Skip to main content

The Genus Chlamydia

  • Chapter
The Prokaryotes

Abstract

Members of the genus Chlamydia are obligate intracellular prokaryotes whose unique life style has earned them their own order, family, and genus within the kingdom Prokaryotae. The chlamydiae have a unique biphasic developmental cycle that alternates between a spore-like, infectious, metabolically inactive particle, the elementary body (EB), and a noninfectious, metabolically active, replicative form, the reticulate body (RB). The chlamydial outer envelop shares some features with the envelops of Gram-negative organisms but it lacks peptidoglycan, a major structural component of bacterial cell walls. The chlamydiae seem to be completely dependent on their host for high-energy metabolities. However, they are capable of synthesizing their own macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Liturature Cited

  • Alexander, J. J. 1968. Separation of protein synthesis in meningopneumonitis agent from that in L cells by differential susceptibility to cycloheximide. J. Bacteriol. 95: 327–332.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alexander, J. J. 1969. Effect of infection with the meningopneumonitis agent on deoxyribonucleic acid and protein synthesis by its L-cell host. J. Bacteriol. 97: 653–657.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allan, I., and J. H. Pearce. 1983 Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin. J. Gen. Microbiol. 129: 2001–2007.

    PubMed  CAS  Google Scholar 

  • Allen, J. E., and R. S. Stephens. 1989. Identification by sequence analysis of two-site posttranslational processing of the cysteine-rich outer membrane protein 2 of Chlamydia trachomatis serovar L2. J. Bacteriol. 171: 285–291.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bader, J. P., and H. R. Morgan. 1958. Latent viral infections of cells in tissue culture. VI. Role of amino acids, glutamine, and glucose in psittacosis virus propogation in L cells. J. Exp. Med. 108: 617–630.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baehr, W., Y. X. Zhang, T. Joseph, H. Su, E E. Nano, K. D. E. Everett, and H. D. Caldwell. 1988. Mapping and antigenic domains expressed by Chlamydia trachomatis major outer membrane genes. Proc. Natl. Acad. Sci. USA 85: 4000–4004.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barbour, A. G., K.-I. Amano, T. Hackstadt, L. Perry, and H. D. Caldwell. 1982. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J. Bacteriol. 151: 420–428.

    Google Scholar 

  • Batteiger, B. E., W. J. Newhall V, and R. B. Jones. 1985. Differences in outer membrane proteins of lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis. Infect. Immun. 50: 488–494.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bavoil, R, A. Ohlin, and J. Schachter. 1984. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect. Immun. 44: 479–485.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bedson, S. R, and J. O. W. Bland. 1932. Morphological study of the psittacosis virus with description of a developmental cycle. Brit. J. Exp. Pathol. 13: 461–466.

    Google Scholar 

  • Black, C. M., R. C. Barnes, K. A. Birkness, B. P. Holloway, and L. W. Mayer. 1989. Nucleotide sequence of the common plasmid of Chlamydia trachomatis serovar L2: Use of compatible deletions to generate overlapping fragments. Curr. Microbiol. 19: 67–74.

    CAS  Google Scholar 

  • Brade, H., L. Brade, and E E. Nano. 1987. Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of Chlamydia. Proc. Natl. Acad. Sci. USA 84: 2508–2512.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brade, L., E E. Nano, S. Schlecht, S. Schramek, and H. H. Brade. 1987. Antigenic and immunogenic properties of recombinants from Salmonella typhimurium and Salmonella minnesota rough mutants expressing in their lipopolysaccharide a genus-specific chlamydial epitope. Infect. Immun. 55: 482–486.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brade, L., M. Nurminen, R. H. Makela, and H. Brade. 1985. Antigenic properties of Chlamydia trachomatis lipopolysaccharide. Infect. Immun. 48: 569–572.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brownridge, E., and R B. Wyrick. 1979. Interaction of Chlamydia psittaci reticulate bodies with mouse peritoneal macrophages. Infect. Immun. 24: 697–700.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brunham, R. C., C.-C. Kuo, and W. J. Chen. 1985. Systemic Chlamydia trachomatis infection in mice: a comparison of lymphogranuloma venereum and trachoma biovars. Infect. Immun. 48: 78–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brunham, R. C., C.-C. Kuo, L. Cles, and K. K. Holmes. 1983. Correlation of host immune response with quantitative recovery of Chlamydia trachomatis from the human endocervix. Infect. Immun. 39: 1491–1494.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bryne, G. I., and J. W. Moulder. 1978. Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and He La cells. Infect. Immun. 19: 598–606.

    Google Scholar 

  • Caldwell, H. D., J. Kromhout, and J. Schachter. 1981. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 31: 1161–1176.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Caldwell, H. D., C. C. Kuo, and G. E. Kenny. 1975. Antigenic analysis of chlamydiae by two-dimensional immunoelectrophoresis. I. Antigenic heterogeneity between C. trachomatis and C. psittaci. J. Immunol. 115: 963–968.

    PubMed  CAS  Google Scholar 

  • Campbell, L. A., C.-C. Kuo, and J. T. Grayston. 1987. Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization. J. Clin. Microbiol. 25: 1911–1916.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ceballos, M. M., and T. P. Hatch. 1979. Use of HeLa cell guanine nucleotides by Chlamydia psittaci. Infect. Immun. 25: 98–102.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chang, J. J., K. Leonard, T. Arad, T. Pitt, Y. X. Zhang, and L. H. Zhang. 1982. Structural studies of the outer membrane of Chlamydia trachomatis by electron microscopy. J. Mol. Biol. 161: 579–590.

    PubMed  CAS  Google Scholar 

  • Comanducci, M., S. Ricci, and G. Ratti. 1988. The structure of a plasmid of Chlamydia trachomatis believed to be required for growth within mammalian cells. Molec. Microbiol. 2: 531–538.

    CAS  Google Scholar 

  • Costerton, J. W., L. Pffenroth, J. C. Wilt, and N. Kordova. 1976. Ultrastructural studies of the nucleoids of the pleomorphic forms of Chlamydia psittaci 6BC: a comparison with bacteria. Can. J. Microbiol. 22: 16–28.

    PubMed  CAS  Google Scholar 

  • Cox, R. L., C.-C. Kuo, J. T. Grayston, and L. A. Campbell. 1988. Deoxyribonucleic acid relatedness of Chlamydia sp. strain TWAR to Chlamydia trachomatis and Chlamydia psittaci. Int. J. Syst. Bacteriol. 38: 265–268.

    Google Scholar 

  • Dwyer, R. S. C., J. D. Treharne, B. R. Jones, and J. Herring. 1972. Results of microimmunofluorescence tests for the detection of type specific antibody in certain chlamydial infections. Br. J. Vener. Dis. 48: 452–458.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eissenberg, L. G., and P. B. Wyrick. 1981. Inhibition of phagolysosomal fusion is localized to Chlamydia psittaciladen vacuoles. Infect. Immun. 32: 889–896.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eissenberg, L. G., P. B. Wyrick, C. H. Davis, and J. W. Rumpp. 1983. Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect. Immun. 40: 741–751.

    Google Scholar 

  • Engel, J. N., and D. Ganem. 1987. Chlamydial rRNA operons: gene organization and identification of putative tandem promoters. J. Bacteriol. 169: 5678–5685.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Friis, R. R. 1972. Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development. J. Bacteriol. 110: 706–721.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frutos, R., M. Pages, M. Bellis, G. Roizes, and M. Bergoin. 1989. Pulse-field gel electrophoresis determination of the genome size of obligate intracellular bacteria belonging to the genera Chlamydia, Rickettsiella, and Porochlamydia. J. Bacteriol. 171: 4511–4519.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garrett, A. J., M. J. Harrison, and G. P. Manire 1974. A search for the bacterial mucopeptide component of muramic acid in Chlamydia. J. Gen. Microbiol. 80: 315–318.

    PubMed  CAS  Google Scholar 

  • Gerloff, R. K., D. B. Ritter, and R. O. Watson. 1970. Studies on thermal denaturation of DNA from various Chlamydiae. J. Infect. Dis. 121: 65–69.

    PubMed  CAS  Google Scholar 

  • Gordon, R B., I. A. Harper, A. L. Quan, J. D. Treharne, R. S. C. Dwyer, and J. A. Garland. 1969. Detection of Chlamydia (Bedsonia) in certain infections of man. I. Laboratory procedures: comparison of yolk sac and cell culture for detection and isolation. J. Infect. Dis. 120: 451–462.

    CAS  Google Scholar 

  • Gordon, F. B., and A. L. Quan. 1965. Isolation of the trachoma agent in cell culture. Proc. Soc. Exp. Biol. Med. 118: 354–359.

    PubMed  CAS  Google Scholar 

  • Grayston, J. T. 1967. Immunization against trachoma. First international conference on vaccine against viral and rickettsial diseases of man. Pan American Health Organization Scientific Publication 147: 546–549.

    Google Scholar 

  • Grayston, J. T., C.-C. Kuo, L. A. Campbell, and S.-P. Wang. 1989. Chlamydia pneumoniae sp. nov. for Chlamydia sp. strain TWAR. Int. J. Syst. Bacteriol. 39: 88–90.

    Google Scholar 

  • Grayston, J. T., C.-C. Kuo, S.-P. Wang, and J. Altman. 1986. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory infections. N. Engl. J. Med. 315: 161168.

    Google Scholar 

  • Grayston, J. T., and S.-R Wang. 1975. New knowledge of chlamydiae and the diseases they cause. J. Infect. Dis. 132: 87–105.

    PubMed  CAS  Google Scholar 

  • Hackstadt, T. 1986. Identification and properties of chlamydial polypeptides that bind eucaryotic cell surface components. J. Bacteriol. 165: 13–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hackstadt, T., W. J. Todd, and H. D. Caldwell. 1985. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae ? J. Bacteriol. 161: 25–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Halberstaedter, L., and S. von Prowazek. 1909. Uber Chlamydozoenbefunde bei blenorrhea neonatorum nongonorrhoica. Berl. Klin. Wchenschr. 46: 1839–1844.

    Google Scholar 

  • Hammerschlag, M. R., K. Suntharalingham, and S. Fikrig. 1985. The effect of Chlamydia trachomatis on luminoldependent chemiluminescence of human polymorphonuclear leukocytes: requirements for opsonization. J. Infect. Dis. 151: 1045–1051.

    PubMed  CAS  Google Scholar 

  • Hatch, T. P. 1975. Utilization of L-cell nucleoside triphosphates by Chlamydia psittaci for ribonucleic acid synthesis. J. Bacteriol. 122: 393–400.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatch, T. P. 1976. Utilization of exogenous thymidine by Chlamydia psittaci growing in thymidine kinase-containing and thymidine kinase-deficient L cells. J. Bacteriol. 125: 706–712.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatch, T. R 1988. Metabolism of Chlamydia, p. 97–109. In: A. L. Barron (ed.), Microbiology of chlamydia. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Hatch, T. R, E. Al-Hossainy, and J. A. Silverman. 1982. Adenine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150: 662–670.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatch, T. R, M. Miceli, and J. A. Silverman. 1985. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 162: 938–942.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatch, T. R, M. Miceli, and J. E. Sublett. 1986a. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 165: 379–385.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatch, T. R, M. Plaunt, and J. Sublett. 1986b. DNA synthesis by host-free chlamydia, p. 47–50. In: J. D. Oriel, G. Ridgway, J. Schachter, D. Taylor-Robinson, and M. Ward (ed.), Chlamydial infections. Cambridge University Press, London.

    Google Scholar 

  • Hatt, C., M. E. Ward, and I. N. Clarke. 1988. Analysis of the entire nucleotide sequence of the cryptic plasmid of Chlamydia trachomatis serovar L1. Evidence for involvement in DNA replication. Nucl. Acids Res. 16: 4053–4067.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi, H., and P. K. Sheth. 1982. Simplified method for Chlamydia trachomatis isolation using multi-well plate. Am. J. Public Health 72: 1406–1407.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hodinka, R. L., C. H. Davis, J. Choong, and P. B. Wyrick. 1988. Ultrastructural study of endocytosis of Chlamydia trachomatis by McCoy cells. Infect. Immun. 56: 1456–1463.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hodinka, R. L., and R B. Wyrick. 1986. Ultrastructural study of mode of entry of Chlamydia psittaci into L929 cells. Infect. Immun. 54: 855–863.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Horoschak, K. D., and J. W. Moulder. 1978. Division of single host cells after infection with Chlamydiae. Infect. Immun 19: 281–286.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hourihan, J. T., T. R. Rota, and A. B. MacDonald. 1980. Isolation and purification of a type-specific antigen from Chlamydia trachomatis propagated in cell culture utilizing molecular shift chromatography. J. Immunol. 124: 2399–2404.

    PubMed  CAS  Google Scholar 

  • Jenkin, H. M., and V. S. C. Fan. 1971. Contrast of glycogenesis of Chlamydia trachomatis and Chlamydia psittaci strains in HeLa cells, p. 52–59. In: R. L. Nichols (ed.), Trachoma and related disorders caused by chlamydial agents. Excerpta Medica, Amsterdam.

    Google Scholar 

  • Joseph, T., E E. Nano, C. E Garon, and H. D. Caldwell. 1986. Molecular characterization of Chlamydia trachomatis and Chlamydia psittaci plasmids. Infect. Immun. 51: 699–703.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karayiannis, E, and D. Hobson. 1981. Amino acid requirements of a Chlamydia trachomatis genital strain in McCoy cell cultures. J. Clin. Microbiol. 13: 427–432.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kingsbury, D. T. 1969. Estimate of the genome size of var- ious microoragnisms. J. Bacteriol. 98: 1400–1401.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kingsbury, D. T., and E. Weiss. 1968. Lack of deoxyribonucleic acid homology between species of the genus Chlamydia. J. Bacteriol. 96: 1421–1423.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kiviat, N. B., M. Peterson, E. Kinney-Thomas, M. Tam, W. E. Stamm, and K. K. Holmes. 1985. Cytologic manifestations of cervical and vaginal infections. II. Confirmation of Chlamydia trachomatis infection by direct immunofluorescence using monoclonal antibodies. JAMA 253: 997–1000.

    PubMed  CAS  Google Scholar 

  • Kramer, M. J., and E. B. Gordon. 1971. Ultrastructural analysis of the effects of penicillin and chlortetracycline on the development of a genital tract Chlamydia. Infect. Immun. 3: 333–341.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuo, C. C. 1978. Cultures of Chlamydia trachomatis in mouse peritoneal macrophages: factors affecting organism growth. Infect. Immun. 20: 439–445.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lees, M. I., D. M. Newnan, and S. M. Garland. 1988. Simplified culture procedure for large-scale screening for Chlamydia trachomatis infections. J. Clin. Microbiol. 26: 1428–1430.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levy, N. J., and J. W. Moulder. 1982. Attachment of cells walls of Chlamydia psittaci to mouse fibroblasts (L cells). Infect. Immun. 37: 1059–1065.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lovett, M., C. C. Kuo, K. Holmes, and S. Falkow. 1980. Plasmids of the genus Chlamydia, p. 1250–1252. In: J. D. Nelson, and C. Grassi (ed.), Current chemotherapy and infectious diseases, vol II. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Ma, J. J., K. C. S. Chen. and C.-C. Kuo. 1987. Identification of conserved regions for species and subspecies specific epitopes on the major outer membrane protein of Chlamydia trachomatis. Microb. Pathog. 3: 299–307.

    CAS  Google Scholar 

  • Mallinson, H., S. Sikotra, and O. P. Arya. 1981. Cultural method for large-scale screening for Chlamydia trachomatis genital infection. J. Clin. Pathol. 34: 712–718.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matsumoto, A. 1981. Isolation and electron microscopic observation of intracytoplasmic inclusions containing C. psittaci. J. Bacteriol. 145: 609–612.

    Google Scholar 

  • Matsumoto, A., and G. P. Manire. 1970. Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J. Bacteriol. 101: 278–285.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miyagawa, Y., T. Mitamura, H. Yaoi, N. Ishii, H. Nakajima, J. Okanishi, S. Watanabe, and K. Sato. 1935a. Studies on the virus of lymphogranuloma inguinale Nicholas, Favre and Durand. First report. Jap. J. Exp. Med. 13: 118.

    Google Scholar 

  • Miyagawa, Y., T. Mitamura, H. Yaoi, N. Ishii, and J. Okanishi. 1935b. Studies on the virus of lymphogranuloma inguinale Nicholas, Favre and Durand. Fourth report. Cultivation of the virus on the chorioallantoic membrane of the chick embryo. Jap. J. Exp. Med. 13: 733–750.

    Google Scholar 

  • Morrison, R. R, K. Lyng, and H. D. Caldwell. 1989. Chlamydial disease pathogenesis: ocular hypersensitivity elicited by a genus-specific 57-kD protein. J. Exp. Med. 169: 663–675.

    PubMed  CAS  Google Scholar 

  • Moulder, J. W. 1962. The biochemistry of intracellular parasitism. The University of Chicago Press, Chicago.

    Google Scholar 

  • Moulder, J. W. 1964. The psittacosis group as bacteria. John Wiley and Sons, New York.

    Google Scholar 

  • Moulder, J. W., D. L. Grisso, and R. R. Brubaker. 1965. Enzymes of glucose catabolism in a member of the psittacosis group. J. Bacteriol. 89: 810–812.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moulder, J. W., T. R. Hatch, C.-C. Kuo, J. Schacter, and J. Storz. 1984. Genus Chlamydia Jones, Rake, and Stearns 1945, p. 729–739. In: N. R. Krieg, and J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, 8th edition, vol 1. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Nano, E E., and H. D. Caldwell. 1985. Expression of the chlamydial genus-specific lipopolysaccharide epitope in Escherichia coli. Science 228: 742–744.

    PubMed  CAS  Google Scholar 

  • Newhall, W. J., V, and R. B. Jones. 1983. Disulfide-linked oligomers of the major outer membrane protein of Chlamydiae. J. Bacteriol. 154: 998–1001.

    PubMed  CAS  Google Scholar 

  • Nurminen, M., E. T. Rietschel, and H. Brade. 1985. Chemical characterization of Chlamydia trachomatis lipopolysaccharide. Infect. Immun. 48: 573–575.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ormsbee, R. A., and E. Weiss. 1963. Trachoma agent: Glucose utilization by purified suspensions. Science 142: 1077–1078.

    PubMed  CAS  Google Scholar 

  • Plaunt, M. R., and T. P. Hatch. 1988. Protein synthesis early in the developmental cycle of Chlamydia psittaci. Infect. Immun. 56: 3021–3025.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Popov, V., E Eb, J.-F. Lefebvre, J. Orfila, and A. Viron. 1978. Morphological and cytochemical study of Chlamydia with EDTA regressive technique and Gautier staining in ultrathin frozen sections of infected cell cultures: A comparison with embedded material. Ann. Microbiol. (Inst. Past.) 129B: 313–337.

    Google Scholar 

  • Rake, G., C. M. McKee, and M. F. Shaffer. 1940. Agent of lymphogranuloma venereum in the yolk-sac of the developing chick embryo. Proc. Soc. Exp. Biol. Med. 43: 332–334.

    Google Scholar 

  • Ramsey, K. H., L. S. R Soderberg, and R. G. Rank. 1988. Resolution of chlamydial genital infection in B-cell-deficient mice and immunity to reinfection. Infect. Immun. 56: 1320–1325.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rank, R. G., L. S. Soderberg, M. M. Sanders, and B. E. Batteiger. 1989. Role of cell-mediated immunity in the resolution of seconday chlamydial genital infection in guinea pigs infected with the agent of guinea pig inclusion conjunctivitis. Infect. Immun. 57: 706–710.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rank, R. G., H. J. White, and A. L. Barron. 1979. Humoral immunity in the resolution of genital infection in female guinea pigs infected with the agent of guinea pig inclusion conjunctivitis. Infect. Immun. 26: 573–579.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ripa, K. T., and P.-A. Mardh. 1977. Cultivation of Chlamydia trachomatis in cycloheximide-treated McCoy cells. J. Clin. Microbiol. 6: 328–331.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saikku, P., S. P. Wang, M. Kleemola, E. Brander, E. Rusanen, and J. T. Grayston. 1985. An epidemic of mild pneumonia due to an unusual strain of Chlamydia psittaci. J. Infect. Dis. 151: 832–839.

    PubMed  CAS  Google Scholar 

  • Sardinia, L. M., E. Segal, and D. Ganem. 1988. Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis. J. Gen. Microbiol. 134: 997–1004.

    PubMed  CAS  Google Scholar 

  • Sarov, I., and Y. Becker. 1969. Trachoma agent DNA. J. Mol. Biol. 42: 581–589.

    PubMed  CAS  Google Scholar 

  • Sarov, I., and Y. Becker. 1971. Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in purified trachoma elementary bodies: effect of sodium chloride on ribonucleic acid transcription. J. Bacteriol. 107: 593–598.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Söderlund, G., and E. Kihlström. 1983. Effect of methylamine and monodansylcadaverine on the susceptibility of McCoy cells to Chlamydia trachomatis infections. Infect. Immun. 40: 534–541.

    PubMed  PubMed Central  Google Scholar 

  • Sriprakash, K. S., and E. S. Macavoy. 1987. Characterization and sequence of a plasmid from the trachoma biovar of Chlamydia trachomatis. Plasmid 18: 205–214.

    PubMed  CAS  Google Scholar 

  • Stephens, R. S., R. Sanchez-Pescador, E. A. Wagar, C. Inouye, and M. S. Urdea. 1987. Diversity of Chlamydia trachomatis major outer membrane protein genes. J. Bacteriol. 169: 3879–3885.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stephens, R. S., M R. Tam, C.-C. Kuo, and R C. Nowinski. 1982. Monoclonal antibodies to Chlamydia trachomatis: antibody specificities and antigen chracterization. J. Immunol. 128: 1083–1089.

    PubMed  CAS  Google Scholar 

  • Stephens, R. S., E. A. Wagar, and U. Edman. 1988a. Developmental regulation of tandem promoters for the major outer membrane protein gene of Chlamydia trachomatis. J. Bacteriol. 170: 744–750.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stephens, R. S., E. A. Wagar, and G. K. Schoolnik. 1988b. High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane of Chlamydia trachomatis. J. Exp. Med. 167: 817–831.

    Google Scholar 

  • Storz, J. 1971. Chlamydia and Chlamydia-induced diseases, p. 119–258.

    Google Scholar 

  • Charles C. Thomas, Springfield, IL. Storz, J., and L. A. Page. 1971. Taxonomy of the Chlamydiae: Reasons for classifying organisms of the genus Chlamydia, Family Chlamydiaceae, in a separate order, Chlamydiales ord. nov. Int. J. Syst. Bacteriol. 21: 332–334.

    Google Scholar 

  • Tamura, A. 1967. Studies on RNA synthetic enzymes associated with meningopneumonitis organism. Annu. Rep. Inst. Virus Res. Kyoto Univ. 10: 26–36.

    Google Scholar 

  • T’ang, E E, H. L. Chang, Y. T. Huang, and K. C. Wang. 1957. Studies on the etiology of trachoma with special reference to isolation of the virus in chick embryo. Chin. Med. J. 75: 429–447.

    Google Scholar 

  • Tauber, A. I., N. Pavlotsky, J. S. Lin, and P. A. Rice. 1989. Inhibition of human neutrophil NADPH oxidase by Chlamydia serovars E, K, and L2. Infect. Immun. 57: 1108–1112.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor, H. R., S. L. Johnson, J. Schachter, H. D. Caldwell, and R. A. Prendergast. 1987. Pathogenesis of trachoma: the stimulus of inflamation. J. Immunol. 138: 3023–3027.

    PubMed  CAS  Google Scholar 

  • Tosi, M. F., and M. R. Hammerschlag. 1988. Chlamydia trachomatis selectively stimulates myeloperoxidase release but not superoxide production by human neutrophils. J. Infect. Dis. 158: 457–460.

    Google Scholar 

  • Treuhaft, M. W., and J. W. Moulder. 1968. Biosynthesis of arginine in L cells infected with chlamydiae. J. Bacteriol. 96: 2004–2011.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tribby, I. I. E., R. R. Friis, and J. W. Moulder. 1973. The effect of chloramphenicol, rifampicin, and naladixic acid on Chlamydia psittaci growing in L cells. J. Infect. Dis. 127: 155–163.

    PubMed  CAS  Google Scholar 

  • Tribby, I. I. E., and J. W. Moulder. 1966. Availability of bases and nucleosides as precursors of nucleic acids in L cells and in the agent of meningopneumonitis. J. Bacteriol. 91: 2362–2367.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wagar, E. A., and R. S. Stephens. 1988. Developmental-form specific DNA-binding proteins in Chlamydia spp. Infect. Immun. 56: 1678–1684.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang, S.-P., C. C. Kuo, R. C. Barnes, R. S. Stephens. and J. T. Grayston. 1985. Immunotyping of Chlamydia trachomatis with monoclonal antibodies. J. Infect. Dis. 152: 791–800.

    CAS  Google Scholar 

  • Wang, S.-P., and J. T. Grayston. 1971. Classification of TRIC and related disorders with micro immunofluorescence, p. 305–321. In: R. L. Nichols (ed.), Trachoma and related disorders caused by chlamydial agents. Excerpta Medica, Amsterdam.

    Google Scholar 

  • Wang, S.-P., J. T. Grayston, E. R. Alexander, and K. K. Holmes. 1975. Simplified microimmunofluorescence test with trachoma-lymphogranuloma venereum (Chlamydia trachomatis) antigens for use as a screening test for antibody. J. Clin. Microbiol. 1: 250–255.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ward, M. E., and A. Murray. 1984. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis. J. Gen.. Microbiol. 130: 1765–1780.

    PubMed  CAS  Google Scholar 

  • Weisburg, W. G., T. P. Hatch, and C. T. Woese. 1986. Eu-bacterial origin of chlamydiae. J. Bacteriol. 167: 570–574.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss, E. 1965. Adenosine triphosphate and other requirements for utilization of glucose by agents of the psittacosis-trachoma group. J. Bacteriol. 90: 243–253.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss, E. 1967. Transaminase activity and other enzymatic reactions involving pyruvate and glutamate in Chlamydia (psittacosis-trachoma group). J. Bacteriol. 93: 177–184.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss, E., W. E Myers, H. R. Dressler, and H. Chu-Iloon. 1964. Glucose metabolism by agents of the psittacosis-trachoma group. Virol. 22: 551–562.

    CAS  Google Scholar 

  • Wenman, W. M., and R. U. Meuser. 1986. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes. J. Bacteriol. 165: 602–607.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Williams, D. M., B. Grubbs, and J. Schachter. 1987. Primary murine Chlamydia trachomatis pneumonia in Bcell-deficient mice. Infect. Immun. 55: 2387–2390.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Williams, D. M., J. Schachter, J. J. Coalson, and B. Grubbs. I 984a. Cellular immunity to the mouse pneumonitis agent. J. Infect. Dis. 149: 630–639.

    Google Scholar 

  • Williams, D. M., J. Schachter, M. Weiner, and B. Grubbs. 1984b. Antibody in host defense against mouse pneumonitis agent (murine Chlamydia trachomatis). Infect. Immun. 45: 674–678.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wyrick, P. B., E. A. Brownridge, and B. E. Ivins. 1978. Interaction of Chlamydia psittaci with mouse peritoneal macrophages. Infect. Immun. 19: 1061–1067.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wyrick, P. B., J. Choong, C. H. Davis, S. T. Knight, M. O. Royal, A. S. Maslow, and C. R. Bagnell. 1989. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57: 2378–2389.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yong, E. C., E. Y. Chi, W. J. Chen, and C. C. Kuo. 1986. Degradation of Chlamydia trachomatis in human polymorphonuclear leukocytes: an ultrastructural study of peroxidase-positive phagolysosomes. Infect. Immun. 53: 427–431.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yong, E. C., E. Y. Chi, and C.-C. Kuo. 1987. Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis. J. Immunol. 139: 1297–1302.

    PubMed  CAS  Google Scholar 

  • Zhang, Y.-X., S. G. Morrison, H. D. Caldwell, and W. Baehr. 1989. Cloning and sequence analysis of the major outer membrane protein genes of two Chlamydia psittaci strains. Infect. Immun. 57: 1621–1625.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang, Y.-X., S. Stewart, T. Joseph, H. R. Taylor, and H. D. Caldwell. 1987a. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. J. Immunol. 138: 575–581.

    PubMed  CAS  Google Scholar 

  • Zhang, Y.-X., N. G. Watkins, S. Stewart, and H. D. Caldwell. 1987b. The low-molecular-mass, cysteine-rich outer membrane protein of Chlamydia trachomatis possesses both biovar-and species-specific epitopes. Infect. Immun. 55: 2570–2573.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fields, P.I., Barnes, R.C. (1992). The Genus Chlamydia . In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_40

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics