Skip to main content

New Methods for the Analysis of Insulin Kinetics in Vivo: Insulin Secretion, Degradation, Systemic Dynamics and Hepatic Extraction

  • Chapter
Comparison of Type I and Type II Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 189))

Abstract

Glucose is a metabolite which is subject to a high degree of control. It is a principal substrate for the metabolic activity of the central nervous system, but its availability from exogenous sources is sporadic. This has led to the development of hormone systems which titrate the distribution of energy-rich substrates among different tissues in a very precise manner. That these hormone systems are efficient is manifest in the minimal perturbations seen, for example, in plasma glucose concentrations after the ingestion of a carbohydrate containing meal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Kipnis, Insulin secretion in diabetes mellitus, Ann. Intern. Med. 69: 891–901 (1969).

    Article  Google Scholar 

  2. J.M. Olefsky, G.H. Reaven, Insulin binding in diabetes: relationships with plasma insulin levels and insulin sensitivity, Diabetes 26: 680–688 (1977).

    PubMed  CAS  Google Scholar 

  3. C.R. Kahn, Role of insulin receptors in insulin-resistant states, Metabolism 29: 455–466 (1980)

    Article  PubMed  CAS  Google Scholar 

  4. H. Beck-Nielsen, The pathogenetic role of an insulin-receptor defect in diabetes mellitus of the obese, Diabetes 27: 1175–1181 (1978).

    PubMed  CAS  Google Scholar 

  5. O.G. Kolterman, R.S. Gray, J. Griffin, P. Burstein, J. Insel, J.A. Scarlett, and J.M. Olefsky, Receptor and post-receptor defects contribute to the insulin resistance in non-insulin dependent diabetes mellitus, J. Clin. Invest. 68: 957–969 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. O. Faber, K. Christensen, H. Kehlet, S. Madsbad, and C. Binder, Decreased insulin removal contributes to hyperinsulinemia in obesity, J. Clin. Endocrinol Metab. 53: 618–621 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. I. Mandelbaum, C.R. Morgan, Pancreatic blood flow and its relationship to insulin during extracorporeal circulation, Am. J. Surg. 170: 755–758 (1969).

    Google Scholar 

  8. Y. Kanazawa, T. Kuzuya, T. Ide, Insul in output via the pancreatic vein and plasma insulin response to glucose in dogs, Am. J. Physiol. 215: 620–626 (1968).

    PubMed  CAS  Google Scholar 

  9. A.M. Rappaport, J.K. Davidson, T. Kawamura, B.J. Lin, S. Zelin, J. Henderson, and R.E. Haist, Quantitative determination of insulin output following an intravenous glucose tolerance test in the dog, Can. J. Physiol. Pharm. 46: 373–381 (1968).

    Article  CAS  Google Scholar 

  10. J.B. Field, Insulin extraction by the liver, in: “Endocrinology,” vol. 1, Endocrine Pancreas, R.O Grey, E. B. Astwood, eds., Am Physiol Society, Washington, 505(1972).

    Google Scholar 

  11. L.L. Madison, and N. Kaplan, The hepatic binding of 1131 labeled insulin in human subjects during a simple transhepatic circulation, J. Lab. Clin. Med. 52: 927–932 (1958).

    Google Scholar 

  12. J.B. Field, Extraction of insulin by the liver, Ann. Rev. Med. 309–314 (1973).

    Google Scholar 

  13. C.E. Mondon, J.M. Olefsky, C.B. Doldas, and G.H. Reaven, Removal of insulin by perfused rat liver: effect of concentrations, Metal Clin. Exp. 51: 912–921 (1975).

    Google Scholar 

  14. A.N. Rubenstein, A.H. Pottenger, M.E. Maki:), G.S. Getz, and D.F. Steiner, The metabolism of proinsulin and insulin by the liver, J. Clin. Invest. 51: 912–921 (1972).

    Article  PubMed  CAS  Google Scholar 

  15. A. Ooms, Y. Arnould, U. Rosa, G.F. Pennisi, and J.R.M. Franckson, Clearances metaboliques globales de l’insuline cristalline et d’insulines substituees au radioiode, Path Biol. 16: 241–245 (1968).

    CAS  Google Scholar 

  16. P.H. Sonksen, C.V. Tompkin, C. Srivastava, and J.D.N. Nabarro, A comparative study on the metabolism of human insulin and porcine proinsulin in man, Clin. Sci. Mol. Med. 45: 633–654 (1973).

    CAS  Google Scholar 

  17. J.R.M. Franckson, and H.A. Ooms, The catabolism of insulin in the dog: evidence for the existence of two pathways, Postgrad. Med. J. 49: 931–939 (1973).

    PubMed  CAS  Google Scholar 

  18. M. Kaden, P. Harding, and J.B. Field, Effect of intraduodenal glucose adminsitration on hepatic extraction of insulin in the anaesthetized dog, J. Clin. Invest. 52: 2016–2028 (1973).

    Article  PubMed  CAS  Google Scholar 

  19. P.S. Harding, G. Bloom, and J.B. Field, Effect of infusion of insulin into portal vein on hepatic extraction of insulin in anaesthetized dogs, Am. J. Physiol. 228: 1580–1588 (1975).

    PubMed  CAS  Google Scholar 

  20. J. Jaspan, and K. Polonsky, Glucose ingestion in dogs alters the hepatic extraction of insulin: in vivo evidence for a relationship between biologic action and extraction of insulin, J. Clin. Invest. 69: 516–525 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. W. Waldhausl, P. Bratusch-Marrain, S. Gasic, A. Korn, and P. Nowotny, Insulin production rate, hepatic insulin retention and splanchnic carbohydrate metabolism after oral glucose ingestion in hyperinsulinemia Type 2 (non-insulin-dependent) diabetes mellitus, Diabetologia 23: 6–15 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. T. Ishida, Z. Chap, J. Chou, R. Lewis, C. Hartley, M. Entman, and J.B. Field, Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucose extraction in conscious dogs, J. Clin. Invest. 72: 590–601 (1983).

    Article  PubMed  CAS  Google Scholar 

  23. K. Polonsky, J. Jaspan, D. Emmanuouel, K. Holmes, and A.R. Moossa, Differences in hepatic and renal extraction of insulin and glucagon in the dog; evidence of saturability of insulin metabolism, Acta Endocrinol 102: 420–427 (1983).

    PubMed  CAS  Google Scholar 

  24. A.N. Rubenstein, J.L. Clark, F. Melani, and D.F. Steiner, Secretion of proinsulin C-peptide by pancreatic beta cells and its circulation in blood, Nature 224: 697–699 (1969).

    Article  CAS  Google Scholar 

  25. D.L. Horwitz, J.I. Starr, H.E. Mako, W.G. Blackard, and A.H. Rubenstein, Proinsulin, insulin, C-peptide concentrations in human portal and peripheral blood, J. Clin. Invest. 55: 1278–1283 (1975).

    Article  PubMed  CAS  Google Scholar 

  26. K. Polonsky, J.B. Jaspan, W. Pugh, D. Cohen, M. A. Schneider, T. Schwartz, A.R. Moossa, H. Tager, and A.H. Rubenstein, Metabolism of C-peptide in the dog: in vivo demonstration of the absence of hepatic extraction, J. Clin. Invest. 72: 1114–1123 (1983)

    Article  PubMed  CAS  Google Scholar 

  27. R.W. Stoll, J.L. Touber, L.A. Menahan, R.H. Williams, Clearance of porcine insulin, proinsulin and connecting peptide by the isolated rat liver, Proc. Soc. Exp. Biol. Med. 133: 894–896 (1970).

    Article  CAS  Google Scholar 

  28. C. Kulh, O.K. Faber, P. Hornes, and S.L. Jensen, C-peptide metabolism and the liver, Diabetes 27: 197–200 (1978).

    Google Scholar 

  29. D.L. Horwitz, H. Kuzuya, and A.H. Rubenstein, Circulating serum C-peptide. A brief review of diagnostic implications, New Engl. J. Med. 295: 207–209 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. L.H. Heding, Insulin, C-peptide and proinsulin in nondiabetics and insulin treated diabetics. Characterization of the pro- insulin in insulin-treated diabetics, Diabetes 27, Suppl. 1: 178–183 (1978).

    Google Scholar 

  31. K.S. Polonsky, and A.H. Rubenstein, C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes 33: 486–494 (1984).

    Article  PubMed  CAS  Google Scholar 

  32. W. Waldausl, P. Bratusch-Marrain, S. Gasic, A. Korn, and P. Nowotry, Insulin production rate following glucose ingestion estimated by splanchnic C-peptide output in normal man, Diabetologia 17: 221–227 (1979).

    Article  Google Scholar 

  33. P.R. Bratusch-Marrain, N.K. Waldhausl, S. Gasic, A. Hofer, Hepatic disposal of biosynthetic human insulin and porcine C-peptide in humans, Metabolism 33: 151–157 (1984).

    Article  PubMed  CAS  Google Scholar 

  34. O.K. Faber, C. Hagen, C. Binder, J. Markussen, V.K. Naithani, P.M. Blix, H. Kuzuya, D.L. Horwitz, A.H. Rubenstein, and N. Rossing, Kinetics of human connecting peptide in normal and diabetic subjects, J. Clin. Invest. 62: 197–203 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. R.P. Eaton, R.C. Allen, D.S. Schade, K.H. Erickson, and J. Standefer, Prehepatic insulin production in man; kinetic analysis using peripheral connecting peptide behaviour, J. Clin. Endoc. Metab. 51: 520–528 (1980).

    Article  CAS  Google Scholar 

  36. J. Radziuk, The numerical solution from measurement data of linear integral equations of the first kind, Int. J. Num. Meth. Engng. 11: 729–735 (1977).

    Article  Google Scholar 

  37. T. Morishima, K. Polonsky, H. Tager, and J. Radziuk, The measurement and validation of nonsteady C-peptide secretion rate in dogs, Diabetologia (1985).

    Google Scholar 

  38. T. Kuzuya, and A. Matsuda, Disappearance rate of endogenous human C-peptide from blood, Diabetolgia 12: 519–521 (1976).

    Article  CAS  Google Scholar 

  39. O.K. Faber, S. Hadsbad, H. Kehlet, and C. Binder, Pancreatic beta cell secretion during oral and intravenous glucose administration, Acta. Medica. Scand. Suppl. 624: 61–64 (1979).

    CAS  Google Scholar 

  40. M.T. Meistas, M. Rendell, S. Margolis, and A.A. Kowarski, Estimation of the secretion rate of insulin from the urinary excretion rate of C-peptide: study in obese and diabetic subjects, Diabetes 31: 449–453 (1982).

    Article  PubMed  CAS  Google Scholar 

  41. C.W. Sheppard, “Basic principles of the tracer method,” John Wiley and Sons, Inc., New York (1962).

    Google Scholar 

  42. J. Radziuk, An integral equation approach to meaning turnover in nonsteady compartmental and distributed systems, Bull. Math. Biol. 38: 679–693 (1976).

    PubMed  CAS  Google Scholar 

  43. S.H. Genuth, Metabolic clearance of insulin in man, Diabetes 21: 1003–10102 (1972).

    PubMed  CAS  Google Scholar 

  44. M.P. Stern, J.W. Farquhar, A. Silvers, and G.M. Reaven, Insulin delivery rate into plasma in normal and diabetic subjects, J. Clin Invest. 47: 1947–1957 (1968).

    Article  PubMed  CAS  Google Scholar 

  45. S.W.D. Shen, G.W. Reaven, J.W. Farquhar, Comparison of impedance to insulin-mediated glucose uptake in normal subjects and in subjects with latent diabetes, J. Clin. Invest. 49: 2151–2160 (1970).

    Article  PubMed  CAS  Google Scholar 

  46. J.L. Izzo, A. Roncone, H.J. Izzo, and W.F. Bale, Relationship between degree of iodination of insulin and its biological, electrophorectic and immunochemical properties, J. Biol. Chem. 239: 3749–3754 (1964).

    PubMed  CAS  Google Scholar 

  47. H.A. Ooms, Y. Arnould, U. Rosa, G.F. Pennisi, J.R.H. Franckson, Clearance metabolique globale de l’insuline cristalline et d’insulines substitutees au radioiode, Path. Biol. 16: 241–245 (1968).

    CAS  Google Scholar 

  48. E.R. Arquilla, H. Ooms, and K. Mercola, Immunological and biological properties of iodoinsulin labelled with one or less atoms of iodine per molecule, J. Clin. Invest. 47: 474–487 (1968).

    Article  PubMed  CAS  Google Scholar 

  49. R.H. Jones, D.I. Doon, M.J. Ellis, Sonksen, and D. Brandenberg, Biological properties of chemically modifed insulin, 1. Biological activity of proinsulin and insulin modified at A1-glycine and B29-lysine. Diabetologia 12: 601–608 (1976).

    Article  PubMed  CAS  Google Scholar 

  50. T. Blundell, G.G. Dodson, D. Hodgkin, and D. Mercola, Insulin: the structure in the crystal and its reflection in chemistry and biology, Adv. Protein Chem. 26: 279–402 (1972).

    Article  CAS  Google Scholar 

  51. R. Geiger, and D. Langner, Insulin-Analoga mit N-terminal verkurzter B-Kette, Selektiner Edmann-Abbau an der B-Kette des Insulins, Hoppe Selyer’s Z, Physiol Chem. 354: 1285–1290 (1973).

    Article  CAS  Google Scholar 

  52. M.J. Ellis, R.H. Jones, J.H. Thomas, R. Geizer, V. Teetz, and P.H. Sonksen, B1–3, 5-diiodotyrosine insulin: a valid tracer for insulin, Diabetologia 13: 257–261 (1977).

    Article  PubMed  CAS  Google Scholar 

  53. J.L. Hamlin, E.R. Arquilla, Monoiodoinsulin, preparation, purification and characterization of a biologically active derivative substituted predominantly on tyrosine A14, J. Biol. Chem. 249: 21–32 (1974).

    PubMed  CAS  Google Scholar 

  54. S. Linde, B. Hansen, O. Sonne, J.J. Holst, and J. Gliemann, Tyrosine A14(1251] monoiodoinsulin. Preparation, biologic properties and long term stability, Diabetes 30: 1–8 (1981).

    Article  PubMed  CAS  Google Scholar 

  55. R. Navalesi, A. Pilo, and E. Ferranini, Kinetic analysis of plasma insulin disappearance in nonketotic diabetic patients and in normal subjects. A tracer study with 125I-insulin, J. Clin. Invest. 61: 197–208 (1978).

    Article  PubMed  CAS  Google Scholar 

  56. P. Halban, R.E. Offord, The preparation of a semisynthetic tritiated insulin with a specific radioactivity of up to 2 Curies per millimole, Biochem. J. 151: 219–225 (1975).

    PubMed  CAS  Google Scholar 

  57. P.A. Halban, C. Karakash, J.G. Davies, and R.E. Offord, The degradation of semisynthetic tritiated insulin by perfused mouse livers, Biochem J. 160: 409–412 (1976).

    PubMed  CAS  Google Scholar 

  58. R. Navalesi, A. Pilo, and E. Ferrannini, Kinetic analysis of plasma insulin disappearance in nonketotic diabetic patients and in normal subjects, J. Clin. Invest. 61: 197–208 (1978).

    Article  PubMed  CAS  Google Scholar 

  59. T. Morishima, C. Bradshaw, and J. Radziuk, Measurement and validation of steady state turnover of insulin using tritiated insulin as tracer in dogs-relationship of insulin clearance to concentration, Am. J. Physiol. (in press).

    Google Scholar 

  60. S. Terris, and D.F. Steiner, Binding and degradation of 1251-insulin by rat hepatocytes, J. Biol. Chem. 250: 83–89 (1975).

    Google Scholar 

  61. J. Gliemann, and V. Sonne, Binding and receptor-mediated degradation of insulin in adipocytes, J. Biol. Chem. 253: 7857 (1978).

    PubMed  CAS  Google Scholar 

  62. M. Berger, P.A. Halban, W.A. Muller, R.E. Offord, A.E. Renold, M. Vranic, Mobilization of subcutaneously injected tritiated insulin in rats: effects of muscular excercise, Diabetologia 15: 133–140 (1978).

    Article  PubMed  CAS  Google Scholar 

  63. W.C. Duckworth, Insulin degradation of liver cell membranes, Endocrinology 140: 1758 (1979).

    Article  Google Scholar 

  64. B.I. Posner, B. Patel, A.K. Verma and J.J.M. Bergeron, Uptake of insulin by plasmalemma and Golgi subcellular fractions of rat liver, J. Biol. Chem. 255: 735 (1980).

    PubMed  CAS  Google Scholar 

  65. C.R. Kahn, and K. Baird, The fate of insulin bound to adipocytes. Evidence for compartmentalization and processing, J. Biol. Chem 253: 4900 (1978).

    PubMed  CAS  Google Scholar 

  66. T.R.I. Misbin, J.G. Davies, R.E. Offord, P.A. Halban, and R.D. Mehl, Binding and degradation of semisynthetic tritiated insulin by IM-9 cultured human lymphocytes, Diabetes 29: 730 (1980).

    Article  PubMed  CAS  Google Scholar 

  67. U. Damgaard, and J. Markussen, Analysis of insulins and related compounds by HPLC, Horm. Metab. Res. 11: 580–581 (1979).

    Article  PubMed  CAS  Google Scholar 

  68. A. Dinner, and L. Lorenz, High perforamance liquid chromatographic determination of bovine insulin, Anal. Chem. 51: 1872–1873 (1979).

    Article  CAS  Google Scholar 

  69. F.B. Stentz, H.L. Harris, A.E. Kitabchi, Early detection of degraded 125I-insulin in human fibroblasts by the use of high performance liquid chromatography, Diabetes 32: 474–477 (1983).

    Article  PubMed  CAS  Google Scholar 

  70. H.P.J. Bennett, C.A. Browne, P.I. Brubaker, and S. Solomon, A comprehensive approach to the isolation and purification of peptide hormones using only reverse-phase liquid chromatography, in: “Biological/Biomedical Applications of Liquid Chromatography III,” G.L. Hawk, ed., Marcel Dekker, Inc., New York and Basel p. 197–209 (1981).

    Google Scholar 

  71. J. Radziuk, T. Morishima, H.P.J. Bennett, P.A. Halban, and R.E. Offord, The presence of partially-degraded insulin in plasma of dogs. A method of measuring the plasma concentrations of tritiated insulin, Metabolism (in press).

    Google Scholar 

  72. J. Radziuk, and G. Hetenyi, Jr., Modelling and the use of tracers in the analysis and exogenous control of glucose homeostasis, in: “Modelling in Metabolism with Clinical Applications,” D. Cramp, ed., J. Wiley and Sons, London, 1981, p.p. 73–142.

    Google Scholar 

  73. K.G. Tranberg, and H. Dencker, Modelling of fractional disappearance of unlabelled insulin in man, Am. J. Physiol. 235: E577–E585 (1978).

    PubMed  CAS  Google Scholar 

  74. P.A. Insel, J.E. Liljenquist, J.D. Tobin, R.S. Sherwin, P. Watkins, R. Andres, and M. Berman, Insulin control of glucose metabolism in man. A new kinetic analysis, J. Clin. Invest. 55: 1057–1066 (1975).

    Article  PubMed  CAS  Google Scholar 

  75. E.A. McGuire, J.D. Tobin, M. Berman, and T.R. Andres, Kinetic of native insulin in diabetic, obese and aged man, Diabetes 28: 110–120 (1979).

    Article  PubMed  CAS  Google Scholar 

  76. M. Berman, R.A. McGuire, J. Roth, and A.H.J. Zeleznik, Kinetic modelling of insulin binding to receptors and degradation in vivo in the rabbit, Diabetes 29: 50–59 (1980).

    PubMed  CAS  Google Scholar 

  77. K.G. Tranberg, Hepatic uptake of insulin in man, Am. J. Physiol. 237: E509–E518 (1979).

    PubMed  CAS  Google Scholar 

  78. C. Cobelli, G. Felderspil, G. Pacini, W.A. Salvan, and C. Scandellari, Modelling and stimulation of the blood glucose regulation system, in: “Stimulation of Systems,” L. Dekker, G. Savastano and G.C. Vansteenkisto, eds., North Holland, Amsterdam, pp. 675–687 (1979).

    Google Scholar 

  79. P.H. Sonksen, K.N. Jones, C.V. Tompkins, M.C. Srivastara, and J.D.N. Nabarro, The metabolism of insulin in vivo. Excerpta Medica. Int. Congress Series #413, 204–213 (1976)

    Google Scholar 

  80. C.S. Cockram, S. Bahrami, M.A. Bordujerdi, R.N. Jones, and D. Brandenburg, Bl-monoiodoninsulin: a comparison with other tracers, Diabetologia 21: 260 (1981).

    Google Scholar 

  81. R. Navalesi, A. Pilo, and E. Ferrannini, Insulin kinetics after portal and peripheral injection of 125I insulin. II experi- ments in the intact dog, Am. J. Physiol. 230: 1630–1636 (1976).

    PubMed  CAS  Google Scholar 

  82. R.S. Sherwin, K.J. Kramer, J.F.D. Tobin, P.A. Insel, J.E. Liljenquist, M. Berman and R. Andres, A model of the kinetics of insulin in man, J. Clin. Invest. 53: 1481–1492 (1974).

    Article  PubMed  CAS  Google Scholar 

  83. S. Fugleberg, K. Kolendorf, B. Thorsteinsson, H. Bliddal, B. Lund, and F. Bojsen, The relationship between plasma concentrations and plasma disappearance rate of immunoreactive insulin in normal subjects, Diabetologia 22: 437–440 (1982).

    Article  PubMed  CAS  Google Scholar 

  84. J.S. Striffler, and D.L. Curry, Kinetics of insulin clearance by the liver in perfused liver-pancreas, Endoc. Res. Comm. 7: 231–239 (1980).

    Article  CAS  Google Scholar 

  85. S.S. Solomon, L.F. Fenster, J.W. Ensinck, and R.H. Williams, Clearance studies of insulin and non-suppressible insulin-like activity in the rat liver, Proc. Soc. Exp. Biol. Med. 126: 116 (1967).

    Google Scholar 

  86. R.I. Misbin, T.J. Merimee, and J.H. Lowenstein, Insulin removal by isolated perfused rat liver, Am. J. Physiol. 230: 171–177 (1976).

    PubMed  CAS  Google Scholar 

  87. T. Morishima, R.E. Offord, and J. Radziuk,x_Time-course of the development of plasma partially-degraded insulin fragments in dog in vivo. Diabetologia (in press).

    Google Scholar 

  88. W.C. Duckworth, K.R. Runyan, R.K. Wright, P.A. Halban, and S.S. Solomon, Insulin degradation by hepatocytes in primary culture, Endocrinology 108: 1142–1147 (1981).

    Article  PubMed  CAS  Google Scholar 

  89. W.C. Duckworth, and A.E. Kitabchi, Insulin metabolism and degradation, Endocrine Reviews 2: 210–233 (1981).

    Article  PubMed  CAS  Google Scholar 

  90. R.I. Misbin, and E.C. Almira, The fate of insulin in rat hepatocytes. Evidence for the release of an immunologically active fragment, Diabetes 33: 355–361 (1984).

    Article  PubMed  CAS  Google Scholar 

  91. R.K. Assoian, H.S. Tager, [(125I) lodotyrosyll] insulin. Semisynthesis, receptor binding, and cell-mediated degradation of a B chain-labelled insulin, J. Biol. Chem. 256: 4042–4049 (1981).

    PubMed  CAS  Google Scholar 

  92. W.C. Duckworth, F. Stentz, M. Heinemann, and A.E. Kitabchi, Initial site of cleavage of insulin by insulin protease, Proc. Natl. Acad. Sci. USA 76: 635 (1979).

    Google Scholar 

  93. P.T. Varandani, and M.A. Nafz, Insulin degradation. XVI. Evidence for the sequential degradative pathway in isolated liver cells, Diabetes 25: 173–179 (1976).

    Article  PubMed  CAS  Google Scholar 

  94. G. Weitzel, K. Eisele, V. Schulz, and W. Stock, Structure and activity of insulin. XII. Further studies on biologically active synthetic fragments of the B chain, Hoppe-Selyer Z., Physiol Chem. 354: 321 (1973).

    Article  CAS  Google Scholar 

  95. K. Kikuchi, J. Larner, R.J. Freer, A.R. Day, H. Morris, and A. Dell, Studies on the biological activity of degraded insulins and insulin fragments, J. Biol. Chem. 255: 9281–9288 (1980).

    PubMed  CAS  Google Scholar 

  96. K. Kikuchi, J. Larner, R.J. Freer, and A.R. Day, Effect of insulin fragments in biological activity of insulin and desoctapeptide insulin. 1. Potentiation of biological activities, J. Biol. Chem. 256: 9445–9449 (1981).

    PubMed  CAS  Google Scholar 

  97. J. Larner, G. Galasko, K. Cheng, A.A. DePaoli-Roach, L. Huang, P. Daggy, and J. Kellogg, Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation, Science 205: 1408 (1979).

    Article  Google Scholar 

  98. J.R. Seals, and L. Jarett, Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle, Science 206: 1407–1408 (1979).

    Article  PubMed  Google Scholar 

  99. R.C. Turner, J.A. Grayburn, G.B. Newman, and J.D.N. Nabarro, Measurement of insulin delivery rate in man, J. Clin. Endocrinol 33: 279–286 (1971).

    Article  CAS  Google Scholar 

  100. T. Morishima, C. Bradshaw, and J. Radziuk, Measurement and validation of the post-hepatic rate of insulin appearance under nonsteady state conditions, Am. J. Physiol. (in press).

    Google Scholar 

  101. D.G. Johnston, K.G. H.H. Alberti, O.K. Faber, C. Binder, and R. Wright, Hyperinsulinism of hepatic cirrhosis diminished degradation or hypersecretion? Lancet 1: 10–12 (1977).

    Article  Google Scholar 

  102. R. Rossell, R. Yomis, Casamitjana, R. Segura, E. Vilardell, and F. Rivers, Reduced hepatic insulin extraction in obesity: relationship with plasma insulin levels, J. Clin. Endocrinol. Metab 56: 608–611 (1983).

    Article  PubMed  CAS  Google Scholar 

  103. H.T. Meistas, S. Margolis, and A.A. Kowarski, Hyperinsulinemia of obesity is due to decreased clearance of insulin, Am. J. Physiol. 245: E155–E159 (1983).

    PubMed  CAS  Google Scholar 

  104. D.P. Frost, M.C. Srivastava, R.H. Jones, J.D.N. Nabarro, and P.H. Sonksen, The kinetic of insulin metabolism in diabetes mellitus, Postgrad. Med. J. 49: 949–954 (1973).

    PubMed  CAS  Google Scholar 

  105. E. Bonora, I. Zavaroni, C. Coscelli, and U. Butturini, Decreased hepatic insulin extraction in subjects with mild glucose intolerence, Metabolism 32: 438–446 (1983).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Radziuk, J., Morishima, T. (1985). New Methods for the Analysis of Insulin Kinetics in Vivo: Insulin Secretion, Degradation, Systemic Dynamics and Hepatic Extraction. In: Vranic, M., Hollenberg, C.H., Steiner, G. (eds) Comparison of Type I and Type II Diabetes. Advances in Experimental Medicine and Biology, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1850-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1850-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1852-2

  • Online ISBN: 978-1-4757-1850-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics