Skip to main content

Drug Delivery with Protein and Peptide Carriers

  • Chapter
Bioactive Polymeric Systems

Abstract

Drugs or toxins such as methotrexate, adriamycin, daunomycin, fluorodeoxyuridine, neocarzinostatin, and ricin can be bound, either covalently or by occlusion, to proteins, synthetic polypeptides, and antibodies. Common reactions for coupling these drugs to carriers include the use of carbodiimides, the generation of Schiff bases followed by reduction, and the formation of disulfide linkages. Often a spacer group such as a dextran or polypeptide is included to facilitate the interaction. The resultant conjugates usually contain from approximately 5 to 25 mol of drug per mole of carrier and most retain attenuated antimetabolic properties typical of the free drug. The complexes, however, also possess the properties of the carrier, and in this way delivery and uptake of a bound drug by cells can be significantly different from that of the free drug. For example, in vivo, the higher molecular weight of the conjugate can lead to a larger retention time for the drug prior to excretion, with the attendant greater opportunity for interaction with target cells. Additionally, the mechanism by which the drug is taken up into a cellular target may be altered for the drug-carrier complex and, in the case of an antibody carrier, tissue specificity may also be added to the properties of the drug. These and other characteristics of the complexes are discussed in detail in the text and their possible relevance to chemotherapy is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Ehrlich, Collected Studies on Immunity, Vol. II, Wiley, New York (1906), pp. 442–447.

    Google Scholar 

  2. S. C. Silverstein, R. M. Steinman, and Z. A. Cohn, Endocytosis, Ann. Rev. Biochem. 46, 669–722 (1977).

    Article  CAS  Google Scholar 

  3. H. J.-P. Ryser, Uptake of protein by mammalian cells: An underdeveloped area, Science 159, 390–396 (1968).

    Article  CAS  Google Scholar 

  4. G. C. Easty, The uptake of fluorescent labelled proteins by normal and tumour cells, Brit. J. Cancer 18, 368–377 (1964).

    Article  CAS  Google Scholar 

  5. J. L. Mego and J. D. McQueen, The uptake of labeled proteins by particulate fractions of tumor and normal tissues after injection into mice, Cancer Res. 25, 865–869 (1965).

    CAS  Google Scholar 

  6. T. Ghose, R. C. Nairn, and J. E. Fothergill, Uptake of proteins by malignant cells, Nature 196, 1108–1109(1962).

    Article  CAS  Google Scholar 

  7. R. G. Long, J. G. McAfee, and J. Winkelman, Evaluation of radioactive compounds for the external detection of cerebral tumors, Cancer Res. 23, 98–108 (1963).

    Google Scholar 

  8. C. deDuve, in: Biological Approaches to Cancer Chemotherapy (R. J. C. Harris, ed.), p. 101, Academic Press, London (1961).

    Google Scholar 

  9. T. Ghose and A. H. Blair, Antibody-linked cytotoxic agents in the treatment of cancer: Current status and future prospects, J. Natl. Cancer Inst. 61, 657–676 (1978).

    CAS  Google Scholar 

  10. G. F. Rowland, G. J. O’Neill, and D. A. L. Davies, Suppression of tumour growth in mice by a drug-antibody conjugate using a novel approach to linkage, Nature 255, 487–488 (1975).

    Article  CAS  Google Scholar 

  11. D. G. Gilliland, Z. Steplewski, R.J. Collier, K.F. Mitchell, T.H. Chang, and H. Koprowski, Antibody-directed cytotoxic agents: Use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells, Proc. Natl. Acad. Sci. U.S.A., 77, 4539–4543 (1980).

    Article  CAS  Google Scholar 

  12. A. Huang, L. Huang, and S. J. Kennel, Monoclonal antibody covalently coupled with fatty acid, J. Biol. Chem. 255, 8015–8018 (1980).

    CAS  Google Scholar 

  13. P. E. Thorpe, D. W. Mason, A. N. F. Brown, S. J. Simmonds, W. C. J. Ross, A. J. Cumber, and J. A. Forrester, Selective killing of malignant cells in a leukaemic rat bone marrow using an antibody-ricin conjugate, Nature 297, 594–596 (1982).

    Article  CAS  Google Scholar 

  14. B. C. F. Chu and J. M. Whiteley, High molecular weight derivatives of methotrexate as chemotherapeutic agents, Mol. Pharmacol. 13, 80–88 (1977).

    CAS  Google Scholar 

  15. G. Barbanti-Brodano and L. Fiume, In vitro effect of a 5-fluorodeoxyuridine albumin conjugate on tumour cells and on peritoneal macrophages, Experientia 30, 1180–1182 (1974).

    Article  CAS  Google Scholar 

  16. N. G. L. Harding, Amethopterin linked covalently to water-soluble macromolecules, Ann. N.Y. Acad. Sci. 186, 270–283 (1971).

    Article  CAS  Google Scholar 

  17. A. Trouet, D. D. Campeneere, and C. de Duve, Chemotherapy through lysosomes with a DNA-daunorubicin complex, Nature 239, 110–112 (1972).

    Article  CAS  Google Scholar 

  18. G. Atassi, M. Duarte-Karim, and H. J. Tagnan, Comparison of adriamycin with DNA-adriamycin complex in chemotherapy of experimental tumors and metastases, Eur. J.Cancer 11, 309–316 (1975).

    Article  CAS  Google Scholar 

  19. R. Green, J. Miller, and W. Crosby, Enhancement of iron chelation by desferoxamine entrapped in red blood cell ghosts, Blood 57, 866–872 (1981).

    CAS  Google Scholar 

  20. A. J. Matas, D. E. R. Sutherland, M. W. Steffes, S. M. Mauer, A. Lowe, R. L. Simmons, and J. S. Najarian, Hepatocellular transplantation for metabolic deficiencies: Decrease of plasma bilirubin in gunn rats, Science 192, 892–894 (1976).

    Article  CAS  Google Scholar 

  21. T. M. S. Chang, Artificial Cells, Charles C Thomas, Springfield, Ill. (1972).

    Google Scholar 

  22. J. C. Venter, B. R. Venter, J. E. Dixon, and N. O. Kaplan, A possible role for glass bead immobilized enzymes as therapeutic agents (immobilized uricase as enzyme therapy for hyperuricemia), Biochem. Med. 12, 79–91 (1975).

    Article  CAS  Google Scholar 

  23. A. Senyei, K. Widder, and G. Czerlinski, Magnetic guidance of drug-carrying microspheres, J. Appl. Phys. 49, 3578–3583 (1978).

    Article  CAS  Google Scholar 

  24. N. Mason, C. Thies, and T. J. Cicero, in vivo and in vitro evaluation of a microencapsulated narcotic antagonist, J. Pharm. Sci. 65, 847–850 (1976).

    Article  CAS  Google Scholar 

  25. G. Gregoriadis, The carrier potential of liposomes in biology and medicine, New Engl. J. Med. 295, 707–710 and 765–770 (1976).

    Google Scholar 

  26. H. K. Kimelberg, T. F. Tracy, S. M. Biddlecome, and R. S. Bourke, The effect of entrapment in liposomes on the in vivo distribution of [3H] methotrexate in a primate, Cancer Res. 36, 2949–2957 (1976).

    CAS  Google Scholar 

  27. W.-P. Fung, M. Przybylski, H. Ringsdorf, and D. S. Zaharko, in vitro inhibitory effects of polymer-linked methotrexate derivatives on tetrahydrofolate dehydrogenase and murine L5178Y cells, J. Natl. Cancer Inst. 62, 1261–1264 (1979).

    CAS  Google Scholar 

  28. S. Olsnes and A. Pihl, Different biological properties of the two constituent peptide chains of ricin. A toxic protein inhibiting protein synthesis, Biochemistry 12, 3121–3126 (1973).

    Article  CAS  Google Scholar 

  29. S. Olsnes, K. Refsnes, and A. Phil, Mechanism of action of the toxic lectins abrin and ricin, Nature 249, 627–631 (1974).

    Article  CAS  Google Scholar 

  30. J. W. Goding, Antibody production by hybridomas, J. Immunol. Meth. 39, 285–308 (1980).

    Article  CAS  Google Scholar 

  31. V. Raso and T. Griffin, Specific cytotoxicity of human immunoglobulin-directed Fab’-ricin A chain conjugate, J. Immunol. 125, 2610–2616 (1980).

    CAS  Google Scholar 

  32. J. M. Whiteley, Z. Nimec, and J. Galivan, Treatment of Reuber H35 hepatoma cells with carrier-bound methotrexate, Mol. Pharmacol. 19, 505–508 (1981).

    CAS  Google Scholar 

  33. H.J.-P. Ryser and W.-C. Shen, Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells, Proc. Natl. Acad. Sci. U.S.A. 75, 3867–3870 (1978).

    Article  CAS  Google Scholar 

  34. P. N. Kulkarni, A. H. Blair, and T. I. Ghose, Covalent-binding of methotrexate to immunoglobulins and the effect of antibody-linked drug on tumor growth in vivo, Cancer Res. 41, 2700–2706 (1981).

    CAS  Google Scholar 

  35. E. Calendi, G. Constanzi, F. Indiveri, G. Lotti, and C. Zini, Histoimmunologic specificity of an anti-lymphoid tissue sarcoma γ-globulin bound to methotrexate, Boll. Chim. Farm. 108, 25–28 (1969).

    CAS  Google Scholar 

  36. K. Prabhakaran, E. B. Harris, and W. F. Kirchheimer, A possible method for improving the efficacy of dapsone, Experientia 36, 1350–1351 (1980).

    Article  CAS  Google Scholar 

  37. T. Ghose and S. P. Nigam, Antibody as carrier of chlorambucil, Cancer 29, 1398–1400 (1972).

    Article  CAS  Google Scholar 

  38. D. A. Davies and G. J. O’Neill, In vivo and in vitro effects of tumor-specific antibodies with chlorambucil, Brit. J. Cancer 28 (Supp. 1), 285–298 (1973).

    CAS  Google Scholar 

  39. V. Raso, Antibody mediated delivery of toxic molecules to antigen bearing target cells, Immunolog. Rev. 62, 93–117 (1982).

    Article  CAS  Google Scholar 

  40. E. Hurwitz, R. Levy, R. Maron, M. Wilchek, R. Arnon, and M. Sela, The covalent binding of daunomycin and adriamycin to antibodies with retention of both drug and antibody activities, Cancer Res. 35, 1175–1181 (1975).

    CAS  Google Scholar 

  41. R. Arnon and M. Sela, In vitro and in vivo efficacy of conjugates of daunomycin with anti-tumor antibodies, Immunolog. Rev. 2, 5–27 (1982).

    Article  Google Scholar 

  42. G. P. Mell, J. M. Whiteley, and F. M. Huennekens, Purification of dihydrofolate reductase via amethopterin-aminoethyl starch, J. Biol. Chem. 243, 6074–6075 (1968).

    CAS  Google Scholar 

  43. R. B. Angier, J. H. Boothe, J. H. Mowat, C. W. Waller, and J. Semb, Pteridine chemistry. II. The action of excess nitrous acid upon pteroylglutamic acid and derivatives, J. Am. Chem. Soc. 74, 408–411 (1952).

    Article  CAS  Google Scholar 

  44. Y. Masuho, K. Kishida, M. Saito, N. Umemoto, and T. Hara, Importance of the antigen-binding valency and the nature of the cross-linking bond in ricin A chain conjugates with antibody, J. Biochem. 91, 1583–1591 (1982).

    CAS  Google Scholar 

  45. T. F. Bumol, Q. C. Wang, R. A. Reisfeld, and N. O. Kaplan, Monoclonal antibody and an antibody-toxin conjugate to a cell surface proteoglycan of melanoma cells suppress in vivo tumor growth, Proc. Natl. Acad. Sci. U.S.A. 80, 529–533 (1983).

    Article  CAS  Google Scholar 

  46. T. Lang, C. J. Suckling, and H. C. S. Wood, Affinity chromatography using agarose-triazine derivatives, J. Chem. Soc. 2189–2194 (1977).

    Google Scholar 

  47. M. Szekerke and J. S. Driscoll, The use of macromolecules as carriers of antitumor drugs, Eur. J. Cancer 13, 529–537 (1977).

    Article  CAS  Google Scholar 

  48. H. Sawada, K. Tatsumi, S. Masataka, T. Makumuka, and W. Gyoichi, Effects of neocarzinostatin on DNA synthesis in L1210 cells, Cancer Res. 34, 3341–3346 (1974).

    CAS  Google Scholar 

  49. T. A. Beerman and J. H. Goldberg, DNA strand scission by the antitumor protein neocarzinostatin, Biochem. Biophys. Res. Commun. 59, 1254–1261 (1974).

    Article  CAS  Google Scholar 

  50. T. S. A. Samy and V. Raso, Radioimmunoassay of neocarzinostatin, on antitumor protein, Cancer Res. 36, 4378–4381 (1976).

    CAS  Google Scholar 

  51. L. Chess, R. P. MacDermott, and S. F. Schlossman, Immunologic functions of isolated human lymphocyte subpopulations. I. Quantitative isolation of human T and B cells and response to mitogens, J. Immunol. 113, 1113–1121 (1974).

    CAS  Google Scholar 

  52. M. S. Verlander, J. C. Venter, M. Goodman, N. O. Kaplan, and B. Saks, Biological activity of catecholamines covalently linked to synthetic polymers: Proof of immobilized drug theory, Proc. Natl. Acad. Sci. U.S.A. 73, 1009–1013 (1976).

    Article  CAS  Google Scholar 

  53. W. C. Shen and H.J. P. Ryser, Conjugation of poly(L-lysine) to albumin and horseradish peroxidase: A novel method of enhancing the cellular uptake of proteins, Proc. Natl. Acad. Sci. U.S.A. 75, 1872–1876 (1978).

    Article  CAS  Google Scholar 

  54. P. G. Balboni, A. Minia, M. P. Grossi, G. Barbanti-Brodano, A. Mattioli, and L. Fiume, Activity of albumin conjugates of 5-fluorodeoxyuridine and cytosine arabinoside on poxviruses as a lysosomotropic approach to antiviral chemotherapy, Nature 264, 181–183 (1976).

    Article  CAS  Google Scholar 

  55. R. L. Blakley, in: The Biochemistry of Folic Acid and Related Pteridines, (A. Neuberger and E. L. Tatum, eds.), p. 93, North-Holland, Amsterdam and London (1969).

    Google Scholar 

  56. T. Peters, Serum albumin, in: The Plasma Proteins (F. W. Putnam, ed.), pp. 133–181, Academic Press, New York, San Francisco, and London, (1975).

    Google Scholar 

  57. R. C. Jackson, D. Niethammer, and F. M. Huennekens, Enzymic and transport mechanisms of amethopterin resistance in L1210 mouse leukemia cells, Cancer Biochem. Biophys. 1, 151–155 (1975).

    CAS  Google Scholar 

  58. C. Fan, G. Henderson, K. Vitols, and F. M. Huennekens, Molecular targets for methotrexate, in: Antimetabolites in Biochemistry, Biology and Medicine (J. Skoda and P. Langen, eds.), pp. 313–326, Pergamon Press, Oxford, England and Elmsford, New York (1979).

    Google Scholar 

  59. E. Hurwitz, M. Wilchek, and J. Pitha, Soluble molecules as carriers for daunorubicin, Appl. Biochem. 2, 25 (1980).

    CAS  Google Scholar 

  60. B. C. F. Chu and J. M. Whiteley, Control of solid tumor metastases with a high-molecular-weight derivative of methotrexate, J. Natl. Cancer Inst. 62, 79–82 (1979).

    CAS  Google Scholar 

  61. B. C. F. Chu and J. M. Whiteley, The interaction of carrier-bound methotrexate with L1210 cells, Mol. Pharmacol. 17, 382–387 (1980).

    CAS  Google Scholar 

  62. J. L. Rader, D. Niethammer, and F. M. Huennekens, Effect of sulfhydryl inhibitors upon transport of folate compounds into L1210 cells, Biochem. Pharmacol. 23, 2057–2059 (1974).

    Article  CAS  Google Scholar 

  63. A. Nahas, P. F. Nixon, and J. R. Bertino, Uptake and metabolism of N5-formyl-tetra-hydrofolate by L1210 leukemia cells, Cancer Res. 32, 1416–1421 (172).

    Google Scholar 

  64. J. H. Galivan, Transport and metabolism of methotrexate in normal and resistant cultured rat hepatoma cells, Cancer Res. 39, 735–743 (1979).

    CAS  Google Scholar 

  65. W.-C. Shen and H. J. P. Ryser, Selective protection against the cytotoxicity of methotrexate and methotrexate-polylysine by thiamine pyrophosphate, heparin and leucovorin, Life Sci. 28, 1209–1214 (1981).

    Article  CAS  Google Scholar 

  66. J. H. Galivan, Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate, Mol. Pharmacol. 17, 105–110 (1980).

    CAS  Google Scholar 

  67. J. H. Galivan, Transport of methotrexate by primary cultures of rat hepatocytes: Stimulation of uptake in vitro by the presence of hormones in the medium, Arch. Biochem. Biophys. 206, 113–121 (1981).

    Article  CAS  Google Scholar 

  68. J. Galivan, M. Balinska, and J. M. Whiteley, Interaction of methotrexate poly(L-lysine) with transformed hepatic cells in culture, Arch. Biochem. Biophys. 216, 544–550 (1982).

    Article  CAS  Google Scholar 

  69. J. H. Galivan, Transport and metabolism of methotrexate in normal and resistant cultured rat hepatoma cells, Cancer Res. 39, 735–743 (1979).

    CAS  Google Scholar 

  70. E. Hurwitz, R. Maron, A. Bernstein, M. Wilchek, M. Sela, and R. Arnon, The effect in vivo of chemotherapeutic drug-antibody conjugates in two murine experimental tumor systems, Int. J. Cancer 21, 747–755 (1978).

    Article  CAS  Google Scholar 

  71. R. C. Hughes, How do toxins penetrate cells? Nature 281, 526–527 (1979).

    Article  CAS  Google Scholar 

  72. S. Olsnes, C. Fernandez-Puentes, L. Carrasco, and D. Vazquez, Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of enzymic activities of the toxin A chains, Eur. J. Biochem. 60, 281–288 (1975).

    Article  CAS  Google Scholar 

  73. V. Raso and T. Griffin, Hybrid antibodies with dual specificity for the delivery of ricin to immunoglobulin-bearing target cells, Cancer Res. 41, 2073–2078 (1981).

    CAS  Google Scholar 

  74. F. M. Sirotnak, D. M. Moccio, L. E. Kelleher, and L. J. Goutas, Relative frequency and kinetic properties of transport-defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo,Cancer Res. 41, 4447–4452 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Whiteley, J.M. (1985). Drug Delivery with Protein and Peptide Carriers. In: Gebelein, C.G., Carraher, C.E. (eds) Bioactive Polymeric Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0405-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0405-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0407-5

  • Online ISBN: 978-1-4757-0405-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics