. Methods Phys. Res. 361. 354–357.

    Article  CAS  Google Scholar 

  • Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, C. J., Fontaine, A., Dartyge, E., Pizzini, S., Baudelet, F., and Freund, A., 1995b, Perfect crystal and mosaic crystal quarter-wave plates for circular magnetic x-ray dichroism experiments, Rev. Sci. Instrum. 66: 1549–1553.

    Article  CAS  Google Scholar 

  • Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, C. J., Fontaine, A., Dartyge, E., Pizzini, S., Baudelet, F., and Freund, A., 1995c, Tunable x-ray quarter-wave plates for x-ray magnetic circular dichroism experiments with the energy dispersive absorption spectrometer, Physica B 208, 209: 784–786.

    Article  Google Scholar 

  • Gluskin, E., Frachon, D., Ivanov, P. M., Maines, J., Medvedko, E. A., Trakhtenberg, E., Turner, L. R., Vasserman, I., Erg, G. I., Evtushenko, Y. A., Gavrilov, N. G., Kulipanov, G. N., Medvedko, A. S., Petrov, S. P., Popik, V. M., Vinokurov, N. A., Friedman, A., Krinsky, S., Radowshy, G., and Singh, O., 1995, The elliptical multipole wiggler project, IEEE Particle Accelerator Conference, Dallas.

    Google Scholar 

  • Goree, J., 1985, Double lock-in detection for recovering weak coherent radio frequency signals, Rev. Sci. Instrum. 56: 1662–1664.

    Article  Google Scholar 

  • Goulon, J., Elleaume, P., and Raoux, D., 1987, Special multipole wiggler design producing circularly polarized synchrotron radiation, Nucl. Instrum. Methods Phys. Res. A 254: 192–201.

    Article  Google Scholar 

  • Goulon, J., Sette, F., Moise, C., Fontaine, A., Perby, D., Petra, R., and Baudelet, F., 1993, Detection limits for natural circular dichroism of chiral complexes in the x-ray range, Jpn. J. Appl. Phys. 32: 248–289.

    Google Scholar 

  • Goulon, J., Brookes, N. B., Gauthier, C., Boodkoop, J., Goulon-Ginet, C., Hagelstein, M., and Rogalev, A., 1995, Instrumentation development for ESRF beamlines, Physica B 208, 209: 199–202.

    Google Scholar 

  • Gray, D. M., Lang, D., Kuner, E., Vaughn, M., and Sutherland, J., 1984, Thin quartz cell suitable for vacuum ultraviolet absorption and circular dichroism measurements, Anal. Biochem. 136; 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Green, M. A., Kim, K., Viccaro, P. J., Gluskin, E., Halbach, K., Savoy, R., and Trzeciak, W. S., 1992, Rapidly modulated variable-polarization crossed-undulator source, Rev. Sci. Instrum. 63: 336–337.

    Article  Google Scholar 

  • Grosjean, M., and Legrand, M., 1960, Polarimétrie-appareil de mesure de dichroisme circulaire dans le visible et l’ultraviolet, Compt. Rend. 251: 2150–2153.

    CAS  Google Scholar 

  • Hamm, R. N., MacRae, R. A., and Arakawa, E. T., 1965, Polarization studies in the vacuum ultraviolet, J. Opt. Soc. Am. 55: 1460–1462.

    Google Scholar 

  • Hart, M., Siddons, D. P., Amemiya, Y., and Stojanoff, V., 1991, Tunable x-ray polarimeters for synchrotron radiation sources, Rev. Sci. Instrum. 62: 2540–2544.

    Article  CAS  Google Scholar 

  • Heinzmann, U., 1980, Experimental determination of the phase differences of continuum wavefunctions describing the photoionisation process of xenon atoms I. Measurements of the spin polarisations of photoelectrons and their comparison with theoretical results, J. Phys. B 13: 4353–4366.

    Article  CAS  Google Scholar 

  • Heinzmann, U., Osterheld, B., and Schafers, F., 1982, Measurement and calculations of the circular polarization and of the absolute intensity of synchrotron radiation in the wavelength range from 40 to 100 nm, Nucl. Instrum. Methods 195: 395–398.

    Article  Google Scholar 

  • Hirano, K., Izumi, K., Ishikawa, T., Annaka, S., and Kikuta, S., 1991, An x-ray phase plate using Braggcase diffraction, Jpn. J. Appl. Phys. 30: L407 — L410.

    Article  CAS  Google Scholar 

  • Höchst, H., Patel, R., and Middleton, F., 1994, Multiple-reflection quarter-wave phase shifter: A viable alternative to generate circular-polarized synchrotron radiation, Nucl. Instrum. Methods Phys. Res. A 347: 107–114.

    Article  Google Scholar 

  • Höchst, H., Bulicke, P., Nelson, T., and Middleton, F., 1995, Performance evaluation of a soft x-ray quadruple reflection circular polarizer, Rev. Sci. Instrum. 66: 1598–1600.

    Article  Google Scholar 

  • Howells, M. R., 1982, Theory of a modified Wadsworth monochromator matched to a low energy storage ring source, Nucl. Instrum. Methods 195: 215–222.

    Article  CAS  Google Scholar 

  • Idzerda, Y. U., Chen, C. T., Lin, H.-J., Meigs, G., Ho, G. H., and Kao, C.-C., 1994, Soft X-ray magnetic circular dichroism and magnetic films, Nucl. Instrum. Methods Phys. Res. A 347: 134–141.

    Article  CAS  Google Scholar 

  • Ishikawa, T., 1989, X-ray monochromators for circularly polarized radiation, Rev. Sci. Instrum. 60: 2058–2061.

    Article  CAS  Google Scholar 

  • Jasperson, S. N., and Schnatterly, S. E., 1969, An improved method for high reflectivity ellipsometry based on a new polarization modulation technique, Rev. Sci. Instrum. 40: 761–767.

    Article  Google Scholar 

  • Johnson, P. D., and Smith, N. V., 1983, Production of circularly polarized light from synchrotron radiation in the vacuum ultraviolet, Nucl. Instrum. Methods 214: 505–508.

    Article  CAS  Google Scholar 

  • Johnson, W. C., 1964, Magnesium fluoride polarizing prism for the vacuum ultraviolet, Rev. Sci. In-strum. 35: 1375–1376.

    Article  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1971, A circular dichroism spectrometer for the vacuum ultraviolet, Rev. Sci. Instrum. 42: 1283–1286.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1985, Circular dichroism and its empirical application to biopolymers, Methods Biochem. Anal. 31: 61–163.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, L. A., Trunk, J. G., Polewski, K., and Sutherland, J. C., 1995, Simultaneous resolution of spectral and temporal properties of UV and visible fluorescence using single-photon counting with a position-sensitive detector, Rev. Sci. Instrum. 66: 1496–1498.

    Article  CAS  Google Scholar 

  • Kemp, J. C., 1969, Piezo-optical birefringence modulators: New use for a long-known effect, J. Opt. Soc. Am. 59: 950–954.

    Google Scholar 

  • Kim, K.-J., 1984, A synchrotron radiation source with arbitrarily adjustable elliptical polarization, Nucl. Instrum. Methods Phys. Res. 219: 425–429.

    Article  Google Scholar 

  • Kimura, H., Tanaka, T., Marechal, X., and Kitamura, H., 1994, Helical undulator systems for rapid switching of helicity, International Conference: Synchrotron Radiation Instrumentation, Stony Brook, NY, TuE28.

    Google Scholar 

  • Kincaid, B. M., 1977, A short-period helical wiggler as an improved source of synchrotron radiation, J. Appl. Phys. 48: 2684–2691.

    Article  Google Scholar 

  • Koide, T., Shidara, T., Yuri, M., Kandaka, N., Yamaguchi, K., and Fukutani, H., 1991a, Elliptical-polarization analyses of synchrotron radiation in the 5–80 eV region with a reflection polarimeter, Nucl. Instrum. Methods Phys. Res. A 308: 635–644.

    Article  Google Scholar 

  • Koide, T., Shidara, T., Yuri, M., Kandaka, N., and Fukutani, H., 1991b, Production and direct measurement of circularly polarized vacuum-ultraviolet light with multireflection optics, Appl. Phys. Lett. 58: 2592–2594.

    Article  CAS  Google Scholar 

  • Kortright, J. B., and Underwood, J. H., 1990, Multilayer optical elements for generation and analysis of circularly polarized x-rays, Nucl. Instrum. Methods Phys. Res. A 291: 272–277.

    Article  Google Scholar 

  • Kortright, J. B., Rice, M., and Frank, K. D., 1995, Tunable multilayer EUV/soft x-ray polarimeter, Rev. Sci. Instrum. 66: 1567–1569.

    Article  CAS  Google Scholar 

  • Lang, J. C., and Srager, G., 1995, Bragg transmission phase plates for the production of circularly polarized x-rays, Rev. Sci. Instrum. 66: 1540–1542.

    Article  CAS  Google Scholar 

  • Laws, W. R., Potter, D. W., and Sutherland, J. C., 1984, Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources, Rev. Sci. Instrum. 55: 1564–1568.

    Article  Google Scholar 

  • Lidia, S., and Carr, R., 1994, An elliptically polarizing undulator with phase adjustable polarization energy, Nucl. Instrum. Methods Phys. Res. A 347: 77–82.

    Article  Google Scholar 

  • Mcllrath, T. J., 1968, Circular polarizer for Lyman-alpha flux, J. Opt. Soc. Am. 58: 506–510.

    Article  Google Scholar 

  • Madey, J. M. J., 1971, Stimulated emission of bremsstrahlung in a periodic magnetic field, J. Appl. Phys. 42: 1906–1913.

    Article  CAS  Google Scholar 

  • Mandel, R., and Fasman, G. D., 1974, Thermal denaturation of DNA and DNA:polypeptide complexes: Simultaneous absorption and circular dichroism measurements, Biochim. Biophys. Acta 59: 672–679.

    CAS  Google Scholar 

  • Mason, W. R., 1982, Spectrometer for simultaneous measurement of absorption and circular dichroism spectra, Anal. Chem. 54: 646–648.

    Article  CAS  Google Scholar 

  • Matsui, A., and Walker, W. C., 1970, Polarization of three vacuum-ultraviolet monochromators measured with a biotite polarizer, J. Opt. Soc. Am. 60: 64–65.

    Article  Google Scholar 

  • Metcalf, H., and Baird, J. C., 1966, Circular polarization of vacuum ultraviolet light by piezobirefringence, Appl. Opt. 5: 1407–1410.

    Article  PubMed  CAS  Google Scholar 

  • Moissev, M. B., Nikitin, M. M., and Fedorov, N. I., 1978, Changes in the kind of polarization of undulator radiation, Soy. Phys. J. 21: 332–335.

    Article  Google Scholar 

  • Mollenauer, L. F., Downie, D., Engstrom, H., and Grant, W. B., 1969, Stress plate optical modulator for circular dichroism measurements, Appl. Opt. 8: 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Munro, I. H., Boardman, C. A., and Fuggle, J. C., 1991, World Compendium of Synchrotron Radiation Facilities, The European Synchrotron Radiation Society, Orsay, France.

    Google Scholar 

  • Nafie, L. A., Keiderling, T. A., and Stephens, P. J., 1976, Vibrational circular dichroism, J. Am. Chem. Soc. 98: 2715–2722.

    Article  CAS  Google Scholar 

  • Namioka, T., 1959, Theory of the concave grating. III. Seya—Namioka monochromator, J. Opt. Soc. Am. 49: 951–961.

    Article  Google Scholar 

  • Onuki, H., 1986, Elliptically polarized synchrotron radiation source with crossed and retarded magnetic fields, Nucl. Instrum. Methods Phys. Res. A 246: 94–98.

    Article  Google Scholar 

  • Onuki, H., Saito, N., and Saito, T., 1988, Undulator generating any kind of elliptically polarized radiation, Appl. Phys. Lett. 52: 173–175.

    Article  CAS  Google Scholar 

  • Onuki, H., Saito, N., Terubumi, S., and Mitsuhiro, H., 1989, Polarizing undulator with crossed and retarded magnetic fields, Rev. Sci. Instrum. 60: 1838–1841.

    Article  CAS  Google Scholar 

  • Osborne, G. A., Cheng, J. C., and Stephens, P. J., 1973, A near-infrared circular dichroism and magnetic circular dichroism instrument, Rev. Sci. Instrum. 44: 10–15.

    Article  CAS  Google Scholar 

  • Palmer, R. E., 1971, An improved method for measuring photoemission electron energy distribution curves, Rev. Sci. Instrum. 42: 1450–1452.

    Article  CAS  Google Scholar 

  • Pfluger, J., and Heintze, G., 1990, The asymmetric wiggler at Hasylab, Nucl. Instrum. Methods Phys. Res. 289: 300–306.

    Google Scholar 

  • Pohl, F. M., and Jovin, T. M., 1972, Salt-induced co-operative conformational change of a synthetic DNA: Equilibrium and kinetic studies of poly(dG-dC), J. Mol. Biol. 67: 375–396.

    Article  PubMed  CAS  Google Scholar 

  • Polewski, K., Kramer, S. L., Kolber, Z. S., Trunk, J. G., Monteleone, D. C., and Sutherland, J. C., 1994a, Time resolved fluorescence using synchrotron radiation excitation: A powered fourth-harmonic cavity improves pulse stability, Rev. Sci. Instrum. 65: 2562–2567.

    Article  CAS  Google Scholar 

  • Polewski, K., Zinger, D., Trunk, J., Monteleone, D., and Sutherland, J. C., 1994b, Fluorescence of matrix isolated guanine and 7-methylguanine, J. Photochem. Photobiol. B 24: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Pysh, E. S., 1976, Optical activity in the vacuum ultraviolet, in: ( L. J. Mullins, W. A. Hagins, L. Stryer, and C. Newton, eds.), Annual Review of Biophysics and Bioengineering pp. 63–75, Annual Reviews, Palo Alto.

    Google Scholar 

  • Sampson, J. A. R., 1967, Techniques of Vacuum Ultraviolet Spectroscopy, Wiley, New York.

    Google Scholar 

  • Sasaki, S., Kakuno, K., Takada, T., Shimada, T., Yanagida, K., and Miyahara, Y., 1993, Design of a new type of planar undulator for generating variably polarized radiation, Nucl. Instrum. Methods Phys. Res. A 331: 763–767.

    Article  Google Scholar 

  • Schafers, F., and Peatman, W., 1986, High-flux normal incidence monochromator for circularly polarized synchrotron radiation, Rev. Sci. Instrum. 57: 1032–1041.

    Article  Google Scholar 

  • Schnepp, O., Pearson, E. F., and Sharman, E., 1970, The measurement of circular dichroism in the vacuum ultraviolet, Rev. Sci. Instrum. 41: 1136–1141.

    Article  CAS  Google Scholar 

  • Shastri, S. D., Finkelstein, K. D., Shen, Q., Batterman, B. W., and Walko, D. A., 1995, Undulator test of a Bragg reflection elliptical polarizer at —7.1 keV, Rev. Sci. Instrum. 66: 1581–1583.

    Article  CAS  Google Scholar 

  • Siddons, D. P., Hart, M., Amemiya, Y., and Hastings, J. B., 1990, X-ray optical activity and the Faraday effect in cobalt and its compounds, Phys. Rev. Lett. 64: 1967–1970.

    Article  PubMed  CAS  Google Scholar 

  • Smith, N. V., and Howells, M. R., 1994, Whispering galleries for the production of circularly polarized synchrotron radiation in the XUV region, Nucl. Instrum. Methods Phys. Res. A 347: 115–118.

    Article  CAS  Google Scholar 

  • Snyder, P. A., and Rowe, E. M., 1980, The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements, Nucl. Instrum. Methodol. 172: 345–349.

    Article  CAS  Google Scholar 

  • Stephens, P. J., 1974, Magnetic circular dichroism, Annu. Rev. Phys. Chem. 25: 201–232.

    Article  CAS  Google Scholar 

  • Stohr, J., Wu, Y., Hermsmeier, B. D., Samant, M. G., Harp, G. R., Koranda, S., Dunham, D., and Tonner, B. P., 1993, Element-specific magnetic microscopy with circularly polarized x-rays, Science 259: 658–661.

    CAS  Google Scholar 

  • Sutherland, J. C., 1995, Magnetic circular dichroism, in: ( K. Sauer, ed.), Methods in Enzymology, pp. 110–131, Academic Press, San Diego.

    Google Scholar 

  • Sutherland, J. C., and Low, H., 1976, Fluorescence-detected magnetic circular dichroism of fluorescent and nonfluorescent molecules, Proc. Natl. Acad. Sci. USA 73: 276–280.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, J. C., Desmond, E. J., and Takacs, P. Z., 1980, Versatile spectrometer for experiments using synchrotron radiation at wavelengths greater than 100 nm, Nucl. Instrum. Methods 172: 195–199.

    Article  Google Scholar 

  • Sutherland, J. C., Griffin, K. P., Keck, P. C., and Takacs, P. Z., 1981, Z-DNA: Vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 78: 4801–4804.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, J. C., Keck, P. C., Griffin, K. P., and Takacs, P. Z., 1982, Simultaneous measurement of absorption and circular dichroism in a synchrotron spectrometer, Nucl. Instrum. Methods 195: 375–379.

    Article  CAS  Google Scholar 

  • Suzuki, M., Hanmura, K., Kotani, T., Yamaguchi, N., Kobayashi, M., and Misu, A., 1995, Direct measurement of magnetic circular dichroism and Kerr rotation spectra in vacuum ultraviolet using four-mirror polarizer, Rev. Sci. Instrum. 66: 1589–1591.

    Article  CAS  Google Scholar 

  • Terminello, L. J., Waddill, G. D., and Tobin, J. G., 1992, High resolution photoabsorption and circular polarization measurements on the University of California/National Laboratory spherical grating monochromator beamline, Nucl. Instrum. Methods Phys. Res. A 319: 271–276.

    Article  Google Scholar 

  • Tobin, J. G., Tamura, E., Sterne, P. A., Waddell, G. D., Pappas, D. P., Guo, X., and Tong, S. Y., 1995, Electron dichroism studies of magnetic structure using circularly polarized x-rays, Spectroscopy 10: 30–34.

    CAS  Google Scholar 

  • Turner, D. H., Tinoco, I., and Maestre, M., 1975, Fluorescence detected circular dichroism, J. Am. Chem. Soc. 96: 4340–4342.

    Article  Google Scholar 

  • Urry, D. W., Hinners, T. A., and Masotti, L., 1970, Calculation of distorted circular dichroism curves for poly-L-glutamic acid suspensions, Arch. Biochem. Biophys. 137: 214–221.

    Article  PubMed  CAS  Google Scholar 

  • van Elp, J., George S. J., Chen, J., Peng, G., Chen, C. T., Tjeng, L. H., Meigs, G., Lin, H.-J., Zhou, Z. H., Adams, M. M. W., Searle, B. G., and Cramer, S. P., 1993, Soft x-ray magnetic circular dichroism: A probe for studying paramagnetic bioinorganic systems, Proc. Natl. Acad. Sci. USA 90: 9664–9667.

    Article  PubMed  Google Scholar 

  • Wadsworth, F. L. 0., 1896, The modern spectroscope. XV. Astrophys. J. 3: 47–62.

    Article  Google Scholar 

  • Walker, R., and Diviacco, B., 1992, Studies of insertion devices for producing circularly polarized radiation with variable helicity in ELETTRA, Rev. Sci. Instrum. 61: 332–335.

    Article  Google Scholar 

  • Wang, C.-X., and Schlueter, R., 1994, Optimization of circularly-polarized radiation from an elliptical wiggler, asymmetric wiggler, or bending magnet, Nucl. Instrum. Methods Phys. Res. A 347: 92–97.

    Article  Google Scholar 

  • Wang, C.-X., Schlueter, R., Hoyer, E., and Heimann, P., 1994, Design of the Advanced Light Source elliptical wiggler, Nucl. Instrum. Methods Phys. Res. A 347: 67–72.

    Article  Google Scholar 

  • Wang, L., Yang, L., and Keiderling, T. A., 1994, Vibrational circular dichroism of A-, B-, and X-form nucleic acids in the POZ stretching region, Biophys. J. 67: 2460–2467.

    Article  PubMed  CAS  Google Scholar 

  • Westerveld, W. B., Becker, K., Zetner, P. W., Corr, J. J., and McConkey, J. W., 1985, Production and measurement of circular polarization in the VUV, Appl. Opt. 24: 2256–2262.

    Article  PubMed  CAS  Google Scholar 

  • Winick, H., 1994, Synchrotron Radiation Sources: A Primer,World Scientific Publishing.

    Google Scholar 

  • Winick, H., and Doniach, S., 1980, Synchrotron Radiation Research, Plenum Press, New York.

    Book  Google Scholar 

  • Yagi, K., Yuri, M., and Onuki, H., 1995, Polarization modulation spectroscopy for magnetic circular dichroism study using a polarizing undulator, Rev. Sci. Instrum. 66: 1592–1594.

    Article  CAS  Google Scholar 

  • Yahnke, C. J., Stajer, G., Haeffner, D. R., Mills, D. M., and Assoufid, L., 1994, Germanium x-ray phase plates for the production of circularly polarized x-rays, Nucl. Instrum. Methods Phys. Res. A 347: 128–133.

    Article  Google Scholar 

  • Yamada, T., Yuri, M., Onuki, H., and Ishizaka, S., 1995, Development of a circularly polarizing microscope with polarizing undulator, Rev. Sci. Instrum. 66: 1493–1495.

    Article  CAS  Google Scholar 

  • Yamamoto, S., and Kitamura, H., 1987, Generation of quasi-circularly polarized undulator radiation with higher harmonics, Jpn. J. Appl. Phys. 26: L1613.

    Article  Google Scholar 

  • Yamamoto, S., Kawata, H., Kitamura, H., and Ando, M., 1989a, First production of intense circularly polarized hard x-rays from a novel multipole wiggler in an accumulation ring, Phys. Rev. Lett. 62: 2672–2675.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, S., Shioya, T., Sasaki, T., and Kitamura, H., 1989b, Construction of insertion devices for elliptically polarized synchrotron radiation, Rev. Sci. Instrum. 60: 1834–1837.

    Article  CAS  Google Scholar 

  • Young, M. A., and Pysh, E., 1973, Vacuum ultraviolet circular dichroism of poly(L-alanine) films, Macromolecules 6: 790–791.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sutherland, J.C. (1996). Circular Dichroism Using Synchrotron Radiation. In: Fasman, G.D. (eds) Circular Dichroism and the Conformational Analysis of Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2508-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2508-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3249-5

  • Online ISBN: 978-1-4757-2508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics