Skip to main content

Bioviscoelastic Solids

  • Chapter
Biomechanics

Abstract

This chapter is focused on soft tissues. We shall first consider some of the most elastic materials in the animal kingdom: abductin, resilin, elastin, and collagen. Collagen will be discussed in greater detail because of its extreme importance to human physiology. Then we shall consider the thermodynamics of elastic deformation, and make clear that there are two sources of elasticity: one associated wit change of internal energy, and another associated with change of entropy. Following this, we shall consider the constitutive equations of soft tissues. Results of uniaxial tension experiments will be considered first, leading to the concept of quasilinear viscoelasticity. Then we will discuss biaxial loading experiments on soft tissues, methods for describing three-dimensional stresses and strains in large deformation, and the meaning of the pseudo-strain energy function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and Stegun, A. (1964) Handbook of Mathematical Functions, Ser. 55. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Alexander, R. M. (1968) Animal Mechanics. University of Washington Press, Seattle.

    Google Scholar 

  • Banga, G. (1966) Structure and function of elastin and collagen. Asso. Pry. 1st Inst. of Pathological Anatomy and Exp. Cancer Res., Med. University, Budapest.

    Google Scholar 

  • Bauer, R. D. and Pasch, T. H. (1971) The quasistatic and dynamic circumferential elastic modulus of the rat tail artery. Pflügers Arch. 330, 335–345.

    PubMed  CAS  Google Scholar 

  • Becker, E. and Föppl. O. (1928) Dauerversuche zur Bestimmung der Festigkeitseigenschaften, Beziehungen zwischen Baustoffdämpfung und Verformungs geschuwindigkeit. Forschung Gebiete Ingenieurwesens. V.D.I., No. 304.

    Google Scholar 

  • Becker, R. and Döring, W. (1939) Ferronmagnetismus. Springer, Berlin, Chapter 19.

    Google Scholar 

  • Bergel, D. H. (1961) The dynamic elastic properties of the arterial wall. J. Physiol. 156, 458–469.

    PubMed  CAS  Google Scholar 

  • Bergel, D. H. (1961) The static elastic properties of the arterial wall. J. Physiol. 156, 445–457.

    PubMed  CAS  Google Scholar 

  • Biot, M. A. (1965) Mechanics of Incremental Deformations. Wiley, New York.

    Google Scholar 

  • Blatz, P. J., Chu, B. M., and Wayland, H. (1969) On the mechanical behavior of elastic animal tissue. Trans. Soc. Rheol. 13, 83–102.

    Google Scholar 

  • Bodner, S. R. (1968) In Mechanical Behavior of Materials under Dynamic Loads, U. S. Lindhom (ed.) Springer, New York, pp. 176–190.

    Google Scholar 

  • Bressan, G. M., Argos, P., and Stanley, K. K. (1987) Repeating structures of Chick tropoelastin revealed by complementary DNA cloning. Biochem. 26, 1497–1503.

    CAS  Google Scholar 

  • Buchtal, F. and Kaiser, E. (1951) The Rheology of the Cross Striated Muscle Fibre with Particular Reference to Isotonic Conditions. Det Kongelige Danske Videnskabernes Selskab, Copenhagen, Dan. Biol. Medd. 21, No. 7, p. 328.

    Google Scholar 

  • Chen, H. Y. L. and Fung, Y. C. (1973) In Biomechanics Symposium, ASME Publ. No. AMD-2, American Society of Mechanical Engineers, New York, pp. 9–10.

    Google Scholar 

  • Chu, B. M. and Blatz, R. J. (1972) Cumulative microdamage model to describe the hysteresis of living tissues. Annu. Biomed. Eng. 1, 204–211.

    CAS  Google Scholar 

  • Ciferri, A. (1963) The a ß transformation in keratin. Trans. Faraday Soc. 59, 562–569.

    CAS  Google Scholar 

  • Collins, R. and Hu, W. C. (1972) Dynamic constitutive relations for fresh aortic tissue. J. Biomech. 5, 333–337.

    PubMed  CAS  Google Scholar 

  • Cowan, P. M., North, A. C. T., and Randall J. T. (1955) X-ray diffraction studies of collagen fibers. Symp. Soc. Exp. Biol. 9, 115–126.

    Google Scholar 

  • Dai, F., Rajagopal, K. R., and Wineman, A. S. (1992) Nonuniform extension of a nonlinear viscoelastic slab. Int. J. Solids Struct. 29, 911–930.

    Google Scholar 

  • Dale, W. C., Baer, E., Keller, A., and Kohn R. R. (1972) On the ultrastructure of mammalian tendon. Experientia 28, 1293–1295.

    PubMed  CAS  Google Scholar 

  • Dale, W. C. and Baer, E. (1974) Fiber-buckling in composite systems: a model for the ultrastructure of uncalcified collagen tissues. J. Mater. Sci. 9, 369–382.

    CAS  Google Scholar 

  • Deak, S. B., Pierce, R. A., Belsky, S. A., Riley, D. J., and Boyd, C. D. (1988) Rat tropoelastin is synthesized from a 3.5 kilobase mRNA. J. Biol. Chem. 263, 13504–13507.

    Google Scholar 

  • Debes, J. (1992) The mechanical properties of pulmonary parenchyma and arteries. Ph. D. thesis, University of California, San Diego.

    Google Scholar 

  • Debes, J. and Fung, Y. C. (1992) The effect of temperture on the biaxial mechanics of excised lung parenchyma of the dog. J. Appl. Physiol. 73, 1171–1180.

    PubMed  CAS  Google Scholar 

  • Diamant, J., Keller, A., Baer, E., Litt, M., and Arridge, R. G. C. (1972) Collagen; ultrastructure and its relation to mechanical properties as a function of ageing Proc. Roy. Soc. London B 180, 293–315.

    CAS  Google Scholar 

  • Dortmans, L. J. M. G., Ven, A. A. F. van de, and Sauren, A. A. H. J. (1987) A note on the reduced creep function corresponding to the quasi—linear visco-elastic model proposed by Fung. Private Communication.

    Google Scholar 

  • Dunn, F., Edmonds, P. D., and Fry, W. J. (1969) Ultrasound. In Biological Engineering, H. P. Schwan (ed.) McGraw-Hill, New York, p. 205.

    Google Scholar 

  • Emery, A. H. and White, M. L. (1969) A single-integral constitutive equation. Trans. Soc. Rheolo. 13, 103–110.

    CAS  Google Scholar 

  • Feughelman, M. (1963) Free-energy difference between the alpha and beta states in keratin. Nature 200, 127–129.

    Google Scholar 

  • Flory, P. J. and Garrett, R. R. (1958) Phase transitions in collagen and gelatin systems. J. Am. Chem. Soc. 80, 4836–4845.

    CAS  Google Scholar 

  • Fronek, K., Schmid-Schönbein, G., and Fung, Y. C. (1975) A noncontact method for three-dimensional analysis of vascular elasticity in vivo and in vitro. J. Appl. Physiol. 40, 634–637.

    Google Scholar 

  • Fung, Y. C. (1965) Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y. C. (1967) Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213, 1532–1544.

    PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1968) Biomechanics: Its scope, history, and some problems of continuum mechanics is physiology. Appl. Mech. Rev. 21, 1–20.

    Google Scholar 

  • Fung, Y. C. (1972) Stress—strain-history relations of soft tissues in simple elongation. In Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y. C. (1973) “Biorheology of soft tissues.” Presented on September 5, 1972 to the International Congress of Biorheology, Lyon, France. (Biorheology 10, 139–155.)

    Google Scholar 

  • Fung, Y. C. (1975) Stress, deformation, and atelectasis of the lung. Circulation Res. 37, 481–496.

    PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1977) A First Course in Continuum Mechanics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y. C., Tong, P., and Patitucci, P. (1978) Stress and strain in the lung. J. Eng. Mech. Div. Am. Soc. Civil Eng. 104(EMI), 201–224.

    Google Scholar 

  • Fung, Y. C. (1979) Inversion of a class of nonlinear stress—strain relationships of biological soft tissues. J. Biomech. Eng. 101, 23–27.

    Google Scholar 

  • Fung, Y. C. and Sobin, S. S. (1981) The retained elasticity of elastin under fixation agents. J. Biomech. Eng. 103, 121–122.

    PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1990) Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.

    Google Scholar 

  • Gathercole, L. J., Keller, A., and Shah, J. S. (1974) The periodic wave pattern in native tendon collagen: Correlation of polarizing with scanning electron microscopy. J. Microscopy 102, 95–105.

    CAS  Google Scholar 

  • Gizdulich, P. and Wesseling K. H. (1988) Forearm arterial pressure-volume relationships in man. Clin. Phys. Physiol. Meas. 9, 123–132.

    PubMed  CAS  Google Scholar 

  • Gordon, M. K., Gerecke, D. R., and Olsen, B. R. (1987) Type XII collagen: Distinct extracellular matrix component discovered by cDNA cloning. Proc. Nat. Acad. Sci. U. S. A. 84, 6040–6044.

    CAS  Google Scholar 

  • Gosline, J. M. (1978) Hydrophobic interaction and a model for the elasticity of elastin. Biopolymers, 17, 677–695.

    PubMed  CAS  Google Scholar 

  • Gray, W. R. (1970) Some kinetic aspects of crosslink biosynthesis. Adv. Exp. Med. Biol. 79, 285–290.

    Google Scholar 

  • Green, A. E. and Adkins, J. E. (1960) Large Elastic Deformations. Oxford University Press, New York.

    Google Scholar 

  • Guth, E., Wack, P. E., and Anthony, R. L. (1946) Significance of the equation of state for rubber. J. Appl. Physiol. 17, 347–351.

    CAS  Google Scholar 

  • Hardung, V. (1952) Ueber eine methode zur messung der dynamischen elastizität und viskosität kautschukähnlicher körper, insbesondere von Blutgefäszen und anderen elastischen geweheteilen. Heiv. Physiol. Pharm. Acta 10, 482–498.

    CAS  Google Scholar 

  • Harkness, M. C. R., Harkness, R. D., and McDonald, D. A. (1957) The collagen and elastin content of the arterial wall in the dog. Proc. Roy. Soc. London B 146, 541–551.

    CAS  Google Scholar 

  • Harkness, M. L. R. and Harkness, R. D. (1959a) Changes in the physical properties of the uterine cervix of the rat during pregnancy. J. Physiol. 148, 524–547.

    PubMed  CAS  Google Scholar 

  • Harkness, M. L. R. and Harkness, R. D. (1959b) Effect of enzymes on mechanical properties of tissues. Nature 183, 821–822.

    Google Scholar 

  • Harkness, R. D. (1966) Collagen, Sci. Progr. 54, 257–274.

    CAS  Google Scholar 

  • Hart-Smith, L. J. and Crisp, J. D. C. (1967) Large elastic deformations of thin rubber membranes. Int. J. Eng. Sci. 5, 1–24.

    CAS  Google Scholar 

  • Hearle, J. W. S. (1963) Fiber structure. J. Appl. Polym. Sci. 7, 172–192, 207–223.

    Google Scholar 

  • Hoeltzel, D. A., Altman, P., Buzard, K., and Choe, K.-I. (1992) Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J. Biomech. Eng. 114, 202–215.

    PubMed  CAS  Google Scholar 

  • Hoeve, C. A. J. and Flory, P. J. (1958). The elastic properties of elastin. J. Am. Chem. Soc. 80, 6523–6526.

    CAS  Google Scholar 

  • Hoppin, F. G., Lee, J. C., and Dawson, S. V. (1975) Properties of lung parenchyma in distortion. J. Appl. Physiol. 39, 742–751.

    PubMed  Google Scholar 

  • Humphrey, J. D., Vawter, D. L., and Vito, R. P. (1987) Pseudoelasticity of excised visceral pleura. J. Biomech. Eng. 109, 115–120.

    PubMed  CAS  Google Scholar 

  • Johnson, G. A., Rajagopal, K. R., and Woo, S. L.-Y. (1992) A single integral finite strain viscoelastic model of ligaments and tendons. To be published.

    Google Scholar 

  • Kastelic, J., Galeski, A., and Baer, E. (1978) The multicomposite structure of tendon. J. Connective Tissue Res. 6, 11–23.

    CAS  Google Scholar 

  • Kenedi, R. M., Gibson, T., and Daly, C. H. (1964) Bioengineering studies of the human skin; the effects of unidirectional tension. In Structure and Function of Connective and Skeletal Tissue, S. F. Jackson, S. M. Harkness, and G. R. Tristram (eds.) Scientific Committee, St. Andrews, Scotland, pp. 388–395.

    Google Scholar 

  • Kenedi, R. M., Gibson, T., Evans, J. H., and Barbenel, J.G. (1975) Tissue mechanics. Phys. Med. Biol. 20, 699–717.

    PubMed  CAS  Google Scholar 

  • Kishino, A. and Yanagida, T. (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature, 334, 74–76.

    PubMed  CAS  Google Scholar 

  • Knopoff, L. (1965) Attenuation of elastic waves in the Earth. In Physical Acoustics, W. P. Mason (ed.) Academic Press, New York, Vol. IIIB, Chapter 7, pp. 287324.

    Google Scholar 

  • Kwan, M. K. and Woo, S. L.-Y. (1989) A structural model to describe the nonlinear stress—strain behavior for parallel-fibered collagenous tissues. J. Biomech. Eng. 111, 361–363.

    PubMed  CAS  Google Scholar 

  • Lai-Fook, S. J. (1977) Lung parenchyma described as a prestressed compressible material. J. Biomech. 10, 357–365.

    PubMed  CAS  Google Scholar 

  • Lai-Fook, S. J., Wilson, T. A., Hyatt, R. E., and Rodarte, J. R. (1976) Elastic constants of inflated lobes of dog lungs. J. Appl. Physiol. 40, 508–513.

    PubMed  CAS  Google Scholar 

  • Lanczos, C. (1956) Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Langewouters, G. J., Wesseling, K. H., and Goedhard, W. J. A. (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J. Biomech. 17, 425–435.

    PubMed  CAS  Google Scholar 

  • Langewouters, G. J., Wesseling, K. H., and Goedhard, W. J. A. (1985) The pressure dependent dynamic elasticity for 35 thoracic and 16 abdominal human aortas in vitro described by a five component model. J. Biomech. 18, 613–620.

    PubMed  CAS  Google Scholar 

  • Langewouters, G. J., Zwart, A., Busse, R., and Wesseling, K. H. (1986) Pressure-diameter relationships of segments of human finger arteries. Clin. Phys. Physiol. Meas. 7, 43–55.

    PubMed  CAS  Google Scholar 

  • Lanir, Y. (1979a) A structural theory for the homogeneous biaxial stress—strain relationship in flat collagenous tissues. J. Biomech. 12, 423–436.

    PubMed  CAS  Google Scholar 

  • Lanir, Y. (1979b) The rheological behavior of the skin: Experimental results and a structural model. Biorheology 16, 191–202.

    PubMed  CAS  Google Scholar 

  • Lanir, Y. and Fung, Y. C. (1974) Two-dimensional mechanical properties of rabbit skin. I. Experimental system. J. Biomech. 7, 29–34. II. Experimental results. ibid., 7, 171–182.

    Google Scholar 

  • Lee, J. S., Frasher, W. G., and Fung, Y. C. (1967) Two-Dimensional Finite-Deformation on Experiments on Dog’s Arteries and Veins. Tech. Rept. No. AFOSR 67–1980, University of California, San Diego, California.

    Google Scholar 

  • Lee, J. S., Frasher, W. G., and Fung, Y. C. (1968) Comparison of the elasticity of an artery in vivo and in excision. J. Appl. Physiol. 25, 799–801.

    PubMed  CAS  Google Scholar 

  • Lee, M. C., LeWinter, M. M., Freeman, G., Shabetai, R., and Fung, Y. C. (1985) Biaxial mechanical properties of the pericardium in normal and volume overloaded dogs. Am. J. Physiol. 249, H222 — H230.

    Google Scholar 

  • Majack, R. H. and Bornstein, P. (1985) Heparin regulates the collagen phenotype of vascular smooth muscle cells: Induced synthesis of an MPVrPV 60,000 collagen. J. Cell Biol. 100, 613–619.

    Google Scholar 

  • McElhaney, J. H. (1966) Dynamic response of bone and muscle tissue. J. Appl. Physiol. 21, 1231–1236.

    PubMed  CAS  Google Scholar 

  • Mecham, R. P. and Heuser, J. E. (1991). In Cell biology and extracellular matrix. 2nd ed. (ed. by E. D. Hay), Chapter 3. Plenum Press, New York.

    Google Scholar 

  • Miller, E. J. (1988) Collagen types: Structure, distribution, and functions. Collagen 1, 139–154.

    Google Scholar 

  • Mooney, M. (1940) A theory of large elastic deformation. J. Appl. Phys. 11, 582–592.

    Google Scholar 

  • Morgan, F. R. (1960) The mechanical properties of collagen fibres: Stress—strain curves. J. Soc. Leather Trades Chem. 44, 171–182.

    Google Scholar 

  • Nemetschek, T., Riedl, H., Jonak, R., Nemetschek-Gansler, H., Bordas, J., Koch, M. H. J., and Schilling, V. (1980) Die viskoelastizität parallelsträngigen bindegewebes and ihre bedeutung für die function. Virchows Arch. A Path. Anat. Histol. 386, 125–151.

    Google Scholar 

  • Neubert, H. K. P. (1963) A simple model representing internal damping in solid materials. Aeronaut. Q. 14, 187–197.

    Google Scholar 

  • Nimni, M. E. (1988) Collagen. 4 Vols: 1. Biochemistry; 2. Biochemistry and Biomechanics; 3. Biotechnology; 4. Molecular Biology, B. R. Olsen (co-ed.) CRC Press, Boca Raton, FL.

    Google Scholar 

  • Olsen, B. R., Gerecke, D., Gordon, M., Green, G., Kimura, T., Konomi, H., Muragaki, Y., Ninomiya, Y., Nishimura, I., and Sugrue, S. (1988). A new dimension in the extracellular matrix. In Collagen, M. Nimni (ed.) CRC Press, Boca Raton, FL, Vol. 4.

    Google Scholar 

  • Patel, D. J., Carew, T. E., and Vaishnav, R. N. (1968) Compressibility of the arterial wall. Circulation Res. 23, 61–68.

    PubMed  Google Scholar 

  • Patel, D. J., Tucker, W. K., and Janicki, J. S. (1970) Dynamic elastic properties of the aorta in radial direction. J. Appl. Physiol. 28, 578–582.

    PubMed  CAS  Google Scholar 

  • Patel, D. J. and Vaishnav, R. N. (1972) The rheology of large blood vessels. In Cardiovascular Fluid Dynamics, D. H. Bergel (ed.) Academic, New York, Vol. 2, pp. 1–64.

    Google Scholar 

  • Pereira, J. M., Mansur, J. M., and Davis, B. R. (1991) The effects of layer properties on shear disturbance propagation in skin. J Biomech. Eng. 113, 30–35.

    PubMed  CAS  Google Scholar 

  • Pinto, J. and Fung, Y. C. (1973) Mechanical properties of the heart muscle in the passive state, and stimulated papillary muscle in quick-release experiments. J. Biomech. 6, 597–616, 617–630.

    Google Scholar 

  • Pipkin, A. C. and Rogers, T. G. (1968) A nonlinear integral representation for viscoelastic behavior. J. Mech. Phys. Solids 16, 59–74.

    Google Scholar 

  • Raju, K. and Anwar, R. A. (1987) Primary structures of the bovine elastin a, b, and c deduced from the sequences of cDNA clones. J. Biol. Chem. 262, 5755–5762.

    PubMed  CAS  Google Scholar 

  • Ramachandran, G. N. (ed.) (1967) Treatise on collagen. Vol. 1. Chemistry of Collagen. Vol. 2. Biology of Collagen. Vol. 3. Chemical Pathology of Collagen. Univ. Madra, India. Academic Press, New York.

    Google Scholar 

  • Ridge, M. D. and Wright, V. (1964) The description of skin stiffness. Biorheology 2, 67–74.

    CAS  Google Scholar 

  • Ridge, M. D. and Wright, V. (1966) Mechanical properties of skin: A bioengineering study of skin texture. J. Appl. Physiol. 21, 1602–1606.

    PubMed  CAS  Google Scholar 

  • Riedl, H., Nemetschek, T., and Jonak, R. (1980) A mathematical model for the changes of the long-period structure of collagen. In Biology of Collagen, A. Viidik and J. Vuust (eds.) Academic Press, San Diego, pp. 289–296.

    Google Scholar 

  • Rivlin, R. S. (1947) Torsion of a rubber cylinder. J. Appl. Phys. 18, 444–449.

    Google Scholar 

  • Rivlin, R. S. and Saunders, D. W. (1951) Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. Soc. London A 243, 251–288.

    Google Scholar 

  • Routbart, J. L. and Sack, H. S. (1966) Background internal friction of some pure metals at low frequencies. J. Appl. Phys. 37, 4803–4805.

    Google Scholar 

  • Schneider, D. (1982) Viscoelasticity and tearing strength of the human skin. Ph. D. Dissertation. Department of AMES/Bioengineering. University of California, San Diego.

    Google Scholar 

  • Shoemaker, P. A. (1984) Irreversible thermodynamics, the constitutive law, and a constitutive model for two-dimensional soft tissues. Ph. D. Dissertation, University of California, San Diego.

    Google Scholar 

  • Shoemaker, P. A., Schneider, D., Lee, M. C., and Fung, Y. C. (1986) A constitutive model for two-dimensional soft tissues an its application to experimental data. J. Biomech. 19, 695–702.

    PubMed  CAS  Google Scholar 

  • Sidrick, N. (1976) Constitutive equation of rabbit skin subjected to shear stress. The torsion test. M. S. Thesis, AMES Bioengineering Department. University of California, San Diego.

    Google Scholar 

  • Snyder, R. W. (1972) Large deformation of isotropic biological tissue. J. Biomech. 5, 601–606.

    PubMed  CAS  Google Scholar 

  • Sobin, S. S., Fung, Y. C., and Tremer, H. M. (1988) Collagen and elastin fibers in human pulmonary alveolar walls. J. Appl. Physiol. 64: 1659–1675.

    PubMed  CAS  Google Scholar 

  • Theodorsen, T. and Garrick, E. (1940) Mechanism of Flutter. Rept. 685, U. S. Nat. Adv. Comm. Aeronaut.

    Google Scholar 

  • Tong, P. and Fung, Y. C. (1976) The stress—strain relationship for the skin. J. Biomech. 9, 649–657.

    PubMed  CAS  Google Scholar 

  • Tong, P. and Fung, Y. C. (1976) The stress—strain relationship for the skin. J. Biomech. 9, 649–657.

    PubMed  CAS  Google Scholar 

  • Torp, S., Arridge, R. G. C., Armeniades, C. D., and Baer, E. (1974) Structure-property relationships in tendon as a function of age. In Proc. 1974 Colston Conference, Dept. of Physics, University of Bristol, U. K., pp. 197–222. See also, pp. 223–250.

    Google Scholar 

  • Treloar, L. R. G. (1967) The Physics of Rubber Elasticity, 2nd edition. Oxford University Press, New York.

    Google Scholar 

  • Urry, D. W. (1985) Protein elasticity based on conformations of sequential polypeptides: the biological elastic fiber. J. Protein Chem. 3, 403–436.

    Google Scholar 

  • Urry, D. W., Haynes, B., and Harris, R. D. (1986) Temperature dependence of length of elastin and its polypentapeptide. Biochem. and Biophys. Res. Commun. 141, 749–755.

    Google Scholar 

  • Urry, D. W. (1991) Thermally driven self-assembly, molecular structuring, and entropic mechanisms in elastomeric polypeptides. In Molecular Conformation and Biological Interaction (G. N. Ramachandran Festschrift), P. Balaram and S. Ramaseshan (eds.) Indian Academy of Science, Bangalore, India, pp. 555–583.

    Google Scholar 

  • Urry, D. W. (1992) Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Progr. Biophys. Mol. Biol. 57, 23–57.

    CAS  Google Scholar 

  • Valanis, K. C. and Landel, R. I. (1967) The strain-energy function of hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38, 2997–3002.

    CAS  Google Scholar 

  • Van Brocklin, J. D. and Ellis, D. (1965) A study of the mechanical behavior of toe extensor tendons under applied stress. Arch. Phys. Med. Rehab. 46, 369–375.

    Google Scholar 

  • Vawter, D., Fung, Y. C., and West, J. B. (1978) Elasticity of excised dog lung parenchyma. J. Appl. Physiol. 45, 261–269.

    PubMed  CAS  Google Scholar 

  • Vawter, D., Fung, Y. C., and West, J. B. (1979) Constitutive equaton of lung tissue elasticity. J. Biomech. Eng. Trans. ASME 101, 38–45.

    Google Scholar 

  • Veronda, D. R. and Westmann, R. A. (1970) Mechanical characterizations of ski-finite deformations. J. Biomech. 3, 111–124.

    PubMed  CAS  Google Scholar 

  • Viidik, A. (1966) Biomechanics and functional adaptation of tendons and joint ligaments. In Studies on the Anatomy and Function of Bone and Joints, F. G. Evans (ed.) Springer-Verlag, New York, pp. 17–39.

    Google Scholar 

  • Viidik, A. (1968) A rheological model for uncalcified parallel-fibered collagenous tissue. J. Biomech. 1, 3–11.

    PubMed  CAS  Google Scholar 

  • Viidik, A. (1978) On the correlation between structure and mechanical function of soft connective tissues. Verh. Anat. Ges. 72, 75–89.

    PubMed  Google Scholar 

  • Viidik, A. and Vuust, J. (eds.) (1980) Biology of Collagen Academic Press, New York. Chapter 17, by Viidik, Mechanical Properties of Parallel-fibered Collagenous Tissues, pp. 237–255; Chapter 18, by Viidik, Interdependence between Structure and Function in Collagenous Tissues, pp. 257–280.

    Google Scholar 

  • Viidik, A. (1990) Structure and function of normal and healing tendons and ligaments. In Biomechanics of Diarthrodial Joints, Mow, Ratcliffe, and Woo (eds.) Springer-Verlag, New York, pp. 3–38.

    Google Scholar 

  • Wagner, K. W. (1913) Zur theorie der unvoll Kommener dielektrika. Ann. Phys. 40, 817–855.

    Google Scholar 

  • Wertheim, M. G. (1847) Memoire sur l’elasticite et la coheison des principaux tissus du corps humain. Ann. Chimie Phys. Paris (Ser. 3 ), 21, 385–414.

    Google Scholar 

  • Westerhof, N. and Noodergraaf, A. (1970) Arterial viscoelasticity: A generalized model. J. Biomech. 3, 357–379.

    PubMed  CAS  Google Scholar 

  • Wilson, T. A. (1972) A continuum analysis of a two-dimensional mechanical model for the lung parenchyma. J. Appl. Physiol. 33, 472–478.

    PubMed  CAS  Google Scholar 

  • Wineman, A. S. (1972) Large axially symmetric stretching of a nonlinear viscoelastic membrane. Int. J. Solids Struct. 8, 775–790.

    Google Scholar 

  • Wineman, A., Wilson, D., and Melvin, J. W. (1979) Material identification of soft tissue using membrane inflation. J. Biomech. 12, 841–850.

    PubMed  CAS  Google Scholar 

  • Wineman, A. S. and Rajagopal, K. R. (1990) On a constitutive theory for materials undergoing microstructural changes. Arch. Mech. 42, 53–75, Warszawa.

    Google Scholar 

  • Woodhead-Galloway, J. (1980) Collagen: The anatomy of a protein. Arnold, London.

    Google Scholar 

  • Yager, D., Feldman, H., and Fung, Y. C. (1992) Microscopic vs. macroscopic deformation of the pulmonary alveolar duct. J. Appl. Physiol. 72, 1348–1354.

    PubMed  CAS  Google Scholar 

  • Zeng, Y. J., Yager, D., and Fung, Y. C. (1987) Measurement of the mechanical properties of the human lung tissue. J. Biomech. Eng. 109, 169–174.

    PubMed  CAS  Google Scholar 

  • Young, J. T., Vaishnav, R. N., and Patel, D. J. (1977) Nonlinear anisotropic viscoelastic properties of canine arterial segments. J. Biomech. 10, 549–559.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, YC. (1993). Bioviscoelastic Solids. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2257-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2257-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3104-7

  • Online ISBN: 978-1-4757-2257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics