Skip to main content

Introduction to Induced Rhythms: A Widespread, Heterogeneous Class of Oscillations

  • Chapter
Induced Rhythms in the Brain

Part of the book series: Brain Dynamics ((BD))

Abstract

Adrian (1950) introduced the term “induced waves” for oscillations caused by odor stimuli in the olfactory bulb of cats, rabbits, and hedgehogs, distinguishing these events from intrinsic, spontaneous waves. Recent findings on the coherence of oscillations among and between small sets of neurons in the visual cortex, upon stimulation with moving stripes or gratings, have attracted wide notice (see chapters in this volume by Gray et al. and Eckhorn et al.). Particularly intriguing is the coherence between widely separated sets when stimulated by one long bar and its absence when the bar is separated into two, moving in the same direction and orientation out of phase. Our attention having thus been called to the class of responses that includes a rhythm not present in the stimulus, the question arises where else such phenomena have been seen and whether they reflect a common mechanism or a common role in the brain. The aim of this chapter is to survey previous information as background for the rest of the book, which brings together the new information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullaev GB, Gadzhieva NA, Rzaeva NM, Alekperova SA, Kambarli EI, Dimitrenko AI, Gasanova SA (1977): Oscillatory potentials in the structures of visual system. Fiziol Zh SSSR 12: 1653–1661

    Google Scholar 

  • Abraham RH, Shaw CD (1982): Dynamics—The Geometry of Behavior. Santa Cruz: Aerial Press

    Google Scholar 

  • Adrian ED (1942): Olfactory reactions in the brain of the hedgehog. J Physiol 100 : 459–473

    Google Scholar 

  • Adrian ED (1950): The electrical activity of the mammalian olfactory bulb. Electroencephalogr Clin Neurophysiol 2: 377–387

    Google Scholar 

  • Adrian ED, Matthews R (1928): The action of light on the eye. Part III. The interaction of retinal neurones. J Physiol 65:273–298

    Google Scholar 

  • Ahissar E, Vaadia E (1990): Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc Natl Acad Sci USA 87: 8935–8939.

    Google Scholar 

  • Altman JS, Kien J (1989): New models for motor control. Neural Computation 1:173–183

    Google Scholar 

  • Altschuler E, Garfinkel A, Segundo JP, Stiber M, Wang GH (1990): Pacemaker neurons: periodic and aperiodic responses to periodic PSPs. Biophys J 57:193a

    Google Scholar 

  • Arshavsky YuI, Deliagina TG, Meizerov ES, Orlovsky GN, Panchin Yuv (1988a): Control of feeding movements in the freshwater snail Planorbis corneus. I. Rhythmical neurons of buccal ganglia. Exp Brain Res 70: 310–322

    Google Scholar 

  • Arshavsky YuI, Deliagina TG, Orlovsky GN, Panchin Yuv (1988b): Control of feeding movements in the freshwater snail Planorbis corneus. III. Organization of the feeding rhythm generator. Exp Brain Res 70: 332–341

    Google Scholar 

  • Arvanitaki A (1938): Les variations graduées de la polarisation des systèmes excitables. Thesis, Univ. Lyons, Paris: Hermann et cie

    Google Scholar 

  • Arvanitaki A (1939a): Recherche sur la réponse oscillatoire locale de l’axone géant isolé de Sepia. Arch Int Physiol 49: 209–256

    Google Scholar 

  • Arvanitaki A (1939b): Contributions à l’étude analytique de la réponse électrique oscillatoire locale de l’axone isolé de Sepia. C R Soc Biol (Paris) 131:1117–1120

    Google Scholar 

  • Arvanitaki A, Cardot H (1941): Réponses rhytmiques ganglionnaires, graduées en fonction de la polarisation appliquée. Lois des latences et des fréquences. C R Soc Biol (Paris)135: 1211–1216

    Google Scholar 

  • Arvanitaki A, Chalazonitis N (1955): Les potentiels bioélectriques endocytaires du neurone géant d’Aplysia en activité autorhytmique. C R Acad Sci (Paris) 240: 349–351

    Google Scholar 

  • Arvanitaki A, Chalazonitis N (1961): Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells (giant ganglion cells of Aplysia). In: Nervous Inhibition, Florey E, ed. Oxford: Pergamon Press.

    Google Scholar 

  • Arvanitaki A, Fessard A, Kruta V (1936): Mode répétitif de la réponse électrique des nerfs visceraux et étoilés chez Sepia officinalis. C R Soc Biol (Paris) 122: 1203–1204

    Google Scholar 

  • Ayers JL Jr, Selverston AI (1979): Monosynaptic entrainment of an endogenous pacemaker network: a cellular mechanism for von Holst’s magnet effect. J Comp Physiol 129:5–17

    Google Scholar 

  • Barrio LC, Buño W (1990a): Dynamic analysis of sensory-inhibitory interactions in crayfish stretch receptor neurons. J Neurophysiol 63:1508–1519

    Google Scholar 

  • Barrio LC, Buño W (1990b): Temporal correlations in sensory-synaptic interactions: example in crayfish stretch receptors. J Neurophysiol 63: 1520–1527

    Google Scholar 

  • Bartley SH, Bishop GH (1933): The cortical response to stimulation of the optic nerve in the rabbit. Am J Physiol 103: 159–172

    Google Scholar 

  • Başar E (1980): EEG—Brain Dynamics. Amsterdam: Elsevier

    Google Scholar 

  • Başar E (1983a): Toward a physical approach to integrative physiology. I. Brain dynamics and physical causality. Am J Physiol 245: R510—R533

    Google Scholar 

  • Başar E (1983b): EEG and synergetics of neural populations. In: Synergetics of the Brain, Başar E, Flohr H, Haken H, Mandell AJ, eds. Berlin: Springer-Verlag, pp 183–200

    Google Scholar 

  • Başar E (1988): EEG-dynamics and evoked potentials in sensory and cognitive processing by the brain. In: Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin : Springer-Verlag, pp 30–55

    Google Scholar 

  • Başar E, Bullock TH (1989): Brain Dynamics: Progress and Perspectives. Berlin: Springer-Verlag

    Google Scholar 

  • Başar E, Flohr H, Haken H, Mandell AJ (1983): Synergetics of the Brain. Berlin: Springer-Verlag

    Google Scholar 

  • Bernhard CG (1942): Isolation of retinal and optic ganglion response in the eye of Dytiscus. J Neurophysiol 5: 32

    Google Scholar 

  • Bishop GH (1933): Cyclic changes in excitability of the optic pathway of the rabbit. Am J Physiol 103:213–224

    Google Scholar 

  • Bishop GH (1935): Electrical responses accompanying activity of the optic pathway. Arch Ophthamol 14: 992–1019

    Google Scholar 

  • Bishop GH, Clare MH (1952): Relations between specifically evoked and “spontaneous” activity of optic cortex. Electroencephalogr Clin Neurophysiol 4: 321–330

    Google Scholar 

  • Bishop GH, O’Leary J (1936): Components of the electrical response of the optic cortex of the rabbit. Am J Physiol 117: 292–308

    Google Scholar 

  • Bishop GH, O’Leary J (1938): Potential records from the optic cortex of the cat. J Neuro ph ysiol I: 391–404

    Google Scholar 

  • Bishop PO, Jeremy D, McLeod JG (1953): Phenomenon of repetitive firing in lateral geniculate of cat. J Neurophysiol 16:437–447

    Google Scholar 

  • Boeijinga PH, Lopes da Silva FH (1989a): A new method to estimate time delays between EEG signals applied to beta activity of the olfactory cortical areas. Electroencephalogr Clin Neurophysiol 73: 198–205

    Google Scholar 

  • Boeijinga PH, Lopes da Silva FH (1989b): Modulations of EEG activity in the entorhinal cortex and forebrain olfactory areas during odour sampling. Brain Res 478: 257–268

    Google Scholar 

  • Brazier MAB (1960): Long-persisting electrical traces in the brain of man and their possible relationship to higher nervous activity. In: The Moscow Colloquium on Electroencephalography of Higher Nervous Activity, Jasper HH, Smirnov GD, eds. Montreal: The EEG Journal, pp 347–358

    Google Scholar 

  • Bremer F (1941): La synchronisation neuronique. Sa signification physiopathologique et son mécanisme. Schweiz Med Wochenschr 12 : 570

    Google Scholar 

  • Bremer F (1944): L’activité “spontanée” des centres nerveux. Bull Acad R Med Belg 9:148–173

    Google Scholar 

  • Bremer F (1949): Considérations sur l’origine et la nature des “ondes” cérébrales. Electroencephalogr Clin Neurophysiol 1:177–193

    Google Scholar 

  • Bremer F (1953): Some Problems in Neurophysiology. London: London University Press

    Google Scholar 

  • Bremer F (1958): Cerebral and cerebellar potentials. Physiol Rev 38: 357–388

    Google Scholar 

  • Bremer F, Titeca I (1940): L’activité electrique de l’écorce cérébrale. In: T raité de Physiologie normale et pathologique, Tome XII. Paris: Masson

    Google Scholar 

  • Bressler SL (1990): The gamma wave: a cortical information carrier? Trends Neurosci 13:161–162

    Google Scholar 

  • Bullock TH (1945): Problems in the comparative study of brain waves. Yale J Biol Med 17: 657–679

    Google Scholar 

  • Bullock TH (1956): The trigger concept in biology. In: Physiological Triggers and Discontinuous Rate Processes, Bullock TH, ed. London: American Physiological Society, pp 1–8

    Google Scholar 

  • Bullock TH (1961): The origins of patterned nervous discharge. Behaviour17:48–59

    Google Scholar 

  • Bullock TH (1962): Integration and rhythmicity in neural systems. Am Zool 2: 97–104

    Google Scholar 

  • Bullock TH (1965): Mechanisms of integration. In: Structure and Function in the Nervous Systems of Invertebrates, New York: WH Freeman and Co, pp 253–351

    Google Scholar 

  • Bullock TH (1989): The micro-EEG represents varied degrees of cooperativity among wide-band generators: spatial and temporal microstructure of field potentials. In: Brain Dynamics: Progress and Perspectives, Başar E, Bullock TH, eds. Berlin: Springer-Verlag, pp 5–12

    Google Scholar 

  • Bullock TH, Hofmann MH (1991): The neurobiology of expectation: interval-specific event related potentials to omitted stimuli in the electrosensory pathway in elasmobranchs (unpublished data)

    Google Scholar 

  • Bullock TH, McClune MC (1989): Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencephalogr Clin Neurophysiol 73: 479–498

    Google Scholar 

  • Bullock TH, Hofmann MH, Nahm FK, New JG, Prechtl JC (1990a): Event-related potentials in the retina and optic tectum of fish. J Neurophysiol 64: 903–914

    Google Scholar 

  • Bullock TH, Iragui VJ, Alksne JF (1990b): Electrocorticogram coherence and correlation of amplitude modulation between electrodes both decline in millimeters in human as well as in rabbit brains. Soc Neurosci Abstr 16: 1241

    Google Scholar 

  • Bullock TH, Hofmann MH, New JG, Nahm FK (1991): Dynamic properties of visual evoked potentials in the tectum of cartilaginous and bony fishes, with neuroethological implications. J Exp Zool Suppl5:142–155

    Google Scholar 

  • Chang H-t (1950): The repetitive discharges of corticothalamic reverberating circuit. J Neurophysiol 13: 235–257

    Google Scholar 

  • Chatrian GE, Bickford RG, Uihlein A (1960): Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. Electroencephalogr Clin Neurophysiol 12: 167–176

    Google Scholar 

  • Clare MH, Bishop GH (1956): Potential wave mechanisms in cat cortex. Electroencephalogr Clin Neurophysiol 8: 583–602

    Google Scholar 

  • Cole LC (1957): Biological clock in the unicorn. Science 125: 874–876

    Google Scholar 

  • Crescitelli F, Jahn TL (1942): Oscillatory electrical activity from the insect compound eye. J Cell Comp Physiol 19: 47–66

    Google Scholar 

  • Dinse HR, Krüger K, Best J (1991): Temporal aspects of cortical information processing cortical architecture, oscillations and non-separability of spatio-temporal receptive field organization. In: Neuronal Cooperativity-Models and Experiments, Kruger J, ed. Freiburg: Springer-Verlag (in press)

    Google Scholar 

  • Doty RW, Kimura DS (1963): Oscillatory potentials in the visual system of cats and monkeys. J Physiol 168: 205–218

    Google Scholar 

  • Ducati A, Fava E, Motti EDF (1988): Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans. Electroencephalogr Clin Neurophysiol71: 89–99

    Google Scholar 

  • Eckhorn R, Reitboeck HJ (1988): Assessment of cooperative firing in groups of neurons: special concepts for multiunit recordings from the visual system. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin: Springer-Verlag, pp 219–227

    Google Scholar 

  • Eckhorn R, Bauer R, Brosch M, Jordan W, Kruse W, Munk M (1988a): Functionally related modules of cat visual cortex show stimulus-evoked coherent oscillations: a multiple electrode study. Invest Ophthalmol Vis Sci 29: 331

    Google Scholar 

  • Eckhorn R, Bauer R, Brosch M, Jordan W, Kruse W, Munk M, Reitboeck HJ (1988b): Are form- and motion-aspects linked in visual cortex by stimulus-evoked resonances? In: Workshop: Visual Processing of Form and Motion, Vol. P7. Tubingen, West Germany: European Brain and Behavior Society

    Google Scholar 

  • Eckhorn R, Bauer R, Reitboeck HJ (1989a): Discontinuities in visual cortex and possible functional implications: relating cortical structure and function with multielectrode/correlation techniques. In: Brain Dynamics: Progress and Perspectives, Başar E, Bullock TH, eds. Berlin: Springer-Verlag, pp 267–278

    Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989b): Feature linking via stimulus— evoked oscillations: experimental results from cat visual cortex and functional implications from a network model. In: Neural Networks, Abstr. Vol., Conference on Neural Networks, Washington 1989

    Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990): Feature linking via synchroniza- tion among distributed assemblies: simulations of results from cat visual cortex. Neural Computation 2: 293–307

    Google Scholar 

  • Eeckman FH, Freeman WJ (1990): Correlations between unit firing and EEG in the rat olfactory system. Brain Res 528: 238–244

    Google Scholar 

  • Engel AK, König P, Gray CM, Singer W (1990): Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by crosscorrelation analysis. Eur J Neurosci 20: 588–606

    Google Scholar 

  • Engel AK, König P, Kreiter AK, Gray CM, Singer W (1991): Temporal coding by coherent oscillations as a potential solution to the binding problem: physiological evidence. In Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed. Weinheim: VCH Verlagsgesellschaft, pp 3–25

    Google Scholar 

  • Enright JT (1965): The search for rhythmicity in biological time series. J Theor Biol 8 : 426–468

    Google Scholar 

  • Enright JT (1989): The parallactic view, statistical testing, and circular reasoning. J Biol Rhythms 4 : 295–304

    Google Scholar 

  • Erxleben C (1989): Stretch-activated current through single ion channels in the abdominal stretch receptor organ of the crayfish. J Gen Physiol 94: 1071–1083

    Google Scholar 

  • Freeman WJ (1968): Relations between unit activity and evoked potentials in prepyriform cortex of cats. J Neurophysiol 31: 337–348

    Google Scholar 

  • Freeman WJ (1972): Measurement of oscillatory responses to electrical stimulation in olfactory bulb of cat. J Neurophysiol 35: 762–779

    Google Scholar 

  • Freeman WJ (1975): Mass Action in the Nervous System. New York: Academic Press

    Google Scholar 

  • Freeman WJ (1978): Spatial properties of an EEG event in the olfactory bulb1 and cortex. Electroencephalogr Clin Neurophysiol 44: 586–605

    Google Scholar 

  • Freeman WJ (1979a): Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern 33: 237–247

    Google Scholar 

  • Freeman WJ (1979b): Nonlinear dynamics of paleocortex manifested in the olfactory EEG. Biol Cybern 35: 21–37

    Google Scholar 

  • Freeman WJ (1979c): EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biol Cybern 35: 221–234

    Google Scholar 

  • Freeman WJ (1981): A physiological hypothesis of perception. Perspect Biol Med 561–592

    Google Scholar 

  • Freeman WJ (1985): Techniques used in the search for the physiological basis for the EEG. In : Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 3A, Part 2. Gevins A, Remond A, eds. Amsterdam: Elsevier.

    Google Scholar 

  • Freeman WJ (1987): Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56: 139–150

    Google Scholar 

  • Freeman WJ (1988): A watershed in the study of nonlinear neural dynamics. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Heidelberg: Springer-Verlag, pp 378–380

    Google Scholar 

  • Freeman WJ, Schneider W (1982): Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19: 44–56

    Google Scholar 

  • Freeman WJ, Skarda CA (1985): Spatial EEG patterns, non-linear dynamics and perception: the neo- Sherringtonian view. Brain Res Rev 10: 147–175

    Google Scholar 

  • Freeman WJ, van Dijk BW (1987): Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res 422: 267–276

    Google Scholar 

  • Friedlander MJ (1983): The visual prosencephalon of teleosts. In: Fish Neurobiology, Vol. 2: Higher Brain Areas and Functions, Davis RE, Northcutt RG, eds. Ann Arbor: University of Michigan Press, pp 91–115

    Google Scholar 

  • Fröhlich FW (1913): Beiträge zur allgemeinen Physiologie der Sinnesorgane. Z Sinnesph ysiol 48: 28–164

    Google Scholar 

  • Fujimura K, Matsuda Y (1989): Autogenous oscillatory potentials in neurons of the guinea pig substantia nigra pars compacta in vitro. Neurosci Lett 104: 53–57

    Google Scholar 

  • Galambos R, Makeig S (1988): Dynamic changes in steady-state responses. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin: Springer— Verlag, pp 103–122

    Google Scholar 

  • Galambos R, Rose JE, Bromiley RB, Hughes JR (1952): Microelectrode studies on medial geniculate body of cat. II. Response to clicks. J Neurophysiol 15:359–380

    Google Scholar 

  • Gelperin A (1989): Neurons and networks for learning about odors. In: Perspectives in Neural Systems and Behavior, Carew TJ, Kelley D, eds. New York: Alan R. Liss, Inc, pp 121–136

    Google Scholar 

  • Gelperin A, Tank DW (1990): Odor-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc (personal communication)

    Google Scholar 

  • Gerard R (1941): The interaction of neurones. Ohio Acad Sci 41: 160–172

    Google Scholar 

  • Goldbeter A (1988): Periodic signaling as an optimal mode of intercellular communication. Int Union Physiol Sci/Am Physiol Soc 3: 103–105

    Google Scholar 

  • Goldbeter A, Moran F (1988): Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations. Eur Biophys J15:277–287

    Google Scholar 

  • Granit R (1941): Rotation of activity and spontaneous rhythms in the retina. Acta Physiol Scand 1: 370–379

    Google Scholar 

  • Granit R (1963): Sensory Mechanisms of the Retina. New York: Hafner Publishing Co. (reprinted from 1947)

    Google Scholar 

  • Gray CM, Singer W (1987a): Stimulus-dependent neuronal oscillations in the cat visual cortex area 17. Neuroscience 22 (Suppl.): 1301P

    Google Scholar 

  • Gray CM, Singer W (1987b): Stimulus specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc Neurosci Abstr # 404.3

    Google Scholar 

  • Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86: 1698–1702

    Google Scholar 

  • Gray CM, Skinner JE (1988): Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade. Brain Res 69:378–386

    Google Scholar 

  • Gray CM, Freeman WJ, Skinner JE (1986): Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine. Behav Neurosci 100: 585–596

    Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature (Lond) 338: 334–337

    Google Scholar 

  • Gray CM, Engel AK, König P, Singer W (1990a): Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 20: 607–619

    Google Scholar 

  • Gray CM, Engel AK, König P, Singer W (1991): Temporal properties of synchronous oscillatory neuronal interactions in cat striate cortex. In: Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed. Weinheim: VCH Verlagsgesellschaft, pp 27–55

    Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1990b): Synchronization of oscillatory responses in visual cortex: a plausible mechanism for scene segmentation. In: Pro-ceedings of Conference on: Synergetics of the Brain, June 1989. Bavaria: Schloss Elman.

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1962): Periodische Aktivierungsphasen visueller Neurone nach kurzen Lichtreizen verschiedener Dauer. Pflügers Arch 275: 291–311

    Google Scholar 

  • Haberly LB, Bower JM (1989) Olfactory cortex: model circuit for study of associative memory? Trends Neurosci. 12: 258–264

    Google Scholar 

  • Haken H (1977): Synergetics. an Introduction. Heidelberg: Springer-Verlag

    Google Scholar 

  • Hartline DK (1989): Simulation of restricted neural networks with reprogrammable neurons. IEEE Trans Circuits and Systems 36: 653–660

    Google Scholar 

  • Hartline DK, Russell DF, Raper JA, Graubard K (1988): Special cellular and synaptic mechanisms in motor pattern generation. Comp Biochem Physiol 91C:115–131

    Google Scholar 

  • Hodgkin AL (1948): The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107:165–181

    Google Scholar 

  • Horn JP, Dodd J (1983): Inhibitory cholinergic synapses in autonomic ganglia. Trends Neurosci 6: 180–184

    Google Scholar 

  • Hughes JR (1964): Responses from the visual cortex of unanesthetized monkeys. I ñt Rev Neurobiol7: 99–152

    Google Scholar 

  • Jahn TL, Wulff VJ (1942): Allocation of electrical responses from the compound eye of grasshoppers. J Gen Physiol 26: 75–88

    Google Scholar 

  • Jahnsen H, Llinás R (1984a): Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (Lond) 349: 205–226

    Google Scholar 

  • Jahnsen H, Llinás R (1984b): Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones In vitro. J Physiol (Lond) 349: 227–247

    Google Scholar 

  • Jefferys JGR, Haas HL (1982): Synchronized bursting of CA 1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448–450

    Google Scholar 

  • Kepler TB, Marder E, Abbott LF (1990): The effect of electrical coupling on the frequency of model neuronal oscillators. Science 248: 83–85

    Google Scholar 

  • Kergoat H, Lovasik JV (1990): The effects of altered retinal vascular perfusion pressure on the white flash scotopic ERG and oscillatory potentials in man. Electroencephalogr Clin Neurophysiol 75: 306–322

    Google Scholar 

  • Kleinfeld D, Raccuia-Behling FR, Chiel HJ (1990): Circuits constructed from identified Aplysia neurons exhibit multiple patterns of persistent activity. Biophys J 57: 697–715

    Google Scholar 

  • Konishi J (1960): Electric response of visual center in fish, especially to colored light flash. Jpn J Physiol 10:13–27

    Google Scholar 

  • Lansing RW, Barlow JS (1972): Rhythmic after-activity to flashes in relation to the background alpha which precedes and follows the flash stimuli. Electroencephalogr Clin Neurophysiol 32: 149–160

    Google Scholar 

  • Lee LT, Bullock TH (1990): Cerebellar units show several types of long-lasting posttetanic responses to telencephalic stimulation in catfish. Brain Behav Evol 35: 291–301

    Google Scholar 

  • Lee YS, Chay TR (1990): Electrical bursting in excitable cell model: a step toward understanding the neural network mechanisms. Biophys J57:130a

    Google Scholar 

  • Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR (1989): Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res 496: 357–360

    Google Scholar 

  • Leresche N, Jassik-Gerschenfeld D, Haby M, Soltesz I, Crunelli V (1990): Pacemakerlike and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett 113: 72–77

    Google Scholar 

  • Lestienne R, Gary-Bobo E, Przybyslawski J, Saillour P, Imbert M (1990): Temporal correlations in modulated evoked responses in the visual cortical cells of the cat. Biol Cybern 62: 425–440

    Google Scholar 

  • Li Y-X, Goldbeter A (1989): Frequency specificity in intercellular communication. Biophys J 55: 125–145

    Google Scholar 

  • Li Z, Hopfield JJ (1989): Modeling the olfactory bulb and its neural oscillatory processings. Biol Cybern 61: 379–392

    Google Scholar 

  • Llinás R (1988): The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Google Scholar 

  • Llinás R, Yarom Y (1986): Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol (Lond) 376:163–182

    Google Scholar 

  • Lohmann H, Eckhorn R, Reitboeck HJ (1988): Visual receptive fields of local intracortical potentials. J Neurosci Methods 25: 29–44

    Google Scholar 

  • Loomis AL, Harvey EN, Hobart GA III (1938): Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol 1:413–430

    Google Scholar 

  • Lopes da Silva F (1987): Dynamics of EEGs as signals of neuronal populations: models and theoretical considerations. In: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, Niedermeyer E, Lopes da Silva F, eds. Baltimore—Munich: Urban and Schwarzenberg, pp 15–28

    Google Scholar 

  • Madler C, Pöppel E (1987): Auditory evoked potentials indicate the loss of neuronal oscillations during general anaesthesia. Naturwissenschaften 74: S.42

    Google Scholar 

  • Maffei L, Galli-Resta L (1990): Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA 87: 2861–2864

    Google Scholar 

  • Makeig S, Galambos R (1989): The 40-Hz band evoked response lasts 150 msec and increases in size at slow rates. Soc Neurosci Abstr15:113

    Google Scholar 

  • Malsburg C von der (1981): The correlation theory of the brain. Goettingen, Germany: Internal Report, Max-Planck-Institut for Biophysical Chemistry

    Google Scholar 

  • Malsburg C von der (1985): Nervous structure with dynamical links. Ber Bunsen-ges Phys Chem 89: 703 – 710

    Google Scholar 

  • Malsburg C von der, Schneider W (1986): A neural cocktail-party processor. Biol Cybern 54: 29–40

    Google Scholar 

  • Mastronarde DN (1989): Correlated firing of retinal ganglion cells. Trends Neurosci 12: 75–80

    Google Scholar 

  • Miles R, Traub RD, Wong RKS (1988): Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. J Neurophysiol 60: 1481–1496

    Google Scholar 

  • Montaron M-P, Bouyer J-J, Rougeul A, Buser P (1982): Ventral mesencephalic tegmentum (VMT) controls electrocortical beta rhythms and associated attentive behaviour in the cat. Behav Brain Res 6:129–145

    Google Scholar 

  • Moran F, Goldbeter A (1985): Excitability with multiple thresholds. A new mode of dynamic behavior analyzed in a regulated biochemical system. Biophys Chem 23: 71–77

    Google Scholar 

  • Morris C (1990): Mechanosensitive ion channels. J Membr Biol 113:93–107

    Google Scholar 

  • O’Benar JD (1976): Electrophysiology of neural units in goldfish optic tectum. Brain Res Bull 1: 529–541

    Google Scholar 

  • Pöppel E, Logothetis N (1986): Neuronal oscillations in the human brain. Naturwissenschaften 73: 267–268

    Google Scholar 

  • Rapp PE (1987): Why are so many biological systems periodic? Prog Neurobiol 29: 261–273

    Google Scholar 

  • Reeke GN Jr, Finkel LH, Sporns O, Edelman GM (1990): Synthetic neural modeling: a multilevel approach to the analysis of brain complexity. In: Signal and Sense: Local and Global Order in Perceptual Maps, Edelman GM, Gall WE, Cowan WM, eds. New York: Wiley-Liss, pp 607–707

    Google Scholar 

  • Regan D (1968): A high frequency mechanism which underlies visual evoked potentials. Electroencephalogr Clin Neurophysiol 25:231–237

    Google Scholar 

  • Robertson RM, Moulins M (1981): Firing between two spike thresholds: implications for oscillating lobster interneurons. Science 214: 941–943

    Google Scholar 

  • Rotterdam A van, Lopes da Silva FH, van den Endee J, Viergever MA, Hermans AJ (1982): A model of the spatial-temporal characteristics of the Alpha rhythm. Bull Math Biol 44: 283–305

    Google Scholar 

  • Rougeul A, Bouyer JJ, Dedet L, Debray O (1979): Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol 46: 310–319

    Google Scholar 

  • Sainsbury RS (1985): Type 2 theta in the guinea pig and the cat. In: Electrical Activity of the Archicortex, Buzsáki G, Vanderwolf CH, eds. Budapest: Akademiai Kiado, pp 11–22

    Google Scholar 

  • Schreiner CE, Joris PX (1986): Intrinsic oscillations in the primary auditory cortex of cats. Proc XXX Cong Int Union of Physiol Sci, p. 81

    Google Scholar 

  • Seiple W, Holopigian K (1989): An examination of VEP phase. Electroencephalogr Clin Neurophysiol 73: 520–531

    Google Scholar 

  • Selverston AI (1980): Are central pattern generators understandable? Behav Brain Sci 3: 535–571

    Google Scholar 

  • Servít Z, Strejčková A (1976): Influence of nasal respiration upon normal EEG and epileptic electrographic activities in frog and turtle. Electroencephalogr Clin Neurophysiol 25: 109–114

    Google Scholar 

  • Sheer DE (1989): Sensory and cognitive 40-Hz event-related potentials: behavioral correlates, brain function, and clinical application. In: Brain Dynamics: Progress and Perspectives, Başar E, Bullock TH, eds. Berlin: Springer-Verlag, pp 339–374

    Google Scholar 

  • Silva LR, Amitai Y, Connors BW (1991): Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251: 432–435

    Google Scholar 

  • Simpson R, Vaughan HG Jr, Ritter W (1977): The scalp topography of potentials in auditory and visual discrimination tasks. Electroencephalogr Clin Neurophysiol 42: 528–535

    Google Scholar 

  • Sporns O, Gally JA, Reeke GN Jr, Edelman GM (1989): Reentrant signaling among simulated neuronal groups leads to coherence in their oscillatory activity. Proc Natl Acad Sci USA 86: 7265–7269

    Google Scholar 

  • Steinberg RH (1966): Oscillatory activity in the optic tract of cat and light adaptation. J Neuro ph ysiol 29: 139–156

    Google Scholar 

  • Sturr JF, Shansky MS (1971): Cortical and subcortical responses to flicker in cats. Exp Neurol 33: 279–290

    Google Scholar 

  • Tasaki I, Terakawa S (1982): Oscillatory miniature responses in the squid giant axon: origin of rhythmical activities in the nerve membrane. In: Cellular Pacemakers, vol. 1, Carpenter D, ed. New York: John Wiley and Sons, Inc, pp 163–186

    Google Scholar 

  • Traub RD, Wong RKS (1982): Cellular mechanism of neuronal synchronization in epilepsy. Science 216: 745–747

    Google Scholar 

  • Traub RD, Miles R, Wong RKS (1987a): Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events. J Neurophysiol 58 : 739–751

    Google Scholar 

  • Traub RD, Miles R, Wong RKS, Schulman LS, Schneiderman JH (1987b): Models of synchronized hippocampal bursts in the presence of inhibition. II. Ongoing spontaneous population events. J Neurophysiol 58: 752–764

    Google Scholar 

  • Traub RD, Miles R, Wong RKS (1989): Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243: 1319–1325

    Google Scholar 

  • Viana Di Prisco G, Freeman WJ (1985): Odor-related bulbar EEG spatial pattern analysis during appetitive conditioning in rabbits. Behav Neurosci 99: 964–978

    Google Scholar 

  • Wachtmeister L, Dowling JE (1978): The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Visual Sci 17:1176–1188

    Google Scholar 

  • White G, Lovinger DM, Weight FF (1989): Transient low-threshold Ca2 + current triggers burst firing through an afterpolarizing potential in an adult mammalian neuron. Proc Natl Acad Sci USA 86: 6802–6806

    Google Scholar 

  • Whittaker SG, Siegfried JB (1983): Origin of wavelets in the visual evoked potential. Electroencephalogr Clin Neurophysiol 55: 91–101

    Google Scholar 

  • Wilson MA, Bower JM (1989): The stimulation of large- scale neural networks. In: Methods in Neuronal Modeling: From Synapses to Networks, Koch C, Segev I, eds. Cambridge, MA: MIT Press, pp 291–333

    Google Scholar 

  • Wright EB, Adelman WJ (1954): Accommodation in three single motor axons of the crayfish claw. J Cell Comp Physiol 43: 119–132

    Google Scholar 

  • Zakon HH, Meyer JH (1983): Plasticity of electroreceptor tuning in the weakly electric fish, Sternopygus dariensis. J Comp Physiol 153: 477–487

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bullock, T.H. (1992). Introduction to Induced Rhythms: A Widespread, Heterogeneous Class of Oscillations. In: Başar, E., Bullock, T.H. (eds) Induced Rhythms in the Brain. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1281-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1281-0_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1283-4

  • Online ISBN: 978-1-4757-1281-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics