Skip to main content

The Influence of the Rhizosphere on Crop Productivity

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 9))

Abstract

The rhizosphere region is a variable zone containing a proliferation of microorganisms inside and outside the plant root. Many compounds are both taken up and passed out. Under normal growth conditions the rhizosphere exists because of the continuous loss of many forms of plant metabolites, which are rapidly utilized by microorganisms. Consequently, these rhizosphere microorganisms are in a position to affect both subsequent loss of material from the roots and nutrient uptake by the roots. In natural ecosystems an equilibrium develops between the plant and microorganisms that is affected only by the normal growth of plant and seasonal changes in the environment. However, in agriculture, man continually changes the normal equilibrium by manifold means. (e.g., plant monoculture, herbicide, fungicide and pesticide treatments, fertilizer application, and cultivation), all of which modify subsequent plant growth and the associated rhizosphere biota. Because of the importance of agriculture, the majority of work on the rhizosphere and its effects on plant growth has involved research on crop plants and, although this has provided great insight into rhizosphere—plant interactions in these relatively few species, some care should be taken in extrapolating such results to all natural ecosystems. With this proviso, we attempt to show, first, the effect the plant has on development and maintenance of the rhizosphere and, second, the influence the rhizosphere has on plant physiology and consequently crop productivity, highlighting areas of research likely to be rewarding both scientifically and commercially in the future. We do not attempt a complete review of the literature, since there have been reviews on many aspects of rhizosphere biology in recent years (Barber, 1978; Hale, et al. 1978; Newman, 1978; Balandreau and Knowles, 1978; Hale and Moore, 1979; Bowen, 1979, 1980, 1982; Woldendorp, 1981; Foster and Bowen, 1982; Lynch, 1982, 1983; Subba Rao, 1982a; Suslow, 1982), but rather choose specific examples to illustrate our major points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-El-Moity, T. H., and Shatla, M. N., 1981, Biological control of white rot disease of onion (Sclerotium cepivorum) by Trichoderma harzianum, Phytopathol. Z. 100: 29–35.

    Google Scholar 

  • Adams, P. B., Papavizas, G. C., and Lewis, J. A., 1968, Survival of root-infecting fungi in soil. III. The effect of cellulose amendment on chlamydospore germination of Fusarium solani f. sp. phaseoli in soil, Phytopathology 58: 373–377.

    CAS  Google Scholar 

  • Ahmed, A. H. M., and Tribe, H. T., 1977, Biological control of white rot of onion (Sclerotium cepivorum) by Coniothyrium minitans, Plant Pathol. 26: 75–78.

    Google Scholar 

  • Akkermans, A. D. L., 1978, Root nodule symbioses in non-leguminous N2-fixing plants, in: Interactions between Non-Pathogenic Soil Microorganisms and Plants ( Y. R. Dommergues and S. V. Krupa, eds.), pp. 335–372, Elsevier, Amsterdam.

    Google Scholar 

  • Albrecht, S. L., Okon, Y., and Burris, R. M., 1978, Effect of light and temperature on the association between Zea mays and Spirillum lipoferum, Plant PhysioL 60: 528–531.

    Google Scholar 

  • Aldrich, J., and Baker, R., 1970, Biological control of Fusarium roseum f. sp. dianthi by Bacillus subtilis, Plant Disease Reporter 54: 446–448.

    Google Scholar 

  • Al-Hamdani, A. M., Lutchmeah, R. S., and Cooke, R. C., 1983, Biological control of Pythium ultimum-induced damping-off by treating cress seed with the mycoparasite Pythium oligandrum, Plant Pathol. 32: 449–454.

    Google Scholar 

  • Ali, B., 1969, Cytochemical and autoradiographic studies of mycorrhizal roots of Nardus, Arch. Mikrobiol. 68: 236–245.

    CAS  Google Scholar 

  • Allen, H. P., 1981, Direct Drilling and Reduced Cultivations, Farming Press, Ipswich. Allen, M. F., and Boosalis, M. G., 1983, Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat, New Phytol. 93: 67–76.

    Google Scholar 

  • Allen, M. F., Moore, T. S.,and Christensen, M., 1980, Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant, Can. J. Bot. 58: 371–374.

    CAS  Google Scholar 

  • Allen, M. F., Smith, W. K., Moore, T. S., and Christensen, M., 1981, Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis HBK Lag ex Steud, New Phytol. 87: 677–685.

    Google Scholar 

  • Allen, M. F., Moore, T. S., and Christensen, M., 1982, Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellinlike substances and abscisic acid in the host plant, Can. J. Bot. 60: 468–471.

    CAS  Google Scholar 

  • Allen, R. N., and Newhook, F. J., 1973, Chemotaxis of zoospores of Phytopthora cinnamoni to ethanol in capillaries of soil pore dimensions, Trans. Br. Mycol. Soc. 61: 287–302.

    CAS  Google Scholar 

  • Allison, F. E., 1973, Soil Organic Matter and its Role in Crop Production, Elsevier, Amsterdam.

    Google Scholar 

  • Ames, R. N., Reid, C. P. P., Porter, L. K., and Cambardella, C., 1983, Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesiculararbuscular mycorrhizal fungus, New Phytol. 95: 381–396.

    Google Scholar 

  • Anonymous, 1978, Maximizing Yields of Crops, Proceedings of a symposium organized by Agricultural Development and Advisory Service and the Agricultural Research Council, HMSO, London.

    Google Scholar 

  • Atkins, C. A., and Rainbird, R. M., 1982, Physiology and biochemistry of biological nitrogen fixation in legumes, in: Advances in Agricultural Microbiology ( N. S. Subba Rao, ed.), pp. 25–51, Butterworth Scientific, London.

    Google Scholar 

  • Atkinson, D., Bhat, K. K. S., Coutts, M. P., Mason, P. A., and Read, D. J. (eds.), 1983, Tree root systems and their mycorrhizas, Plant Soil 71:1–525.

    Google Scholar 

  • Atkinson, T. G., Neal, J. L., and Larson, R. I., 1974, Root rot reaction in wheat: Resistance not mediated by rhizosphere or laimosphere antagonists, Phytopathology 64: 97–101.

    Google Scholar 

  • Ayers, W. A., and Adams, P. B., 1979, Mycoparasitism of sclerotia of Sclerotinia and Sclerotium species by Sporodesmium sclerotivorum, Can. J. MicrobioL 25: 17–23.

    PubMed  CAS  Google Scholar 

  • Ayers, W. A., and Thornton, R. M., 1968, Exudation of amino acids by intact and damaged roots of wheat and peas, Plant Soil 28: 193–207.

    CAS  Google Scholar 

  • Azcon, R., Azcon-G de Aguilar, C., and Barea, J. M., 1978, Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhizas, New Phytol. 80: 359–364.

    CAS  Google Scholar 

  • Azcon-Aguilar, C., and Barea, J. M., 1981, Field inoculation of Medicago with VA mycorrhizae and Rhizobium in phosphate-fixing agricultural soil, Soil Biol. Biochem. 13: 19–22.

    CAS  Google Scholar 

  • Backman, P. A., and Rodriguez-Kabana, R. A., 1975, A system for the growth and delivery of biological control agents to the soil, Phytopathology 65: 819–821.

    Google Scholar 

  • Baker, K. F., and Cook, R. J., 1974, Biological Control of Plant Pathogens, Freeman, San Fransisco.

    Google Scholar 

  • Balandreau, J., 1975, Mesure de l’activité nitrogénasique des microorganismes fixateurs libres d’azote de la rhizosphere de quelques graminées, Rev. Ecol. Biol. Sol 12: 273–290.

    CAS  Google Scholar 

  • Balandreau, J., and Knowles, R., 1978, The rhizosphere, in: Interactions between Non-Pathogenic Soil Microorganisms and Plants (Y. R. Dommergues and S. V. Krupa, eds.), pp. 243–268, Elsevier, Amsterdam.

    Google Scholar 

  • Balasubramanian, A, and Rangaswami, G., 1969, Studies on the influence of foliar nutrient sprays on the root exudation pattern in four crop plants, Plant Soil 30: 210–220.

    CAS  Google Scholar 

  • Balasubramanian, A., and Rangaswami, G., 1973, Influence of foliar application of chemicals on the root exudation and rhizosphere microflora of Sorghum vulgare and Crotalaria juncea, Folia Microbiol. 18: 492–498.

    CAS  Google Scholar 

  • Balis, C., 1970, A comparative study of Phialophara radicicola, an avirulent fungal root parasite of grasses and cereals, Ann. AppL Biol. 66: 59–73.

    CAS  Google Scholar 

  • Barber, D. A., 1971, The influence of microorgansims on the assimilation of nitrogen by plants from soil and fertilizer sources, in: Nitrogen-15 in Soil-Plant Studies, pp. 91–101, International Atomic Energy Authority, Vienna.

    Google Scholar 

  • Barber, D. A., 1978, Nutrient uptake, in: Interactions between Non-Pathogenic Soil Microorganisms and Plants (Y. R. Dommergues and S. V. Krupa, eds.), pp. 131–162, Elsevier, Amsterdam.

    Google Scholar 

  • Barber, D. A., and Gunn, K. B., 1974, The effect of mechanical forces on the exudation of organic substances by roots of cereal plants grown under sterile conditions, New Phytol. 73: 39–45.

    CAS  Google Scholar 

  • Barber, D. A., and Lee, R. B., 1974a, The effect of microorganisms on the absorption of manganese by plants, New Phytol. 73: 97–106.

    CAS  Google Scholar 

  • Barber, D. A., and Lee, R. B., 1974b, Effects of microbial products on the absorption of manganese by barley, Agric. Res. Council Letcombe Lab. Annu. Rep. 1973, 1974: 31–33.

    Google Scholar 

  • Barber, D. A., and Lynch, J. M., 1977, Microbial growth in the rhizosphere, Soil Biol. Biochem. 9: 305–308.

    CAS  Google Scholar 

  • Barber, D. A., and Martin, J. K., 1976, The release of organic substances by cereal roots into soil, New Phytol. 76: 69–80.

    CAS  Google Scholar 

  • Barber, D. A., Bowen, G. D., and Rovira, A. D., 1976, Effects of microorganisms on absorption and distribution of phosphate in barley, Aust. J. Plant Physiol. 3: 801–808.

    CAS  Google Scholar 

  • Barber, L. E., Russell, S. A., and Evans, H. J., 1979, Inoculation of millet with Azospirillum, Plant Soil 52: 49–57.

    CAS  Google Scholar 

  • Barea, J. M., and Brown, M. E., 1974, Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances, J Appl. Bacteriol. 40: 583–593.

    Google Scholar 

  • Barea, J. M., Bonis, A. F., and Olivares, J., 1983, Interactions between Azospirillum and VA mycorrhiza and their effects on growth and nutrition of maize and ryegrass, Soil Biol. Biochem. 15: 705–709.

    Google Scholar 

  • Bartschi, H., Gianinazzi-Pearson, V., and Vegh, I., 1981, Vesicular-arbuscular mycorrhiza formation and root rot disease (Phytophthora cinnamome) development in Chamaecyparis lawsoniana, Phytopathol. Z. 102: 213–218.

    Google Scholar 

  • Bauer, W. D., 1981, Infection of legumes by rhizobia, Annu. Rev. Plant Physiol. 32:407–449. Beck, S. M., and Gilmour, C. M., 1983, Role of wheat root exudates in associative nitrogen fixation, Soil Biol. Biochem. 15: 33–38.

    Google Scholar 

  • Becking, J. H., 1982, Nitrogen fixation in nodulated plants other than legumes, in: Advances in Agricultural Microbiology ( N. S. Subba Rao, ed.), pp. 89–110, Butterworth Scientific, London.

    Google Scholar 

  • Benians, G. J., and Barber, D. A., 1974, The uptake of phosphate by barley plants from soil under aseptic and non-sterile conditions, Soil Biol. Biochem. 6: 195–200.

    Google Scholar 

  • Bergersen, F. J., 1978, Physiology of legume symbiosis, in: Interactions between Non-Pathogenic Soil Microorganisms and Plants ( Y. R. Dommergues and S. V. Krupa, eds.), pp. 305–333, Elsevier, Oxford.

    Google Scholar 

  • Beringer, J. E., 1982, Microbial genetics and biological nitrogen fixation, in: Advances in Agricultural Microbiology ( N. S. Subba Rao, ed.), pp. 3–23, Butterworth Scientific, London.

    Google Scholar 

  • Beute, M. K., and Lockwood, J. L., 1968, Mechanism of increased root rot in virus-infected peas, Phytopathology 58: 1643–1651.

    CAS  Google Scholar 

  • Bevege, D. I., Bowen, G. D., and Skinner, M. F., 1975, Comparative carbohydrate physiology of ecto-and endomycorrhizas, in: Endomycorrhizas ( F. E. Sanders, B. Mosse, and P. B. Tinker, eds.), pp. 149–174, Academic Press, London.

    Google Scholar 

  • Bhat, J. V., Limaye, K. S., and Vasantharajan, V. N., 1971, The effect of the leaf surface microflora on the growth and root exudation of plants, in: Ecology of Leaf Surface Microorganisms ( T. F. Preece and C. H. Dickinson, eds.), pp. 581–595, Academic Press, London.

    Google Scholar 

  • Bhattacharya, P. K., and Williams, P. H., 1971, Microfluorometic quantitation of nuclear proteins and nucleic acids in cabbage root hair cells infected by Plasmodiophora brassicae, Physiol. Plant Pathol. 1: 167–175.

    CAS  Google Scholar 

  • Boero, G., and Thien, S., 1979, Phosphatase activity and phosphorus availability in the rhizosphere of corn roots, in: The Soil-Root Interface ( J. L. Harley and R. S. Russell, eds.), pp. 231–242, Academic Press, London.

    Google Scholar 

  • Bonish, P. M., 1973, Cellulase and red clover exudates, Plant Soil 38: 307–314.

    CAS  Google Scholar 

  • Bowen, G. D. 1969, Nutrient status effects on loss of amides and amino acids from pine roots, Nature (London) 211: 665–666.

    Google Scholar 

  • Bowen, G. D., 1973, Mineral nutrition of ectomycorrhizae, in: Ectomycorrhizae ( G. C. Marks and T. T. Kozlowski, eds.), pp. 151–203, Academic Press, London.

    Google Scholar 

  • Bowen, G. D., 1979, Integrated and experimental approaches to the study of growth of organisms around roots, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 209–227, Academic Press, London.

    Google Scholar 

  • Bowen, G. D., 1980, Misconceptions, concepts and approaches in rhizosphere biology, in: Contemporary Microbial Ecology ( D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. M. Slater, eds.), pp. 283–304, Academic Press, London.

    Google Scholar 

  • Bowen, G. D., 1982, The root-micoorganism ecosystem, in: Biological and Chemical Interactions in the Rhizosphere, Proceedings of a Symposium of Swedish Natural Science Research Council 1981, pp. 3–42, Sudt Offset, Stockholm.

    Google Scholar 

  • Bowen, G. D., and Foster, R. C., 1978, Dynamics of microbial colonization of plant roots, in Proceedings Symposium on Soil Microbiology and Plant Nutrition ( W. J. Broughton and C. K. John, eds.), pp. 231–256, University Press, Malaysia.

    Google Scholar 

  • Bowen, G. D., and Rovira, A. D., 1961, The effects of micro-organisms on plant growth. 1. Development of roots and root hairs in sand and agar, Plant Soil 15: 166–188.

    Google Scholar 

  • Bowen, G. D., and Smith, S. E., 1981, The effects of mycorrhizas on nitrogen uptake by plants, in: Terrestrial Nitrogen Cycles: Processes, Ecosystem Strategies and Management Impacts (F. E. Clark and T. Rosswall, eds.), Bulletin No. 33, pp. 237–247, Swedish Natural Science Research Council, Stockholm.

    Google Scholar 

  • Brathwaite, C. W. D., and Cunningham, H. G. A., 1982, Inhibition of Sclerotium rolfsii by Pseudomonas aeruginosa, Can. J. Bot. 60: 237–239.

    Google Scholar 

  • Broadbent, P., Baker, K. F., and Waterworth, Y., 1971, Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils, Aust. J. Biol. Sci. 24: 925–944.

    PubMed  CAS  Google Scholar 

  • Brown, M. E., 1972, Plant growth substances produced by micro-organisms of soil rhizosphere, J. Appl. Bacteriol. 35: 443–451.

    CAS  Google Scholar 

  • Brown, M. E., 1974, Seed and root bacterization, Annu. Rev. Phytopathol. 12: 181–197.

    CAS  Google Scholar 

  • Brown, M. E., 1975, Rhizosphere microorganisms-Opportunists, bandits or benefactors, in: Soil Microbiology ( N. Walker, ed.), pp. 21–38, Butterworth Scientific, London.

    Google Scholar 

  • Brown, M. E., 1976, Role of Azotobacter paspali in association with Paspalum notatum, J. Appl. Bacteriol. 40: 341–348.

    Google Scholar 

  • Brown, M. E., Jackson, R. M., and Burlingham, S. K., 1968, Effects produced on tomato plants, Lycopersicum esculentum, by seed or root treatment with gibberellic acid and indol-3-yl-acetic acid, J. Exp. Bot. 19: 544–552.

    CAS  Google Scholar 

  • Bruehl, G. W. (ed.), 1975, Biology and Control of Soil-Borne Plant Pathogens, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Bulen, W. A., and Le Compte, J. R., 1966, The nitrogenase system from Azotobacter: Two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution and ATP hydrolysis. Proc. Natl. Acad. Sci. USA 56: 979–986.

    PubMed  CAS  Google Scholar 

  • Burford, J. R., Dowdell, R. J., Crees, R., and Hall, K C., 1979, Soil aeration and denitrification, Agric. Res. Council Letcombe Lab. Annu. Rep. 1978, 1979: 26.

    Google Scholar 

  • Burns, R. G., 1981, Microbial adhesion to soil surfaces; Consequences for growth and enzyme activities, in: Microbial Adhesion to Surfaces ( R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 249–262, Ellis Horwood, Chichester.

    Google Scholar 

  • Bums, R. H., Albrecht, S. L., and Okon, Y., 1978a, Physiology and biochemistry of Spirillum lipoferum, in: Proceedings of the International Symposium on the Limitations and Potentials of Biological Nitrogen Fixation in the Tropics, Brazil ( J. Dobereiner, R. H. Burris, and A. Hollaender, eds.), pp. 303–315, Plenum Press, New York.

    Google Scholar 

  • Burris, R. H., Okon, Y., and Albrecht, S. L., 1978b, Properties and reactions of Spirillum lipoferum, Ecol. Bull. 26: 353–363.

    Google Scholar 

  • Butcher, D. N., El-Tigani, S., and Ingram, D. S., 1974, The role of indole glucosinolates in the clubroot disease of the cruciferae, Physiol. Plant Pathol. 4: 127–140.

    CAS  Google Scholar 

  • Buwalda, J. G., and Goh, K. M., 1982, Host-fungus competition for carbon as a cause of growth depression in vesicular-arbuscular mycorrhizal ryegrass, Soil Biol. Biochem. 14: 103–106.

    CAS  Google Scholar 

  • Buwalda, J. G., Ross, G. J. S., Stribley, D. P., and Tinker, P. B., 1982, The development of endomycorrhizal root systems III. The mathematical representation of the spread of vesicular-arbuscular mycorrhizal infection in root systems, New Phytol. 91: 669–682.

    Google Scholar 

  • Buwalda, J. G., Stribley, D. P., and Tinker, P. B., 1983, Increased uptake of anions by plants with vesicular-arbuscular mycorrhizas, Plant Soil 71: 463–467.

    CAS  Google Scholar 

  • Calonge, F. O., Fielding, S. M., Byrde, R. J. W., and Akinrefon, O. A., 1969, Changes in ultrastructure following fungal invasion and the possible relevance of extracellular enzymes, J. Exp. Bot. 20: 350–357.

    CAS  Google Scholar 

  • Campbell, R., and Ephgrave, J. M., 1983, Effect of bentonite clay on the growth of Gaeumannomyces graminis var. tritici and on its interactions with antagonistic bacteria, J. Gen. Microbiol. 129: 771–778.

    CAS  Google Scholar 

  • Campbell, R., and Faull, J. L., 1979, Biological control of Gaeumannomyces graminis: Field trials and the ultrastructure of the interaction between the fungus and a successful antagonistic bacterium, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 603–609, Academic Press, London.

    Google Scholar 

  • Castanho, B., and Butler, E. E., 1978, Rhizoctonia decline: Studies on hypovirulence and potential use in biological control, Phytopathology 68: 1511–1514.

    Google Scholar 

  • Chakraborty, S., 1983, Population dynamics of amoebae in soils suppressive and non-suppressive to wheat take-all, Soil Biol. Biochem. 15: 661–664.

    Google Scholar 

  • Chakroborty, S., Old, K. M., and Warcup, J. H., 1983, Amoebae from take-all suppressive soil which feeds on Gaeumannomyces graminis tritici and other soil fungi, Soil Biol. Biochem. 15: 17–24.

    Google Scholar 

  • Chambers, C. A., Smith, S. E., and Smith, F. A., 1980, Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum, New Phytol 85: 47–62.

    CAS  Google Scholar 

  • Charudattan, R., 1978, Biological Control Projects in Plant Pathology—A Directory, Institute of Food and Agricultural Sciences, University of Florida, Tampa.

    Google Scholar 

  • Cheshire, M. V., 1979, Nature and Origin of Carbohydrates in Soils, Academic Press, London.

    Google Scholar 

  • Chet, I., Hadar, Y., Elad, Y., Katan J., and Henis, Y., 1979, Biological control of soil-borne plant pathogens by Trichoderma harzianum, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 585–591, Academic Press, London.

    Google Scholar 

  • Cho, D. Y., and Ponnamperuma, F. N., 1971, Influence of soil temperature on the chemical kinetics of flooded soils and the growth of rice, Soil Sci. 112: 184–194.

    CAS  Google Scholar 

  • Clarholm, M., 1983, Dynamics of Soil Bacteria in Relation to Plants, Protozoa and Inorganic Nitrogen, Report no. 17, Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Clark, A. L., Greenland, D. J., and Quirk, J. P., 1967, Changes in some physical properties of the surface of an impoverished red-brown earth under pasture, Aust. J. Soil Res. 5: 59–68.

    Google Scholar 

  • Cline, G. R., Powell, P. E., Szaniszlo, P. J., and Reid, C. P. P., 1982, Comparison of the abilities of hydroxamic, synthetic, and other natural organic acids to chelate iron and other ions in nutrient solution, Soil Sci. Soc. Am. J. 46: 1158–1164.

    CAS  Google Scholar 

  • Clowes, F. A. L., 1971, The proportion of cells that divide in root meristems of Zea mays L., Ann. Bot. 35: 249–261.

    Google Scholar 

  • Cook, R. J., and Baker, K. F., 1983, The Nature and Practice of Biological Control of Plant Pathogens, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Cook. R. J., and Rovira, A. D., 1976, The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils, Soil Biol. Biochem. 8: 269–273.

    Google Scholar 

  • Cooke, G. W., and Williams, R. J. B., 1972, Problems with cultivation and soil structure at Saxmundham, in: Rothamsted Report 1971, Part 2, pp. 122–142, Lawes Agricultural Trust, Harpenden, U.K.

    Google Scholar 

  • Cooke, R. C., 1977, The Biology of Symbiotic Fungi, Wiley, London.

    Google Scholar 

  • Cooke, R. C., and Whipps, J. M., 1980, The evolution of modes of nutrition in fungi parasitic on terrestrial plants, Biol. Rev. 55: 341–362.

    Google Scholar 

  • Cooper, K. M., and Tinker, P. B., 1978, Translocation and transfer of nutrients in vesiculararbuscular mycorrhizas II Uptake and translocation of phosphorus, zinc and sulphur, New Phytol. 81: 43–52.

    CAS  Google Scholar 

  • Coplin, D. L., 1982, Plasmids in plant pathogenic bacteria, in: Phytopathogenic Prokaryotes, Vol. 2 ( M. S. Mount and G. H. Lacy, eds.), pp. 255–280, Academic Press, New York.

    Google Scholar 

  • Coupland, D., and Caseley, J. C., 1979, Presence of 14C activity in root exudates and guttation fluid from Agropyron repens treated with 14C-labelled glyphosate, New Phytol. 83: 17–22.

    CAS  Google Scholar 

  • Cox, G., Moran, K. J., Sanders, F., Nockolds, C., and Tinker, P. B., 1980, Translocation and transfer of nutrient in vesicular-arbuscular mycorrhizas III, Polyphosphate granules and phosphorus translocation, New Phytol. 84: 645–659.

    Google Scholar 

  • Crafts, C. B., and Miller, C. D., 1974, Detection and identification of cytokinins produced by mycorrhizal fungi, Plant Physiol. 54: 586–588.

    PubMed  CAS  Google Scholar 

  • Curl, E. A., 1982, The rhizosphere: Relation to pathogen behavior and root disease, Plant Dis. 66: 624–630.

    Google Scholar 

  • Darbyshire, J. F., and Greaves, M. P., 1973, Bacteria and protozoa in the rhizosphere, Pes-tic. Sci. 4: 349–360.

    Google Scholar 

  • D’Arcy, A. L., 1982, Etude des exsudats racinaires de Soja et de Lentille 1. Cinetique d’exsudation des composés phénoliques, des amino acides et des sucres, au cours des premiers jours de la vie des plantules, Plant Soil 68: 399–403.

    Google Scholar 

  • Davies, D. B., Eagle, D. J., and Finney, J. B., 1972, Soil Management, Farming Press, Ipswich.

    Google Scholar 

  • Dazzo, F. B., 1980, Microbial adhesion to plant surfaces, in: Microbial Adhesion to Surfaces ( J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 311–328, Ellis Norwood, Chichester.

    Google Scholar 

  • Deacon, J. W., 1973, Phialophora radicicola and Gaeumannomyces graminis on roots of grasses and cereals, Trans. Br. Mycol. Soc. 61: 471–485.

    Google Scholar 

  • Deacon, J. W., 1976, Biological control of the take-all fungus Gaeumannomyces graminis by Phialophora radicicola and similar fungi, Soil BioL Biochem. 8: 275–283.

    Google Scholar 

  • Deacon, J. W., 1981, Ecological relationships with other fungi—Competitors and hyperparasites, in: Biology and Control of Take-all ( M. J. C. Asher and P. J. Shipton, eds.), pp. 75–101, Academic Press, London.

    Google Scholar 

  • Deacon, J. W., 1983, Microbial and Plant Pests and Diseases, Van Nostrand Reinhold, Workingham, U.K.

    Google Scholar 

  • Dehne, M. W., 1982, Interaction betwen vesicular-arbuscular mycorrhizal fungi and plant pathogens, Phytopathology 72: 1115–1119.

    Google Scholar 

  • Dekhuijzen, H. M., and Overeem, J. C., 1971, The role of cytokinins in clubroot formation, Physiol. Plant PathoL 1: 151–161.

    CAS  Google Scholar 

  • Dobereiner, J., 1974, Nitrogen-fixing bacteria in the rhizosphere, in: The Biology of Nitrogen Fixation ( A. Quispel, ed.), pp. 26–120, North-Holland, Amsterdam

    Google Scholar 

  • Dobereiner, J., and Day, J. M., 1976, Associative symbioses in tropical grasses: Characterization of micro-organisms and dinitrogen-fixing sites, in Proceedings 1st International Symposium on Nitrogen Fixation ( W. E. Newton and C. J. Nyman, eds.), pp. 518–538, Washington State University Press, Pullman, Washington.

    Google Scholar 

  • Dobereiner, J., Burris, R. H., Hollaender, A., Franco, A. A., Neyra, C. A., and Scott, D. B. (eds.), 1978, Proceedings of the International Symposium on the Limitations and Potentials of Biological Nitrogen Fixation in the Tropics, Brazil, Plenum Press, New York.

    Google Scholar 

  • Dommergues, Y., Combremont, R., Beck, G., and Ollat, C., 1969, Note préliminaire concernant la sulfato-réduction rhizospherique dans un sol salin tunisien, Rev. Ecol. Biol. Sol 6: 115–129.

    Google Scholar 

  • Drew, M. C., and Lynch, J. M., 1980, Soil anaerobiosis, microorganisms, and root function, Annu. Rev. Phytopathol. 18: 37–66.

    CAS  Google Scholar 

  • Drury, R. E., Baker, R., and Griffin, G. J., 1983, Calculating the dimensions of the rhizosphere, Phytopathology 73: 1351–1354.

    Google Scholar 

  • Duddridge, J., Malibari, A., and Read, D. J., 1980, Structure and function of mycelial rhizomorphs with special reference to their role in water transport, Nature 287: 834–836.

    Google Scholar 

  • Duff, R. B., Webley, D. M., and Scott, R. O., 1963, Solubilization of minerals and related materials by 2-ketogluconic acid-producing bacteria, Soil Sci. 95: 105–114.

    CAS  Google Scholar 

  • Dutta, B. K., 1981, Studies on some fungi isolated from the rhizosphere of tomato plants and the consequent prospect for the control of Verticillium wilt, Plant Soil 63: 209–216.

    Google Scholar 

  • Elliott, L. F., and Lynch, J. M., 1984, Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L.), Soil Biol. Biochem. 16: 69–71.

    Google Scholar 

  • Elliott, L. F., and Lynch, J. M., 1985, Plant growth-inhibitory pseudomonads colonizing winter wheat (Triticum aestivum L.) roots, Plant Soil 84: 57–65.

    Google Scholar 

  • Ferriss, R. S., 1981, Calculating rhizosphere volume, Phytopathology 71: 1229–1231.

    Google Scholar 

  • Ferriss, R. S., 1983, Calculating the dimensions of the rhizosphere—A response, Phytopathology 73: 1355–1357.

    Google Scholar 

  • Fletcher, M. F., Latham, M. J., Lynch, J. M., and Rutter, P. R., 1980, Characteristics of interfaces and their role in microbial attachment, in: Microbial Adhesion to Surfaces ( R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 6778, Ellis Harwood, Chichester.

    Google Scholar 

  • Fogel, R., 1983, Root turnover and productivity of coniferous forests, Plant Soil 71: 75–85.

    Google Scholar 

  • Fogel, R., and Hunt, G., 1979, Fungal and arboreal biomass in a western Oregon Douglas fir ecosystem: Distribution patterns and turnover, Can. J. For. Res. 9: 245–256.

    Google Scholar 

  • Ford, H. W., 1965, By-products from bacteria are toxic to citrus roots under flooded conditions, Florida Field Rep. 4: 8–12.

    Google Scholar 

  • Foster, R. C., 1981, The ultrastructure and histochemistry of the rhizosphere, New Phytol. 89: 263–273.

    Google Scholar 

  • Foster, R. C., 1982, The fine structure of epidermal cell mucilages of roots, New Phytol. 91: 727–740.

    Google Scholar 

  • Foster, R. C., and Bowen, G. D., 1982, Plant surfaces and bacterial growth: The rhizosphere and rhizoplane, in: Phytopathogenic Prokaryotes, Vol. 1 ( M. S. Mount and G. H. Lacy, eds.), pp. 159–185, Academic Press, New York.

    Google Scholar 

  • Foster, R. C., Rovira, A. D., and Cock, T. W., 1983, Ultrastructure of the Root-Soil Interface, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Foy, C. L., Hurt, W., and Hale, M. G., 1971, Root exudation of plant growth regulators, in: Biochemical Interactions among Plants, pp. 75–85, National Academy of Science, Washington D.C.

    Google Scholar 

  • France, R. C., and Reid, C. P. P., 1983, Interactions of nitrogen and carbon in the physiology of ectomycorrhizae, Can. J. Bot. 61: 964–984.

    CAS  Google Scholar 

  • Fric, F., 1975, Translocation of 14C-labelled assimilates in barley plants infected with powdery mildew (Erysiphe graminis f. sp. hordei Marchal), Phytopathol. Z. 84: 88–95.

    CAS  Google Scholar 

  • Garcia, L. R., and Hanway, J. J., 1976, Foliar fertilization of sybeans during the seed-filling period, Agron. J. 68: 653–657.

    Google Scholar 

  • Garrett, S. D., 1970, Pathogenic Root-Infecting Fungi, Cambridge University Press, Cambridge.

    Google Scholar 

  • Garrett, S. D., 1979, The soil-root interface in relation to disease, in: The Soil-Root Interface ( J. L. Harley and R. S. Russell, eds.), pp. 301–313, Academic Press, London.

    Google Scholar 

  • Gaworzewska, E. T., and Carlile, M. J., 1982, Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates of legumes and other plants, J. Gen. Microbiol. 128: 1179–1188.

    CAS  Google Scholar 

  • Gerdemann, J. W., 1964, The effect of mycorrhizas on the growth of maize Mycologia 56: 342–349.

    Google Scholar 

  • Gerdemann, J. W., 1968, Vesicular-arbuscular mycorrhiza and plant growth, Annu. Rev. Phytopathol. 6: 397–418.

    Google Scholar 

  • Gerretsen, F. C., 1948, The influence of microorganisms on the phosphate intake by the plant, Plant Soil 1: 51–85.

    CAS  Google Scholar 

  • Gibson, A. H., and Jordon, D. C., 1983, Ecophysiology of nitrogen-fixing systems, in: Encyclopedia of Plant Physiology, Vol. 12C. Physiological Plant Ecology III. Responses to the Chemical and Biological Environment ( O. L. Lange, P. S. Nobel, C. B. Osmund, and M. Ziegler, eds.), pp. 301–390, Springer-Verlag, Berlin.

    Google Scholar 

  • Gildon, A., and Tinker, P. B., 1983a, Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas, New Phytol. 95: 247–261.

    CAS  Google Scholar 

  • Gildon, A., and Tinker, P. B., 1983b, Interactions of vesicular-arbuscular mycorrhizal infections and heavy metals in plants. II. The effects of infection on uptake of copper, New Phytol. 95: 262–268.

    Google Scholar 

  • Gilligan, C. A., 1979, Modelling rhizosphere infection, Phytopathology 69: 782–784.

    Google Scholar 

  • Gilligan, C. A., 1983, Modelling of soil-borne pathogens, Annu. Rev. Phytopathol. 21: 45–64.

    Google Scholar 

  • Gilmour, J. T., Gilmour, C. M., and Johnston, T. H., 1978, Nitrogenase activity in rice plant root systems, Soil Biol. Biochem. 10: 261–264.

    CAS  Google Scholar 

  • Gindrat, D., 1979a, Biocontrol of plant disease by inoculation of fresh wounds, seeds and soil with antagonists, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 537–551, Academic Press, London.

    Google Scholar 

  • Gindrat, D., 1979b, Biological soil disinfestation, in: Soil Disinfestation ( D. Mulder, ed.), pp. 253–287, Elsevier, Amsterdam.

    Google Scholar 

  • Giuma, A Y, Hackett, A. M., and Cooke, R. C., 1973, Thermostable nematotoxins produced by germinating conidia of some endozoic fungi, Trans. Br. Mycol. Soc. 60: 49–56.

    Google Scholar 

  • Goss, M. J., and Reid, J. B., 1979, Influence of perennial ryegrass roots on aggregate stability, Agric. Res. Council Letcombe Lab. Annu. Rep. 1978, 1979: 24–25.

    Google Scholar 

  • Graham, J. H., and Menge, J. A., 1982, Influence of vesicular-arbuscular mycorrhizae and soil phosphate on take-all disease of wheat, Phytopathology 72: 95–98.

    Google Scholar 

  • Graham, J. H., Leonard, R. T., and Menge, J. A., 1981, Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation, Plant Physiol. 68: 548–552.

    PubMed  CAS  Google Scholar 

  • Graham, P. H., and Halliday, J., 1977, Inoculation and nitrogen fixation in the genus Phaseolus, in: Exploiting the Legume—Rhizobium Symbiosis in Tropical Agriculture (J. M. Vincent, A. S. Whitney and J. Bose, eds.), Misc. Publ. College Tropical Agric. Univ. Hawaii 145: 313–334.

    Google Scholar 

  • Gray, L. E., and Gerdemann, J. W., 1969, Uptake of phosphorus-32 by vesicular-arbuscular mycorrhizae, Plant Soil 30: 415–422.

    Google Scholar 

  • Grente, J., and Sauret S., 1969, L’hypovirulence exclusive phénomène original en pathologie végétale, C. R. Acad. Sci. Paris 268: 2347–2350.

    Google Scholar 

  • Griffin, G. J., and Roth, D. A., 1979, Nutritional aspects of soil mycostasis, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 79–96, Academic Press, London.

    Google Scholar 

  • Grimes, H. D.,and Mount, M. S., 1984, Infuence of Pseudomonas putida on nodulation of Phaseolus vulgaris, Soil Biol. Biochem. 16: 27–30.

    Google Scholar 

  • Grineva, G. M., 1961, Excretion by plant roots during brief periods of anaerobiosis, Soy. Plant Physiol. 8: 549–552.

    Google Scholar 

  • Grinsted, M. J., Hedley, M. J., White, R. E., and Nye, R. W., 1982, Plant induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. I. pH change and the increase in P concentration in the soil solution, New Phytol. 91: 19–29.

    CAS  Google Scholar 

  • Grinstein, A., Orion, D., Greenberger, A., and Katan, J., 1979, Solar heating of the soil for the control of Verticillium dahliae and Pratylenchus thornei in potatoes, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 431–438, Academic Press, London.

    Google Scholar 

  • Hale, M. G., 1981, Plant growth regulators and the rhizosphere ecosystem in: Proceedings Plant Growth Regulators Society America (8th), pp. 256–261.

    Google Scholar 

  • Hale, M. G., and Moore, L. D., 1979, Factors affecting root exudation II: 1970–1978, Adv. Agron. 31: 93–124.

    CAS  Google Scholar 

  • Hale, M. G., Orcutt, D. M., and Moore, L. D., 1977, GA3 and 2,4,-D effects on free sterol and fatty acid content of peanut, Plant Physiol. Suppl. 59: 30.

    Google Scholar 

  • Hale, M. G., Moore, L. D., and Griffin, G. J., 1978, Root exudates and exudation, in: Interations between Non-pathogenic Soil Microorganisms and Plants ( Y. R. Dommergues and S. V. Krupa, eds.), pp. 163–204, Elsevier, Amsterdam.

    Google Scholar 

  • Hardie, K., and Leyton, L., 1981, The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil, New Phytol. 89: 599–608.

    Google Scholar 

  • Hardy, R. W. F., and Havelka, U. D., 1975, Nitrogen fixation research: A key to world food, Science 188: 633–643.

    PubMed  CAS  Google Scholar 

  • Harley, J. L., 1969, The Biology of Mycorrhiza, Leonard Hill, London.

    Google Scholar 

  • Harley, J. L., and Smith, S. E., 1983, Mycorrhizal Symbiosis, Academic Press, London. Harper, J. E., 1974, Soil and symbiotic nitrogen requirements for optimum soybean production, Crop Sci. 14: 255–260.

    Google Scholar 

  • Hattori, T., 1973, Microbial Life in the Soil, Marcel Dekker, New York.

    Google Scholar 

  • Hayman, D. S., 1978, Endomycorrhizae, in: Interations between Non-pathogenic Soil Microorganisms and Plants ( Y. R. Dommergues and S. V. Krupa, eds.), pp. 401–442, Elsevier, Amsterdam.

    Google Scholar 

  • Hayman, D. S., 1982, Practical aspects of vesicular-arbuscular mycorrhiza, in: Advances in Agricultural Microbiology ( N. S. Subba Rao, ed.), pp. 325–373, Butterworth Scientific, London.

    Google Scholar 

  • Haystead, A., and Sprent, J. I., 1981, Symbiotic nitrogen fixation, in: Physiological Processes Limiting Plant Productivity ( C. B. Johnson, ed.), pp. 345–364, Butterworth Scientific, London.

    Google Scholar 

  • Hedley, M. J., Nye, P. H., and White, R. E., 1982a, Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings II. Origin of the pH change, New Phytol. 91: 31–44.

    CAS  Google Scholar 

  • Hedley, M. J., White, R. E., and Nye, P. H., 1982b, Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings III. Changes in the L value, soil phosphate fraction and phosphatase activity, New Phytol. 91: 45–56.

    CAS  Google Scholar 

  • Hedley, M. J., Nye, P. H., and White, R. E., 1983, Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings IV. The effect of rhizosphere phosphorus status on the pH, phosphatase activity and depletion of soil phosphorus fractions in the rhizosphere and on the cation-anion balance in the plants, New Phytol. 95: 69–82.

    CAS  Google Scholar 

  • Hemming, B. C., Orser, C., Jacobs, D. L., Sands, D. C., and Strobel, G. A., 1982, The effects of iron on microbial antagonism by fluorescent pseudomonads, J. Plant Nutr. 5: 683–702.

    CAS  Google Scholar 

  • Henry, C. M., and Deacon, J. W., 1981, Natural (non-pathogenic) death of the cortex of wheat and barley seminal roots, as evidenced by nuclear staining with acridine orange, Plant Soil 60: 255–274.

    Google Scholar 

  • Hewitt, E. J., and Cutting, C. V. 1979, Nitrogen Assimilation of Plants, Academic Press, London.

    Google Scholar 

  • Hiltner, L., 1904, Über neuere Erfahrungen und Probleme auf dem Gebiet der bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache, Arb. Dtsch. Landw. Ges. Berl. 98: 59–78.

    Google Scholar 

  • Ho, I., and Trappe, J. M., 1973, Translocation of 14C from Festuca plants to their endomycorrhizal fungi, Nature New Biol. 244: 30–31.

    PubMed  CAS  Google Scholar 

  • Holden, J., 1975, Use of nuclear staining to assess rates of cell death in cortices of cereal roots, Soil Biot Biochem. 7: 333–334.

    Google Scholar 

  • Hollis, J. P., and Rodriquez-Kabana, R., 1967, Fatty acids in Louisiana rice fields, Phytopathology 57: 841–847.

    PubMed  CAS  Google Scholar 

  • Hornby, D., 1979, Take-all decline: A theorist’s paradise, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 133–156, Academic Press, London.

    Google Scholar 

  • Hornby, D., 1983, Suppressive Soils, Annu. Rev. Phytopathol. 21: 65–85.

    Google Scholar 

  • Hornby, D., and Fitt, B. D. L., 1981, Effects of root-infecting fungi on structure and function of cereal roots, in: Effects of Disease on the Physiology of the Growing Plant ( P. G. Ayres, ed.), pp. 101–130, Cambridge University Press, Cambridge.

    Google Scholar 

  • Howell, C. R., and Stipanovic, R. D., 1980, Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyroluteorin, Phytopathology 70: 712–715.

    CAS  Google Scholar 

  • Howie, W. J., and Echandi,E., 1983, Rhizobacteria: Influence of cultivar and soil type on plant growth and yield of potato, Soil Biol. Biochem. 15: 127–132.

    Google Scholar 

  • Hubbard, J. P., Harmon, G. E., and Hadar, Y., 1983, Effect of soil-borne Pseudomonas spp. on the biological control agent, Trichoderma hamatum, on pea seeds, Phytopathology 73: 655–659.

    Google Scholar 

  • Hussain, S. S., and McKeen, W. E., 1963, Interactions between strawberry roots and Rhizoctonia fragariae, Phytopathology 53: 541–545.

    Google Scholar 

  • Jackson, F. A., and Dawes, E. A., 1976, Regualtion of the tricarboxylic acid cycle and polyß-hydroxybutyric metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation, J. Gen. Microbiol. 97: 303–312.

    PubMed  CAS  Google Scholar 

  • Jacq, V., and Dommergues, Y., 1970, Influence de l’intensité d’eclairement et de l’âge de la plante sur la sulfato-réduction rhizospherique, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. 125: 661–669.

    CAS  Google Scholar 

  • Jakobsen, I., and Anderson, A. J., 1982, Vesicular-arbuscular mycorrhiza and growth in barley: Effects of irradiation and heating of soil, Soil Biol. Biochem. 14: 171–178.

    Google Scholar 

  • Jalili, B. L., 1976, Biochemical nature of root exudates in relation to root rot of wheat III. Carbohydrate shifts in response to foliar treatments, Soil Biol. Biochem. 8: 127–129.

    Google Scholar 

  • Jalili, B. L., and Domsch, K. H., 1975, Effect of systemic fungitoxicants on the development of endotrophic mycorrhiza, in: Endomycorrhizas ( F. E. Sanders, B. Mosse, and P. G. Tinker, eds.), pp. 619–626, Academic Press, London.

    Google Scholar 

  • Jensen, A., and Jacobsen, I., 1980, The occurrence of vesciular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments, Plant Soil 55: 403–414.

    CAS  Google Scholar 

  • Johnen, B. G., and Sauerbeck, D. R., 1977, A tracer technique for measuring growth, mass and microbial breakdown of plant roots during vegetation, in: Soil Organisms As Cornponents of Ecosystems (V. Lohm and T. Persson, eds.), Ecol. Bull. (Stockholm) 25: 366–373.

    Google Scholar 

  • Johnston, A. W. B., and Beringer, J. E., 1979, Genetics of the Rhizobium-legume symbiosis, in: Nitrogen Assimilation of Plants ( E. J. Hewitt and C. V. Cutting, eds.), pp. 67–72, Academic Press, London.

    Google Scholar 

  • Jones, D. G., and Clifford, B. C., 1978, Cereal Diseases—Their Pathology and Control, BASF, Ipswich.

    Google Scholar 

  • Jones, R., 1972, Comparative studies of plant growth and distribution in relation to waterlogging VI. The effect of manganese in the growth of dune and duneslack plants, J. Ecol. 60: 141–145.

    CAS  Google Scholar 

  • Kado, C. I., and Lurquin, P. F., 1982, Prospects of genetic engineering in agriculture, in: Phytopathogenic Prokaryotes, Vol. 2 ( M. S. Mount and G. H. Lacy, eds.), pp. 303–325, Academic Press, New York.

    Google Scholar 

  • Kapustka, L. A., and Rice, E. L., 1976, Acetylene reduction (N2-fixation) in soil and old field succession in central Oklahoma, Soil Biol. Biochem. 8: 497–503.

    CAS  Google Scholar 

  • Katan, J., Greenberger, A., Mon, H., and Grinstein, A., 1976, Solar heating by polyethylene mulching for the control of diseases caused by soil-borne pathogens, Phytopathology 66: 683–688.

    Google Scholar 

  • Keast, D., and Tonkin, C., 1983, Antifungal activity of Western Australian soil actinomycetes against Phytophthora and Pythium species and a mycorrhizal fungus, Laccaria laccata, Aust. J. Biol. Sci. 36: 191–203.

    Google Scholar 

  • Keen, N. T., and Williams, P. H., 1969, Translocation of sugars into infected cabbage tissues during clubroot development, Plant Physiol. 44: 748–754.

    PubMed  CAS  Google Scholar 

  • Kefford, N. P., Brockwell, J., and Zwar, J. A., 1960, The symbiotic synthesis of auxin by legumes and nodule bacteria and its role in nodule development, Aust. J. Biol. Sci. 13: 456–467.

    CAS  Google Scholar 

  • Kerr, A., 1982, Biological control of soil-borne microbial pathogens and nematodes, in: Advances in Agricultural Microbiology (N. S. Subba Rao, ed.), pp. 429–463, Butterworth Scientific, London.

    Google Scholar 

  • Kerry, B. R., and Crump, D. M., 1980, Two fungi parasites on females of cystnematodes (Heterodera spp.), Trans. Br. Mycol. Soc. 74: 119–125.

    Google Scholar 

  • Kloepper, J. W., Schroth, M. N., and Miller, T. D., 1980a, Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield, Phytopathology 70: 1078–1082.

    Google Scholar 

  • Kloepper, J. W., Leong, J., Teinze, M., and Schroth, M., 1980c, Enhanced plant growth by siderophores produced by plant growth-promoting bacteria, Nature 286: 885–886.

    CAS  Google Scholar 

  • Knowles, R., 1982, Denitrification in soils, in: Advances in Agricultural Microbiology (N. S. Subba Rao, ed.), pp. 243–266, Butterworth Scientific, London.

    Google Scholar 

  • Kommedhal, T., and Windels, C. E., 1979, Fungi: Pathogen or host dominance in disease, in: Ecology of Root Pathogens ( S. V. Krupa and Y. R. Dommergues, eds.), pp. 1–103, Elsevier, Amsterdam

    Google Scholar 

  • Kosslak, R. M., and Bohlool, B. B., 1983, Prevalence ofAzospirillum spp. in the rhizosphere of tropical plants, Can. J. Microbiol. 29: 649–652.

    Google Scholar 

  • Krupa, S. V., and Dommergues, Y. R. (eds.), 1979, Ecology of Root Pathogens, Elsevier, Amsterdam.

    Google Scholar 

  • Krupa, S., and Nylund, J.-E., 1971, Studies on ectomycorrhizae of pine. III. Growth inhibition of two root pathogenic fungi by volatile organic constituents of ectomycorrhizal root systems of Pinus sylvestris L., Eur. J. For. Pathol. 2: 88–94.

    Google Scholar 

  • Kucey, R. M. N., and Paul, E. A., 1982, Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.), Soil Biol. Biochem. 14: 407–412.

    Google Scholar 

  • Lai, M., Weinhold, A. R., and Hancock, J. G., 1968, Permeability changes in Phaseolus aureus associated with infection by Rhizoctonia solani, Phytopathology 58: 240–245.

    Google Scholar 

  • Lambert, D. H., Baker, D. E., and Cole, H., 1979, The role of mycorrhizae in the interactions of phosphorus with zinc, copper and other elements, Soil Sci. Soc. Am. J. 43: 976–980.

    CAS  Google Scholar 

  • Larson, R. I., and Atkinson, T. G., 1970, A cytogenetic analysis of reaction to common root in some hard red spring wheats, Can. J. Bot. 48: 20–67.

    Google Scholar 

  • Lawley, R. A., Newman, E. I., and Campbell, R., 1982, Abundance of endomycorrhizas and root-surface microorganisms on three grasses grown separately and in mixtures, Soil Biol. Biochem. 14: 237–240.

    Google Scholar 

  • Lawley, R. A., Campbell, R., and Newman, E. I., 1983, Composition of the bacterial flora of the rhizosphere of three grassland plants grown separately and in mixtures, Soil Biol. Biochem. 15: 605–607.

    Google Scholar 

  • Lee, R. B., 1977, Effects of organic acids on the loss of ions from barley roots, J. Exp. Bot. 28: 578–587.

    CAS  Google Scholar 

  • Lethbridge, G., and Davidson, M. S., 1983a, Root-associated nitrogen-fixing bacteria and their role in the nitrogen nutrition of wheat estimated by 15N isotope dilution, Soil Biol. Biochem. 15: 365–374.

    Google Scholar 

  • Lethbridge, G., and Davidson, M. S., 1983b, Microbial biomass as a source of nitrogen for cereals, Soil Biol. Biochem. 15: 375–376.

    Google Scholar 

  • Lewis, D. H., 1973, Concepts in fungal nutrition and the origin of biotrophy, Biol. Rev. 61: 218–220.

    Google Scholar 

  • Lewis, D. H., and Harley, J. L., 1965a, Carbohydrate physiology of mycorrhizal roots of beech. I. Identity of endogenous sugars and utliization of exogenous sugars, New Phytol. 64: 224–237.

    CAS  Google Scholar 

  • Lewis, D. H., and Harley, J. L., 1965b, Carbohydrate physiology of mycorrhizal roots of beech. II. Utilization of exogenous sugars by uninfected and mycorrhizal roots, New Phytol. 64: 238–255.

    CAS  Google Scholar 

  • Lewis, D. H., and Harley, J. L., 1965c, Carbohydrate physiology of mycorrhizal roots of beech. III. Movement of sugars between host and fungus, New Phytol. 62: 256–269.

    Google Scholar 

  • Linderman, R. G., Moore, L. W., Baker, K. F., and Cooksey, D. A., 1983, Strategies for detecting and characterizing systems for biological control of soil-borne plant pathogens, Plant Dis. 67: 1058–1064.

    Google Scholar 

  • Lockwood, J. L., 1977, Fungistasis in soils, Biol. Rev. 52: 1–43.

    CAS  Google Scholar 

  • Lohnis, M. P., 1951, Manganese toxicity in field and market garden crops, Plant Soil 3: 193–222.

    CAS  Google Scholar 

  • Low, A. J., 1972, The effect of cultivation on the structure and other characteristics of grassland and arable soils (1945–1970), J. Soil Sci. 23: 363–380.

    CAS  Google Scholar 

  • Luttrell, E. S., 1974, Parasitism of fungi on vascular plants, Mycologia 66: 1–15.

    Google Scholar 

  • Lynch, J. M., 1976, Products of soil micro-organisms in relation to plant growth, CRC Crit. Rev. Microbiol. 5: 67–107.

    PubMed  CAS  Google Scholar 

  • Lynch, J. M., 1978, Production and phytotoxicity of acetic acid in anaerobic soils containing plant residues, Soil Biol. Biochem. 10: 131–135.

    CAS  Google Scholar 

  • Lynch, J. M., 1980, Effects of organic acids on the germination of seeds and growth of seedlings, Plant Cell Environ. 3: 255–259.

    CAS  Google Scholar 

  • Lynch, J. M., 1981, Promotion and inhibition of soil aggregate stabilization by micro-organisms, J. Gen. Microbiol. 126: 371–375.

    Google Scholar 

  • Lynch, J. M., 1982, The rhizosphere, in: Experimental Microbial Ecology ( R. G. Burns and J. M. Slater, eds.), pp. 395–411, Blackwells, London.

    Google Scholar 

  • Lynch, J. M., 1983, Interactions between bacteria and plants in the root environment, in: Bacteria and Plants ( M. E. Rhodes-Robert and F. A. Skinner, eds.), pp. 1–23, Academic Press, London.

    Google Scholar 

  • Lynch, J. M., and Bragg, E., 1984, Microorganisms and soil aggregate stability, in: Advances in Soil Sciences, Vol. 2. ( B. A. Stewart, ed.), pp. 133–172, Springer-Verlag, New York.

    Google Scholar 

  • Lynch, H. M., and Clark, S. J., 1984, Effects of microbial colonization of barley (Hordeum vulgare L.) roots on seedling growth, J. Appl Bacteriol. 56: 47–52.

    Google Scholar 

  • Lynch, J. M., and Panting, L. M., 1981, Measurement of the microbial biomass in intact cores of soil, Microb. Ecol. 7: 229–234.

    Google Scholar 

  • Magyarosy, A. C., and Hancock, J. G., 1974, Association of virus-induced changes in laimosphere microflora and hypocotyl exudation with protection to Fusarium stem rot, Phytopathology 64: 994–1000.

    CAS  Google Scholar 

  • Malajczuk, N., 1979, Biocontrol of Phytophthora cinnamomi in eucalyptus and avocados in Australia, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 635–652, Academic Press, London.

    Google Scholar 

  • Mangenot, F., and Diem, H. G., 1979, Fundamentals of biological control, in: Ecology of Root Pathogens ( S. V. Krupa and Y. R. Dommergues, eds.), pp. 207–625, Elsevier, Amsterdam

    Google Scholar 

  • Mankau, R., 1980, Biological control of nematode pests by natural enemies, Annu. Rev. Phytopathol. 18: 415–440.

    Google Scholar 

  • Marschner, H., 1978, Role of the rhizosphere in iron nutrition of plants, Iran. J. Agric. Res. 6: 69–80.

    CAS  Google Scholar 

  • Marschner, H., and Romheld, V. 1983, In vivo measurement of root-induced pH changes at the soil-root interface: Effect of plant species and nitrogen source, Z. Pflanzenphysiol. 111: 241–251.

    CAS  Google Scholar 

  • Martin, J. K., 1977a, Factors influencing the loss of organic carbon from wheat roots, Soil Biol. Biochem. 9: 1–7.

    CAS  Google Scholar 

  • Martin, J. K., 1977b, Effect of soil moisture on the release of organic carbon from wheat roots, Soil BioL Biochem. 9: 303–304.

    CAS  Google Scholar 

  • Martin, J. K., and Kemp, J. R., 1980, Carbon loss from roots of wheat cultivars, Soil Biol. Biochem. 12: 551–554.

    CAS  Google Scholar 

  • Martin, S. B., Hoch, H. O., and Abawi, G. S., 1983, Population dynamics of Laetisaria arvalis and low-temperature Pythium spp. in untreated and pasturised beet field soils, Phytopathology 73: 1445–1449.

    Google Scholar 

  • Marx, D. H., 1975, The role of ectomycorrhizae in the protection of pine from root infection by Phytophthora cinnamomi, in: Biology and Control of Soil-Borne Plant Pathogens ( G. W. Bruehl, ed.), pp. 112–115, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Marx, D. H., 1980, Ectomycorrhizal fungus inoculations: A tool for improving forestation practices, in: Tropical Mycorrhiza Research ( P. Mikola, ed.), pp. 13–71, Clarendon Press, Oxford.

    Google Scholar 

  • Marx, D. H., and Krupa, S. V., 1978, Ectomycorrhiza, in: Interactions between Non-pathogenic Soil Micro-organisms and Plants ( Y. R. Dommergues and S. V. Krupa, eds.), pp. 373–400, Elsevier, Amsterdam.

    Google Scholar 

  • McCool, P. M., and Menge, J. A., 1983, Influence of ozone on carbon partitioning in tomato: Potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress, New Phytol. 94: 241–247.

    CAS  Google Scholar 

  • McDougall, B. M., 1968, The exudation of 14C-labeled substances from roots of wheat seedlings, in: Transactions of the Ninth International Congress of Soil Science Adelaide, pp. 647–655.

    Google Scholar 

  • McDougall, B. M., 1970, Movement of 14C-photosynthate into the roots of wheat seedlings and exudation of 14C from intact roots, New Phytol 69: 37–46.

    CAS  Google Scholar 

  • McDougall, B. M., and Rovira, A. D., 1970, Sites of exudation of 14C-labelled compounds from wheat roots, New Phytol. 69: 999–1003.

    Google Scholar 

  • Menge, J. A., 1983, Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture, Can. J. Bot. 61: 1015–1024.

    Google Scholar 

  • Merriman, P. R., Price, R. D., Kollmorgen, F., Piggott, T., and Ridge, E. H., 1974, Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots, Aust. J. Agric. Res. 25: 219–276.

    Google Scholar 

  • Miller, C. O., 1967, Zeatin and zeatin riboside from a mycorrhizal fungus (Rhizopogon roseolus), Science 157: 1055–1057.

    PubMed  Google Scholar 

  • Minchin, F. R., Summerfield, R. J., Hadley, P., Roberts, E. H., and Rawsthorne, S., 1981, Carbon and nitrogen nutrition of nodulated roots of grain legumes, Plant Cell Environ. 4: 5–26.

    CAS  Google Scholar 

  • Mitchell, J. E., 1976, The effect of roots on the activity of soil-borne plant pathogens, in: Physiological Plant Pathology. Encyclopedia of Plant Physiology New Series, Vol. 4 ( R. Heitefuss and P. H. Williams, eds.), pp. 104–128, Springer-Verlag, Berlin.

    Google Scholar 

  • Moore, A. W., 1966, Non-symbiotic nitrogen fixation in soil and soil-plant systems, Soils Fertil. 29: 113–128.

    Google Scholar 

  • Moore, L. W., and Warren, G., 1979, Agrobacterium radiobacter strain 84 and biological control of crown gall, Annu. Rev. Phytopathol. 17: 163–179.

    Google Scholar 

  • Mosse, B., 1973, Plant growth responses to vesicular-arbuscular mycorrhiza.IV. In soil given additional phosphate, New Phytol. 72: 127–136.

    Google Scholar 

  • Mount, M. S., Bateman, D. F., and Basham, M. G., 1970, Induction of electrolyte loss, tissue maceration, and cellular death of potato tissue by an endopolygalacturonate trans-eliminase, Phytopathology 60: 924–931.

    CAS  Google Scholar 

  • Mulder, D., 1979 (ed.), Soil Disinfestation, Elsevier, Amsterdam

    Google Scholar 

  • Munns, D. N., and Mosse, B., 1980, Mineral nutrition of legume crops, in: Advances in Legume Science ( R. J. Summerfield and A. H. Bunting, eds.), pp. 115–125, HMSO, London.

    Google Scholar 

  • Neal, J. L., 1971, A simple method for enumeration of antibiotic producing microorganisms in the rhizosphere, Can. J. Microbiol. 17: 1143–1145.

    PubMed  Google Scholar 

  • Neal, J. L., Atkinson, T. G., and Larson, R. I., 1970, Changes in the rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome, Can. J. Microbiol. 16: 153–158.

    PubMed  Google Scholar 

  • Neal, J. L., Larson, R. I., and Atkinson, T. G., 1973, Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat, Plant Soil 39: 209–212.

    Google Scholar 

  • Nelson, E. B., Kuter, G. A., and Hoitink, H. A. J., 1983, Effects of fungal antagonists and compost age on suppression of rhizoctonia damping-off in container media amended with composted hardwood bark, Phytopathology 73: 1457–1462.

    Google Scholar 

  • Newman, E. I., 1978, Root microorganisms: Their significance in the ecosystem, Biol. Rev. 53: 511–554.

    CAS  Google Scholar 

  • Newman, E I, 1985, The rhizosphere: Carbon sources and microbial populations, in: Ecological Interactions in Soil: Plants, Microbes and Animals ( A. H. Fitter, D. Atkinson, D. J. Read, and M. B. Usher, eds.), pp. 107–121, Blackwell Scientific, Oxford.

    Google Scholar 

  • Newman, E. I., and Watson, A., 1977, Microbial abundance in the rhizosphere: A computer model, Plant Soil 48: 17–56.

    Google Scholar 

  • Newman, E. I., Heap, A. J., and Lawley, R. A., 1981, Abundance of mycorrhizas and root-surface microorganisms of Plantago lanceolata in relation to soil and vegetation: A multi-variate approach, New Phytol. 89: 95–108.

    CAS  Google Scholar 

  • Neyra, C. A., and Dobereiner, J., 1977, Nitrogen fixation in grasses, Adv. Agron. 29:1–38. Nutman, P. S., 1975, Rhizobium in the soil, in: Soil Microbiology ( N. Walker, ed.), pp. 111–131, Butterworth Scientific, London.

    Google Scholar 

  • Odunfa, V. S. A., and Oso, B. A., 1978, Bacterial populations in the rhizosphere soils of cowpea and sorghum, Rev. Ecol. Biol. Sol 15: 413–420.

    Google Scholar 

  • Odvody, G. N., Boosalis, M. G., and Kerr, C. D., 1980, Biological control of Rhizoctonia solani with a soil-inhabiting basidiomycete, Phytopathology 70: 655–658.

    Google Scholar 

  • Oghoghorie, C. G. O., and Pate, J. S., 1971, The nitrate stress syndrome of the nodulated field pea (Pisum arvense L.), Plant Soil 1971 (special volume): 185–202.

    Google Scholar 

  • Oghoghorie, C. G. O., and Pate, J. S., 1972, Exploration of the nitrogen transport system of a nodulated legume using 15N, Planta 104: 35–49.

    CAS  Google Scholar 

  • Okon, Y., 1982, Field inoculation of grasses with Azospirillum, in: Biological Nitrogen Fixation Technology for Tropical Agriculture ( P. H. Graham and S. C. Harris, eds.), pp. 459–483, Centro Internacional de Agricultura Tropical, Cali, Colombia.

    Google Scholar 

  • Old, K. M., and Nicholson, T. H., 1975, Electron microscopical studies of the microflora of roots of sand dune grass, New Phytol 74: 51–58.

    Google Scholar 

  • Old, K. M., and Nicholson, T. H., 1978, The root cortex as part of a microbial continuum, in: Microbial Ecology ( M. W. Loutit and J. A. R. Miles, eds.), pp. 291–294, Springer-Verlag, Berlin.

    Google Scholar 

  • Opgenorth, D. C., and Endo, R. M., 1983, Evidence that antagonistic bacteria suppress fusarium wilt of celery in neutral and alkaline soils, Phytopathology 73: 703–708.

    Google Scholar 

  • Orlando, J. A., and Neilands, J. B., 1982, Ferrichrome compounds as a source of iron for higher plants, in: Chemistry and Biology ofHydroxamicAcids ( K. Horst, ed.), pp. 123–129, S. Karger, Basel.

    Google Scholar 

  • Owens, L. D., Gilbert, R. G., Griebel, G. E., and Menzies, J. D., 1969, Identification of plant volatiles that stimulate microbial respiration and growth in soil, Phytopathology 59: 1468–1472.

    CAS  Google Scholar 

  • Page, J. B., and Willard, C. J., 1946, Cropping systems and soil properties, Soil Sci. Soc. Am. Proc. 11: 81–88.

    Google Scholar 

  • Panagopoulos, C. G., Psallidas, P. G., and Alivizatos, A. S., 1979, Evidence of a breakdown in the effectiveness of biological control of crown gall, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 569–578, Academic Press, London.

    Google Scholar 

  • Pang, P. C., and Paul, E. A., 1980, Effects of vesicular-arbuscular mycorrhizae on ’C and 15N distribution in nodulated faba beans, Can. J. Soil Sci. 60: 241–250.

    CAS  Google Scholar 

  • Papavizas, G. C., and Lumsden, R. D., 1980, Biological control of soil-borne fungal propagules, Annu. Rev. Phytopathol. 18: 389–413.

    Google Scholar 

  • Parke, J. L., Linderman, R. G., and Black, C. M., 1983, The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings, New Phytol. 95: 83–95.

    Google Scholar 

  • Parkinson, D., Taylor, G. S., and Pearson, R., 1963, Studies on the fungi in the root region. I. The development of fungi on young roots, Plant Soil 19: 332–349.

    Google Scholar 

  • Patriquin, D. G., 1982, New developments in grass-bacteria associations, in: Advances in Agricultural Microbiology ( N. S. Subba Rao, ed.), pp. 139–190, Butterworth Scientific, London.

    Google Scholar 

  • Paul, E. A., and Kucey, R. M. N., 1981, Carbon flow in plant microbial associations, Science 213: 473–474.

    PubMed  CAS  Google Scholar 

  • Paulech, C., Fric, F., Minarcic, P., Priehradny, S., and Vizarova, G., 1981, Response of barley roots to infection by the parasitic fungus Erysiphe graminis DC, Plant Soil 63: 119–121.

    Google Scholar 

  • Penn, D. J., and Lynch, J. M., 1982, Toxicity of glyphosate applied to roots of barley seedlings, New Phytol. 90: 51–55.

    CAS  Google Scholar 

  • Peters, G. A., and Calvert, M. E., 1982, The Azolla-Anabaena symbioses, in: Advances in Agricultural Microbiology (N. S. Subba Rao, ed.), pp. 191–218, Butterworth Scientific, London.

    Google Scholar 

  • Phillips, D. A., 1980, Efficiency of symbiotic nitrogen fixation in legumes, Annu. Rev. Plant Physiol. 31: 29–49.

    CAS  Google Scholar 

  • Phillips, S. M., and Young, H. M., 1973, No-Tillage Farming, Reiman, Milwaukee.

    Google Scholar 

  • Polonenko, D. R., Dumbroff, E. B., and Mayfield, C. I., 1983, Microbial responses to saltinduced osmotic stress. III. Effects of stress on metabolites in the roots, shoots and rhizosphere of barley, Plant Soil 73: 211–225.

    CAS  Google Scholar 

  • Powell, P. E., Szaniszlo, P. J., Clive, G. R., and Reid, C. P. P., 1982, Hydroxamate siderophores in the iron nutrition of plants, J. Plant Nutr. 5: 653–673.

    CAS  Google Scholar 

  • Powlson, D. S., 1975, Effects of biocidal treatments on soil organisms, in: Soil Microbiology. A Critical Review (N. Walker, ed.), pp. 193–224, Butterworth Scientific, London.

    Google Scholar 

  • Pullman, G. S., DeVay, J. E., Garber, R. H., and Weinhold, A. R., 1979, Control of soil-borne fungal pathogens by plastic tarping of soil, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 439–446, Academic Press, London.

    Google Scholar 

  • Purvis, A. C., and Williamson, R. E., 1972, Effects of flooding and gaseous composition of the root environment on growth of corn, Agron. J. 64: 674–678.

    CAS  Google Scholar 

  • Raj, J., Bagyaraj, D. J., and Manjunath, A., 1981, Influence of soil inoculation with vesicular-arbuscular mycorrhizae and a phosphate dissolving bacterium on plant growth and 32P-uptake, Soil Biol. Biochem. 13: 105–108.

    CAS  Google Scholar 

  • Rambelli, A., 1973, The rhizosphere of mycorrhizae, in: Ectomycorrhizae, Their Ecology and Physiology ( G. C. Marks and T. T. Kozlowski, eds.), pp. 299–349, Academic Press, London.

    Google Scholar 

  • Ratnayake, M., Leonard, R. T., and Menge, J. A., 1978, Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation, New Phytol. 81: 543–552.

    CAS  Google Scholar 

  • Read, D. J., 1983, The biology of mycorrhiza in the Ericales, Can. J. Bot. 61: 985–1004.

    CAS  Google Scholar 

  • Reid, C. P. P., and Mexal, J. G., 1977, Water stress effects on root exudation by lodgepole pine, Soil Biol. Biochem. 9: 417–422.

    Google Scholar 

  • Reid, C. P. P., and Woods, F. W., 1969, Translocation of C14-labelled compounds in mycorrhizae and its implications in interplant nutrient cycling, Ecology 50: 179–187.

    CAS  Google Scholar 

  • Reid, C. P. P., Kidd, F. A., and Ekwebelam, S. A., 1983, Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine, Plant Soil 71: 415–432.

    CAS  Google Scholar 

  • Reid, J. B., and Goss, M. J., 1980, Changes in aggregate stability of a sandy loam effected by growing roots of perennial ryegrass (Lolium perenne), J. Sci. Food Agric. 31: 325–328.

    Google Scholar 

  • Reid, J. B., and Goss, M. J., 1981, Effect of living roots of different plant species on the aggregate stability of two arable soils, J. Soil Sci. 32: 521–541.

    Google Scholar 

  • Reid, J. B., Goss, M. J., and Robertson, P. D., 1982, Relationship between the decreases in soil stability effected by the growth of maize roots and changes in organically bound iron and aluminum, J. Soil Sci. 33: 397–410.

    CAS  Google Scholar 

  • Rennie, R. J., and Larson, R. I., 1979, Dinitrogen fixation associated with disomic chromosome substitution lines of spring wheat, Can. J. Bot. 57: 2771–2775.

    CAS  Google Scholar 

  • Rishbeth, J., 1975, Stump inoculation: A biological control of Fomes annosus, in: Biology and Control of Soil-Borne Plant Pathogens ( G. W. Bruehl, ed.), pp. 158–162, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Rittenhouse, R. L., and Hale, M. G., 1971, Loss of organic compounds from roots II. Effect of 02 and CO2 tension on release of sugars from peanut roots under axenic conditions, Plant Soil 35: 311–321.

    CAS  Google Scholar 

  • Ross, J. P., 1972, Influence of Endogone mycorrhizae on Phytophthora rot of soybean, Phytopathology 62: 896–897.

    Google Scholar 

  • Rovira, A. D., 1959, Root excretions in relation to the rhizosphere effect IV. Influence of plant species, age of plant, light, temperature and calcium nutrition on exudation, Plant Soil 11: 53–64.

    CAS  Google Scholar 

  • Rovira, A. D., 1969, Plant root exudates, Bot. Rev. 35: 35–57.

    CAS  Google Scholar 

  • Rovira, A. D., 1973, Zones of exudation along plant roots and spatial distribution of microorganisms in the rhizosphere, Pestic. Sci. 4: 361–366.

    Google Scholar 

  • Rovira, A. D., 1979, Biology of the soil-root interface, in: The Soil-Root Interface ( J. L. Harley and R. S. Russell, eds.), pp. 145–60, Academic Press, London.

    Google Scholar 

  • Rovira, A. D., and Bowen, G. D., 1966, Phosphate incorporation by sterile and non-sterile plant roots, Aust. J. Biol. Sci. 19: 1167–1169.

    CAS  Google Scholar 

  • Rovira, A. D., and Campbell, R., 1974, Scanning electron microscopy of microorganisms on the roots of wheat, Microb. Ecol. 1: 15–23.

    Google Scholar 

  • Rovira, A. D., and Davey, C. B., 1974, Biology of the rhizosphere, in: The Plant Root and Its Environment (E. W. Carson, ed.), pp. 153–204, University Press of Virginia, Charlottesville, Virginia

    Google Scholar 

  • Rovira, A. D., and Ridge, E. M., 1973, Exudation of “C-labelled components from wheat roots: Influence of nutrients, microorganisms and added organic compounds, New Phytol. 72: 1081–1087.

    CAS  Google Scholar 

  • Rovira, A. D., and Wildermuth, G. B., 1981, The nature and mechanisms of suppression, in: Biology and Control of Take-All ( M. J. C. Asher and P. J. Shipton, eds.), pp. 385–415, Academic Press, London.

    Google Scholar 

  • Rovira, A. D., Foster, R. C., and Martin, J. K., 1979, Note on terminology: Origin, nature and nomenclature of the organic materials in the rhizosphere, in: The Soil-Root Interface ( J. L. Harley and R. Scott Russell, eds.), pp. 1–4, Academic Press, London.

    Google Scholar 

  • Royle, D. J., and Hickman, C. J., 1964a, Analysis of factors governing in vitro accumulation of zoospores of Pythium aphanidermatum on roots I. Behaviour of zoospores, Can. J. Microbi ol. 10: 151–162.

    Google Scholar 

  • Royle, D. J., and Hickman, C. J., 1964b, Analysis of factors governing in vitro accumulation of zoospores of Pythium aphanidermatum on roots II. Substances causing response, Can. J. Microbiol. 10: 201–219.

    CAS  Google Scholar 

  • Russell, G. E., 1978, Plant Breeding for Pest and Disease Resistance, Butterworth Scientific, London.

    Google Scholar 

  • Russell, G. E., 1981, Disease and crop yield: The problems and prospects for agriculture, in: Effects of Disease on the Physiology of the Growing Plant ( G. P. Ayres, ed.), pp. 1–11, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ryle, G. J. A., Powell, C. E., and Gordon, A. J., 1979, The respiratory costs of nitrogen fixation in soyabeans, cowpea, and white clover. 1. Nitrogen fixation and the respiration of the nodulated root, J. Exp. Bot. 30: 135–144.

    CAS  Google Scholar 

  • Safir, G. R., 1980, Vesicular-arbuscular mycorrhizae and crop productivity, in: The Biology of Crop Productivity ( P. S. Carlson, ed.), pp. 231–252, Academic Press, London.

    Google Scholar 

  • Safir, G. R., Boyer, J. S., and Gerdemann, J. W., 1972, Nutrient status and mycorrhizal enhancement of water transport in soybean, Plant Physiol. 49: 700–703.

    PubMed  CAS  Google Scholar 

  • St. John, T. V., and Coleman, D. C., 1983, The role of mycorrhizae in plant ecology, Can. J. Bot. 61: 1005–1014.

    Google Scholar 

  • Salt, G. A., 1979, The increasing interest in “minor pathogens,” in: Soil-borne Plant Pathogens (B. Schippers and W. Gams, eds.), pp. 289–312, Academic Press, London.

    Google Scholar 

  • Samtsevich, S. A., 1965, Active secretions of plant roots and their significance, Soy. Plant Physiol. 12: 731–740.

    Google Scholar 

  • Samtsevich, J. A., 1971, Root excretions of plants, An important source of humus formation in the soil, Trans. Int. Symp. Humus et Planta V (B. Novak, J. Macura, M. Kutilek, J. Pokorna-Kozova, and V. Tichy, eds.), pp. 147–153, Prague.

    Google Scholar 

  • Samtsevich, S. A., 1972, Effect of plant cover and soil cultivations on the number of microorganisms and content of organic substances in the soil, Symp. BioL Hung. 11: 41–48.

    CAS  Google Scholar 

  • Sanders, F. E., and Tinker, P. B., 1973, Phosphate flow into mycorrhizal roots, Pestic. Sci. 4: 385–395.

    CAS  Google Scholar 

  • Sanders, F. E., Mosse, B., and Tinker, P. B., (eds.), 1975, Endomycorrhizas, Academic Press, London.

    Google Scholar 

  • Sanders, F. E., Tinker, P. B., Black, R. B. L., and Palmerley, S. M., 1977, The development of endomycorrhizal root systems I. Spread of infection and growth promoting effects with four species of vesicular-arbuscular endophyte, New Phytol. 78: 257–268.

    Google Scholar 

  • Sanders, F. E., Buwalda, J. G., and Tinker, P. B., 1983. A note on modelling methods for studies of ectomycorrhizal systems, Plant Soil 71: 507–512.

    Google Scholar 

  • Sauerbeck, D. R., Johnen, B. G., and Six, R., 1976, Atmung, Abbau and Ausscheidungen von Weizenwurzeln im Laufe Ihrer Entwicklung, Landwirtsch. Forsch. Sonderh. 32: 49–58.

    CAS  Google Scholar 

  • Scannerini, S., and Bonfante-Fasolo, P., 1983, Comparative ultrastructural analysis of mycorrhizal associations, Can. J. Bot. 61: 917–943.

    Google Scholar 

  • Schank, S. C., Weter, K. L., and Macrae, I. C., 1981, Plant yield and nitrogen content of a digitgrass in response to Azospirillum inoculation, Appl. Environ. MicrobioL 41: 343–345.

    Google Scholar 

  • Scheffer, R. J., 1983, Biological control of Dutch Elm disease by Pseudomonas species, Ann. Appl. Biol. 103: 21–30.

    Google Scholar 

  • Schenk, N. C., 1981, Can mycorrhizae control root disease?, Plant Dis. 65: 230–234.

    Google Scholar 

  • Schenk, N. C., and Hinson, K., 1973, Response of nodulating and non-nodulating soybeans to a species of Endogone mycorrhiza, Agron. J. 65: 849–850.

    Google Scholar 

  • Scher, F. M., and Baker, R. R., 1982, Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology 72: 1567–1573.

    CAS  Google Scholar 

  • Schippers, B., and Gams, W. (eds.), 1979, Soil-Borne Plant Pathogens, Academic Press, London.

    Google Scholar 

  • Schneider, R. W., 1982 (ed.), Suppressive Soils and Plant Disease, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Schonbeck, F., 1979, Endomycorrhiza in relation to plant diseases, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 271–280, Academic Press, London.

    Google Scholar 

  • Schonbeck, F., and Dehne, H. W., 1977, Damage to mycorrhizal and non-mycorrhizal cotton seedlings by Thielaviopsis basicola, Plant Dis. Rep. 61: 266–267.

    Google Scholar 

  • Schonwitz, R., and Ziegler, H., 1982, Exudation of water-soluble vitamins and of some carbohydrates by intact roots of maize seedlings (Zea mays L.) into a mineral nutrient solution, Z. PflanzenphysioL 707: 7–14.

    Google Scholar 

  • Schramm, J. R., 1966, Plant colonization studies on black wastes from anthracite mining in Pennsylvania, Trans. Am. Phil. Soc. 56: 1–194.

    Google Scholar 

  • Schroth, M. N., and Hancock, J. G., 1981, Selected topics in biological control, Annu. Rev. Microbiol. 35: 453–476.

    PubMed  CAS  Google Scholar 

  • Schroth, M. N., and Hancock, J. G., 1982, Disease-suppressive soil and root-colonizing bacteria, Science 216: 1376–1381.

    PubMed  CAS  Google Scholar 

  • Seidel, D., 1970, Pflanzen in ihren Auswirkungen auf phytopathogene Bodenpilze VI. Rhizotonia solani Kuhn, Zentralbi. Bakteriol. Parasitenkd. Infektionskr. Abt. II 120: 49–59.

    Google Scholar 

  • Sequeira, L., 1958, Bacterial wilt of bananas: Dissemination of the pathogen and control of the disease, Phytopathology 48: 64–69.

    CAS  Google Scholar 

  • Sethunathan, N., 1970a, Foliar sprays of growth regulators and rhizosphere effect in Cajanus cajan Millsp. I: Quantitative changes, Plant Soil 33: 62–70.

    CAS  Google Scholar 

  • Sethunathan, N., 1970b, Foliar sprays of growth regulators and the rhizosphere effect in Cajanus cajan Millsp. II. Qualitative changes in the rhizosphere and certain metabolic changes in the plant, Plant Soil 33: 71–80.

    CAS  Google Scholar 

  • Shay, F. J., and Hale, M. G., 1973, Effect of low levels of calcium on exudation of sugars and sugar derivatives from intact peanut roots under axenic conditions, Plant Physiol. 51: 1061–1063.

    PubMed  CAS  Google Scholar 

  • Shipton, P. J., 1977, Monoculture and soil-borne plant pathogens, Annu. Rev. Phytopathol. 15: 387–407.

    Google Scholar 

  • Shone, M. G. T., Whipps, J. M., and Flood, A. V., 1983, Effects of localized and overall water stress on assimilate partitioning in barley between shoots, roots and root exudates, New Phytol. 95: 625–634.

    CAS  Google Scholar 

  • Sivasithamparam, K., and Parker, C. A., 1980, Effect of certain isolates of soil fungi on take-all of wheat, Aust. J. Bot. 28: 421–427.

    Google Scholar 

  • Slankis, V., 1967, Renewed growth of ectotrophic mycorrhizae as an indication of an unstable symbiotic relationship, in: Proceedings of the 14th Congress of the International Forest Research Organisation, Munich, Vol. 5, pp. 84–99.

    Google Scholar 

  • Slankis, V., 1973, Hormonal relationships in mycorrhizal developments, in: Ectomycorrhi- zae ( G. C. Marks and T. T. Kozlowski, eds.), pp. 231–298, Academic Press, London.

    Google Scholar 

  • Smiley, R. W., 1975, Forms of nitrogen and the pH in the root zone and their importance to root infections, in: Biology and Control of Soil-Borne Plant Pathogens ( G. W. Bruehl, ed.), pp. 55–62, American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Smiley, R. W., 1979, Wheat rhizosphere pH and the biological control of take-all, in: The Soil-Root Interface ( J. L. Harley and R. S. Russell, eds.), pp. 329–338, Academic Press, London.

    Google Scholar 

  • Smith, M. S., and Tiedje, J. M., 1979, The effect of roots on soil denitrification, Soil Sci. Soc. Am J. 43: 951–955.

    CAS  Google Scholar 

  • Smith, R. L., Bouton, J. H., Schank, S. C., Queensbury, K. H., Tyler, M. E., Milam, J. R., Gaskins, M. H., and Littell, R. C. 1976, Nitrogen fixation in grasses inoculated with Spirillum lipoferum, Science 193: 1003–1005.

    CAS  Google Scholar 

  • Smith, S. E., and Daft, M. J., 1977, Interactions between growth, phosphate content and nitrogen fixation in mycorrhizal and non-mycorrhizal Medicago sativa, Aust. J. Plant Physiol. 4:403–413..

    Google Scholar 

  • Smith, S. E., Nicholas, D. J. D., and Smith, F. A., 1979, Effect of early mycorrhizal infection on nodulation and nitrogen fixation in Trifolium subterraneum, Aust. J. Plant Physiol. 6: 305–316.

    CAS  Google Scholar 

  • Sneh, B., 1981, Use of rhizosphere chitinolytic bacteria for biological control of Fusarium oxysporum f. sp. dianthi in carnation, Phytopathol. Z. 100: 251–256.

    Google Scholar 

  • Snellgrove, R. C., Splittstoesser, W. E., Stribley, D. P., and Tinker, P. B., 1982, The distribution of carbon and the demand of the fungal symbiont in leek plants with vesiculararbuscular mycorrhizas, New Phytol. 92: 75–87.

    Google Scholar 

  • Sparling, G. P., and Tinker, P. B., 1978, Mycorrhizal infection in Pennine grassland. II. Effects of mycorrhizal infection on the growth of some upland grasses on 7-irradiated soils, J. Appi. Ecol. 15: 951–958.

    Google Scholar 

  • Sprent, J. I., 1979, The Biology of Nitrogen-Fixing Organisms, McGraw-Hill, London. Stewart, W. D. P., Rowell, P., and Lockhart, C. M., 1979, Associations of nitrogen fixing

    Google Scholar 

  • prokaryotes with higher and lower plants, in: Nitrogen Assimilation of Plants (E. J. Hewitt and C. V. Cutting, eds.), pp. 45–66, Academic Press, London.

    Google Scholar 

  • Stirling, G. R., and Wachtel, M. F., 1980, Mass production of Bacillus penetrans for the biological control of root-knot nematodes, Nematologica 26: 308–312.

    Google Scholar 

  • Stirling, G. R., McKenry, M. V., and Mankau, R., 1979, Biological control of root-knot nematodes (Meloidogyne sp.) on peach, Phytopathology 69: 806–809.

    Google Scholar 

  • Stotzky, G., and Burns, R. G., 1982, The soil environment: Clay-humus-microbe interaction, in: Experimental Microbial Ecology ( R. G. Burns and J. H. Slater, eds.), pp. 105–133, Blackwell Scientific, Oxford.

    Google Scholar 

  • Stribley, D. P., Tinker, P. B., and Rayner, J. H., 1980, Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas, New Phytol. 86: 261–266.

    CAS  Google Scholar 

  • Strobel, G. A., 1974, Phytotoxins produced by plant parasites, Annu. Rev. Plant Physiol. 25: 541–566.

    CAS  Google Scholar 

  • Strullu, D. G., Harley, J. L., Gourret, J. P., and Garrec, J. P., 1982, Ultrastructure and microanalysis of the polyphosphate granules of the ectomycorrhizas of Fagus sylvatica, New Phytol 92: 417–423.

    CAS  Google Scholar 

  • Subba Rao, N. S. (ed.), 1982a, Advances in Agricultural Microbiology, Butterworth Scientific, London.

    Google Scholar 

  • Subba Rao, N. S., 1982b, Biofertilizers, in: Advances in Agricultural Microbiology (N. S. Subba Rao, ed.), pp. 219–242, Butterworth Scientific, London.

    Google Scholar 

  • Subba Rao, N. S., Bidwell, R. G. S., and Bailey, D. L., 1961, The effect of rhizoplane fungi on the uptake and metabolism of nutrients by tomato plants, Can. J. Bot. 39: 1759–1764.

    Google Scholar 

  • Suslow, T. V., 1982, Role of root-colonizing bacteria in plant growth, in: Phytopathogenic Prokaryotes, Vol. 1 ( M. S. Mount and G. H. Lacy, eds.), pp. 187–223, Academic Press, New York.

    Google Scholar 

  • Swaby, R. L., 1942, Stimulation of plant growth by organic matter, J. Aust. Inst. Agric. Sci. 8: 136–163.

    Google Scholar 

  • Szaniszlo, P. J., Powell, P. E., Reid, C. P. P., and Clive, G. R., 1981, Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi, Mycologia 73: 1158–1174.

    CAS  Google Scholar 

  • Takai, Y., and Kamura, T., 1966, The mechanism of reduction in waterlogged paddy soil, Folia Microbiol. 11: 304–313.

    CAS  Google Scholar 

  • Takijima, Y., 1964, Studies on organic acids in paddy field soils with reference to their inhibitory effects on the growth of rice plants, Soil Sci. Plant Nutr. 10: 14–21.

    Google Scholar 

  • Teakle, D. S., and Hiruki, C., 1985, Soil-borne viruses of plants, Curr. Top. Pathogen-Vector-Host Res. (in press).

    Google Scholar 

  • Thompson, L. K., and Hale, M. G., 1983, Effects of kinetin in the rooting medium on root exudation of free fatty acids and sterols from roots of Arachis hypogaea L. “Argentine” under axenic conditions, Soil Biol. Biochem. 15: 125–126.

    CAS  Google Scholar 

  • Thornton, H. G., 1930, The influence of the host plant in inducing parasitism in lucerne and clover nodules, Proc. R Soc. B 106: 110–122.

    CAS  Google Scholar 

  • Tien, T. M., Gaskins, M. H., and Hubbell, D. H., 1979, Plant growth substances produced by Azospirillum brasiliense and their effect of the growth of pearl millet (Pennisetum americanum L.), Appl. Environ. Microbiol. 37: 1016–1024.

    PubMed  CAS  Google Scholar 

  • Tirol, A. C., Roger, P. A., and Watanabe, I., 1982, Fate of nitrogen from a blue-green alga in a flooded rice soil, Soil Sci. Plant Nutr. 28: 559–569.

    CAS  Google Scholar 

  • Tisdall, J. M., and Oades, J. M., 1979, Stabilization of soil aggregates by the root systems of ryegrass, Aust. J. Soil Res. 17: 429–441.

    Google Scholar 

  • Trolldenier, G., 1972, L’influence de la nutrition potassique de haricots nams (Phaseolus vulgaris var. nanus) sur l’exsudation de substances organiques marguées au 14C, le

    Google Scholar 

  • nombres de bactéries rhizosphériques et la respiration des racines, Rev. Ecol. Biol. Sol 9:595–603.

    Google Scholar 

  • Trolldenier, G., and Markwordt, U., 1962, Untersuchungen uber den Einfluss der Bodenmikroorganismen auf die Rubidium-und Calcium-Aufnahme in Nahrlosung Wachsender Pflanzen, Arch. Mikrobiol. 43: 148–151.

    CAS  Google Scholar 

  • Turner, S. M., and Newman, E. I., 1984, Growth of bacteria on roots of grasses: Influence of mineral nutrient supply and interactions between species, J. Gen. Microbiol. 130: 505–512.

    Google Scholar 

  • Uecker, F. A., Ayers, W. A., and Adams, P. B., 1978, A new hyphomycete on sclerotia of Sclerotinia sclerotiorum, Mycotaxon 7: 275–282.

    Google Scholar 

  • Utkhede, R. S., and Rahe, J. E., 1983, Interactions of antagonist and pathogen in biological control of onion white rot, Phytopathology 73: 890–893.

    Google Scholar 

  • Vaidehi, B. K., 1973, Effect of foliar application of urea on the behaviour of Helminthosporium hawaiiensis in the rhizosphere of rice, Ind. J. Plant PathoL 3:81–85. Vamos, R., 1959, “Brusone” disease of rice in Hungary, Plant Soil 11: 65–77.

    Google Scholar 

  • Vance, C. P., 1983, Rhizobium infection and nodulation: A beneficial plant disease, Annu. Rev. Microbiol. 37: 399–424.

    CAS  Google Scholar 

  • Vaneura, V., 1967, Root exudates of plants III. Effect of temperature and “cold shock” on the exudation of various compounds from seeds and seedlings of maize and cucumber, Plant Soil 27: 319–328.

    Google Scholar 

  • Vancura, V., 1980, Fluorescent pseudomonads in the rhizosphere of plants and their relation to root exudates, Folia Microbiol. 25: 168–173.

    CAS  Google Scholar 

  • Vancura, V., and Kunc, F., 1977, The effect of streptomycin and actidione on respiration in the rhizosphere and non-rhizosphere soil, Zentralbi. Bakteriol. Parasitenkd. Infekt i onskr. 132: 472–478.

    CAS  Google Scholar 

  • Vancura, V., Pîikryl, Z., Kalachovä, L., and Wurst, M., 1977, Some quantitative aspects of root exudation, Ecol. Bull. Stockholm 25: 381–386.

    CAS  Google Scholar 

  • Vandenbergh, P. A., Gonzalez, C. F., Wright, A. M., and Kunka, S., 1983, Iron-chelating compounds produced by soil pseudomonads: Correlation with fungal growth inhibition, Appl. Environ. Microbiol. 46: 128–132.

    PubMed  CAS  Google Scholar 

  • Van Egeraat, A. W. S. M., 1975, Exudation of ninhydrin-positive compounds by pea-seedling roots: A study of the sites of exudation and of the composition of the exudate, Plant Soil 42: 37–47.

    Google Scholar 

  • Van Vuurde, J. W. L., Kruyswyk, C. J., and Schippers, B., 1979, Bacterial colonization of wheat roots in a root-soil model system, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 229–234, Academic Press, London.

    Google Scholar 

  • Vesely, D., 1977, Potential biological control of damping-off pathogens in emerging sugar beet by Pythium oligandrum, Phytopathol. Z. 90: 113–115.

    Google Scholar 

  • Vesely, D., 1979, Use of Pythium oligandrum to protect emerging sugar beet, in: Soil-Borne Plant Pathogens ( B. Schippers and W. Gams, eds.), pp. 593–595, Academic Press, London.

    Google Scholar 

  • Von Bulow, J. W. F., and Dobereiner, J., 1975, Potential for nitrogen fixation in maize genotypes in Brazil, Proc. NatL Acad. Sci. USA 72: 2384–2393.

    Google Scholar 

  • Vrany, J., 1974, Changes of microflora of wheat roots after foliar application of urea, Folia Microbiol 19: 229–235.

    CAS  Google Scholar 

  • Warembourg, F. R., Montange, D., and Bardin, R., 1982, The simultaneous use of 14CO2 and 15N2 labelling techniques to study the carbon and nitrogen economy of legumes grown under natural conditions, PhysioL Plant 56: 46–55.

    CAS  Google Scholar 

  • Weinhold, A. R., Oswald, J. W., Bowman, T, Bishop, J., and Wright, D., 1964, Influence of green manures and crop rotation on common scab of potato, Am. Potato J. 41: 265–273.

    Google Scholar 

  • Weller, D. M., 1983, Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all, Phytopathology 73: 1548–1553.

    Google Scholar 

  • Weller, D. M., and Cook, R. J., 1983, Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads, Phytopathology 73: 463–469.

    Google Scholar 

  • Wells, H. D., Bell, D. K., and Jawenski, C. A., 1972, Efficacy of Trichoderma harzianum as a biocontrol for Sclerotium rolfsii, Phytopathology 62: 442–447.

    Google Scholar 

  • Welte, E., and Trolldenier, G., 1962, Der Einfluss der Bodenmikroorganismen auf Trockensubstanzbildung und Aschegehalt in Nährlösung wachsender, Pflanzen Arch. MikrobioL 43: 138–147.

    CAS  Google Scholar 

  • Wheeler, H., 1978, Disease alterations in permeability and membranes, in: Plant Disease, An Advanced Treatise, Vol. III. How Plants Suffer from Disease ( J. G. Horsfall and E. B. Cowling, eds.), pp. 327–347, Academic Press, New York.

    Google Scholar 

  • Wheeler, H., and Hanchey, P., 1968, Permeability phenomena in plant disease, Annu. Rev. PhytopathoL 6: 331–350.

    Google Scholar 

  • Whipps, J. M., 1984, Environmental factors affecting the loss of carbon from the roots of wheat and barley seedlings, J. Exp. Bot. 35: 767–773.

    CAS  Google Scholar 

  • Whipps, J. M., and Lewis, D. H., 1981, Patterns of translocation, storage and interconversion of carbohydrates, in: Effects of Disease on the Physiology of the Growing Plant ( P. G. Ayres, ed.), pp. 47–83, Cambridge University Press, Cambridge.

    Google Scholar 

  • Whipps, J. M., and Lynch, J. M., 1983, Substrate flow and utilization in the rhizosphere of cereals, New Phytol. 95: 605–623.

    CAS  Google Scholar 

  • Wiedenroth, E., and Poskuta, J., 1981, The influence of oxygen deficiency in roots on CO2 exchange rates of shoots and distribution of’4C-photoassimilates of wheat seedlings, Z. PflanzenphysioL 103: 459–467.

    CAS  Google Scholar 

  • Wilcox, H. E., 1983, Fungal parasitism of woody plant roots from mycorrhizal relationships to plant disease, Annu. Rev. PhytopathoL 21: 221–242.

    Google Scholar 

  • Willey, C. R., 1970, Effect of short periods of anaerobic and near anaerobic conditions on water uptake by tobacco roots, Agron. J. 62: 224–229.

    Google Scholar 

  • Williams, P. H., 1966, A cytochemical study of hypertrophy in clubroot of cabbage, Phytopathology 56: 521–524.

    Google Scholar 

  • Williams, P. H., Keen, N. T., Strandberg, J. O., and McNabola, S. S., 1968, Metabolite syntheses and degradation during club root development in cabbage hypocotyls, Phytopathology 58: 921–928.

    CAS  Google Scholar 

  • Williams, P. H., Aist, J. R., and Bhattacharya, P. K., 1973, Host-parasite relations in cabbage club root, in: Fungal Pathogenicity and the Plant’s Response ( R. J. W. Byrde and C. V. Cutting, eds.), pp. 141–155, Academic Press, London.

    Google Scholar 

  • Williamson, F. A., and Wyn Jones, R. G., 1973, The influence of soil microorganisms on growth of cereal seedlings and on potassium uptake, Soil BioL Biochem. 5: 569–575.

    CAS  Google Scholar 

  • Woldendorp, J. W., 1963a, L’influence des plantes vivantes sur la dénitrification, Ann. Inst. Pasteur 105: 426–433.

    CAS  Google Scholar 

  • Woldendorp, J. W., 1963b, The influence of living plants on denitrification, Meded. Landbouwhogesch. Wageningen 63: 1–100.

    Google Scholar 

  • Woldendorp, J. W., 1981, Nutrients in the rhizosphere, in: Agricultural Yield Potentials in Continental Climates, pp. 89–115, International Potash Institute, Bern.

    Google Scholar 

  • Wong, P. T. W., 1975, Cross protection against the wheat and oat take-all fungi by Gaeumannomyces graminis var. graminis, Soil BioL Biochem. 7: 189–194.

    Google Scholar 

  • Wong, P. T. W., 1981, Biological control by cross-protection, in: Biology and Control of Take-All ( M. J. C. Asher and P. J. Shipton, eds.), pp. 417–431, Academic Press, London.

    Google Scholar 

  • Wong, P. T. W., and Southwell, R. J., 1980, Field control of take-all by avirulent fungi, Ann. Appl. Biol. 94: 41–49.

    Google Scholar 

  • Wood, R. K. S., Ballio, A., and Graniti, A. (eds.), 1972, Phytotoxins in Plant Diseases, Academic Press, London.

    Google Scholar 

  • Wyse, D. L., Meggitt, W. F., and Penner, D., 1976, Factors affecting EPTC injury to navy bean, Weed Sci. 24: 1–4.

    CAS  Google Scholar 

  • Zambolin, L., and Schenck, N. C., 1983, Reduction of the effects of pathogenic, root-infecting fungi on soybean by the mycorrhizal fungus, Glomus mosseae, Phytopathology 73: 1402–1405.

    Google Scholar 

  • Zeyen, R. J., 1979, Viruses, in: Ecology of Root Pathogens ( S. V. Krupa and Y. R. Dommergues, eds.), pp. 179–205, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Whipps, J.M., Lynch, J.M. (1986). The Influence of the Rhizosphere on Crop Productivity. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0611-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0611-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0613-0

  • Online ISBN: 978-1-4757-0611-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics