Skip to main content

Fundamentals of Low-Power Laser Photomedicine

  • Chapter
Laser Science and Technology

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 35))

Abstract

All biomedical laser application are based on the interaction of laser light with biological systems. Such interaction causes a broad spectrum of effects which can be divided into three principally different groups1. First, low-intensity laser light is absorbed, reflected or rera-diated (as fluorescence) by the substance so that no changes occur within it. Such interactions form the basis for the laser diagnostics (spectral diagnostics of molecules, and macrodiagnostics on the tissue level). Second, low intensity UV and visible radiation can excite electronic states in molecules, and specific photobiological effects occur due to excitation of chromophores in cells (endogenous or exogenous). These processes occur under the light from incoherent sources as well, but the use of laser light can give several benefits from a practical point of view. This group of effects encompasses molecular photobiology and photomedicine. The third class of effects involves high intensity laser radiation which causes damage to tissues by thermal or hydrodynamical destruction. Such processes, rarely observed with incoherent light sources, form the basis for laser surgery. The principal methodologies based on the second and third type of light-biological system interactions are shown in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. S. Letokhov, Laser Biology and Medicine, Nature, 316, 325:330 (1985)

    ADS  Google Scholar 

  2. R. Pratesi, C. A. Sacchi, “Lasers in Photomedicine and Photobiology”, Springer, Berlin, Heidelberg, New York (1980)

    Google Scholar 

  3. D. Kessel and Th. J. Dougherty, “Porphyrin Photosensitization”, Plenum, New York, London (1983)

    Google Scholar 

  4. R. V. Bensasson, G. Jori, E. L. Land and T. G. Truscott, “Primary Photo-Processes in Biology and Medicine”, Plenum, New York, London (1985)

    Google Scholar 

  5. N. F. Gamaleya, Laser biomedical research in the USSR, in: “Laser Application in Medicine and Biology”, M. L. Wolbarsht, ed., Plenum, New York, London (1977), vol. 3, 1:175

    Google Scholar 

  6. G. Galletti, “Laser”, Monduzzi Editore, Bologna (1986)

    Google Scholar 

  7. T. I. Karu, Photobiological fundamentals of low-power laser therapy, IEEE J. Quant. Electr., QE-23, vol. 10 (1987)

    Google Scholar 

  8. T. I. Karu, Molecular mechanism of therapeutic effect of the low-intensity laser radiation, “Lasers in the Life Sciences”, vol. 2 (1987) (in press)

    Google Scholar 

  9. A. S. Kryuk, V. A. Mostovnikov, I. V. Khokhlov and N. S. Serdyuchenko, “The Therapeutic Efficiency of Low-Intensity Laser Light”, Science and Techn. Publishers, Minsk (1986) (in Russian)

    Google Scholar 

  10. J. R. Basford, Low Energy Laser Treatment of Pain and Wounds: Hype, Hope or Hokum?, Mayo Clin. Proc, vol. 61; 671:675 (1986)

    Google Scholar 

  11. O. A. Tiphlova, T. I. Karu, Effect of Ar laser radiation and noncoherent blue light on E. coli growth, Radiobiology, vol. 26, no. 6, 829:832 (1986) (in Russian)

    Google Scholar 

  12. G. E. Fedoseyeva, T. I. Karu, V. S. Letokhov, V. V. Lobko, N. A. Pomoshnikova, T. S. Lyapunova, M. N. Meissel, Effect of He-Ne laser radiation on the reproduction rate and protein synthesis in the yeast”, Laser Chemistry, vol. 5, 27:33 (1984)

    Google Scholar 

  13. T. I. Karu, G. S. Kalendo, V. V. Lobko

    Google Scholar 

  14. T. I. Karu, G. S. Kalendo, V. S. Letokhov, V. V. Lobko, Biostimulation of HeLa cells by low intensity visible light, Parts I–IV, I1 Nuovo Cimento D., vol. 1, 1761:1767 (1982), vol.3, 309:325 (1984), vol. 5, 483:496 (1985)

    Google Scholar 

  15. T. I. Karu, O. A. Tiphlova, V. S. Letokhov, V. V. Lobko, Stimulation of E. coli growth by laser and incoherent red light, Il Nuovo Cimento P., vol. 2, 1138:1144 (1983)

    ADS  Google Scholar 

  16. T. I. Karu, G. S. Kalendo, L. V. Pyatibrat, Investigations into the effects of He-Ne laser irradiation on the proliferation of HeLa cells, “Laser in the Life Sciences”(in press).

    Google Scholar 

  17. T. I. Karu, G. G. Lukpanova, I. M. Parkhomenko, Yu. Yu. Chirkov, Changes in cAMP level in mammalian cells after irradiation with monochromatic visible light”, Dokl. Akad. Nauk USSR (Proc. USSR Acad. Sci.), vol. 281, 1242:1244 (1985)

    Google Scholar 

  18. G. E. Fedoseyeva, N. K. Smolyaninova, T. I. Karu, A. V. Zelenin, Human lymphocyte chromatin changes following irradiation with He-Ne laser, Radiobiology, vol. 27 (1987) (in press) (in Russian)

    Google Scholar 

  19. O. A. Tiphlova, T. I. Karu, Action of low-intensity red and far red on growth of E. coli, Microbiology, vol. 56, no. 3 (1987)

    Google Scholar 

  20. T. I. Karu, Biological action of low-intensity visible monochromatic light and some of its medical application, in: “Laser”, Proc. Int. Congress on Lasers in Medicine and Surger, Bologna, 25:29, (1985), G. Galletti, ed., Monduzzi Editore, Bologna (1986)

    Google Scholar 

  21. A. L. Boynton, J. F. Whitfield, The role of cyclic AMP in cell proliferation: a critical assessment of the evidence, in: “Advances in Cyclic Nucleotide Research”, P. Greengard, G. A. Robinson, eds., vol. 15, Raven, New York, 192:294 (1983)

    Google Scholar 

  22. I. Martelly, R. Franquinet, Planarian Regeneration as a model for cellular activation studies, Trends. Biochem. Sci., vol. 9, 468: 471 (1984)

    Google Scholar 

  23. B. Chance, P. Cohen, Fr. Jobsis and B. Schoener, Intracellular oxidation-reduction states in vivo, Science, vol. 137, 499:508 (1962)

    ADS  Google Scholar 

  24. M. A. Krebs, Veech, Regulation of the redox state of the pyridine nucleotides in rat liver, in: “Pyridine nucleotide dependent dehydrogenases”, H. Smid, ed., Springer, Berlin, Heidelberg, New York, (1979), pp. 413:434

    Google Scholar 

  25. F. L. Crane, H. Goldenberg, D. J. Morre, H. Löw, Dehydrogenases of the plasma membrane, in: “Subcellular Biochemistry”, O. B. Roodyn, ed., vol. 6, Plenum, New York, London (1979), pp.345:399

    Google Scholar 

  26. C. Cone, Unified theory on the basic mechanism of normal mitotic control and oncogenesis, J. Theor. Biol., vol. 30, pp.151:181 (1971)

    Article  Google Scholar 

  27. J. Gutkneeht, A. Walter, Trasport of auxin (indoleacetic acid) through lipid bilayer membranes, J. Membrane Biol., vol. 56, 65:72 (1980)

    Google Scholar 

  28. P. C. Maloney, E. R. Kashket, T. H. Wilson, A proton-motive force drivesATP synthesis in bacteria, Proc. Nat. Acad. Sci., USA, vol. 71, 3896:3900 (1974)

    ADS  Google Scholar 

  29. O. Tiphlova, T. I. Karu, The action of low-intensity laser light on the transient metabolic processes in E. coli, Dokl. Akad. Nauk, USSR, Proc. USSR Acad. Sci., (1987) (in press)

    Google Scholar 

  30. N. G. Aleksidze, The influence of redox potential of the medium on the acetylcholine sensitivity of muscula, Biophysics, vol. 7, 602:608 (1962) (in Russian)

    Google Scholar 

  31. J. Poussegur, A. Franchi, G. L. Allemain and S. Paris, Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts, FEBS Lett., vol. 190, 115:119 (1985)

    Google Scholar 

  32. A. B. Uzdenskii, Action of laser microbeam irradiation on the isolated crustacean neuron, Biological Sciences, no.3, 20:28 (1980) (in Russian)

    Google Scholar 

  33. R. G. Ludkowaskaya, Yu. M. Burmistrov, Light action on the processes of electrogenesis in pigmented crustacean neurons, Dokl. Akad. Nauk., USSR, Proc. USSR Acad. Sci, vol. 230, 1462:1465 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Karu, T. (1988). Fundamentals of Low-Power Laser Photomedicine. In: Chester, A.N., Letokhov, V.S., Martellucci, S. (eds) Laser Science and Technology. Ettore Majorana International Science Series, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0378-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0378-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0380-1

  • Online ISBN: 978-1-4757-0378-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics