Skip to main content

Rate Constants and Cross Sections

  • Chapter
Ion-Molecule Reactions

Abstract

More is known about the rates of ion-molecule reactions than about those of any other family of chemical reactions. This chapter will not, however, consist of a joyful celebration of that pleasant reality, but rather, the reverse—it will take a somewhat severe look at what we need to know, at what we sometimes think we know; and at what in fact we do know. The ultimate objective, complete and mutual overlap of all three domains, is very far from being realized: in reality, despite the proclamation of the first sentence, there is little overlap between the first and third categories at the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L.M. Branscomb, Is the literature worth reviewing?, Sci. Res. 3 (11), 49–56 (1968).

    Google Scholar 

  2. E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekopf, in “Advances in Atomic and Molecular Physics” (D.R. Bates and I. Estermann, eds.), Vol. 5, pp. 1–56, Academic Press, New York (1969).

    Google Scholar 

  3. T.F. George and R.J. Suplinskas, Kinematic model for reaction. II. Ion-molecule reactions involving H2 and D2, J. Chem. Phys. 51, 3666–3670 (1969).

    CAS  Google Scholar 

  4. I. G. Csizmadia, J. C. Polanyi, A. C. Roach, and W. H. Wong, Distribution of reaction products (theory). VII. D+ + H2 → DH + H+ using an ab initio potential-energy surface, Can. J. Chem. 47, 4097–4099 (1969).

    CAS  Google Scholar 

  5. E.A. Gislason, B.H. Mahan, C.W. Tsao, and A.S. Werner, Evidence for long-lived collision complexes in ion-molecule reactions: DO2 + from O2 + and D2, J. Chem. Phys. 50, 5418–5419 (1969).

    CAS  Google Scholar 

  6. H. Pauly and J.P. Toennies, in “Advances in Atomic and Molecular Physics” (D.R. Bates and I. Estermann, eds.) Vol. 1, pp. 195–344, Academic Press, New York (1965).

    Google Scholar 

  7. V. Čermák and Z. Herman, Mass spectrometric study of the formation of N3 + and C2O+ ions, Collection Czech. Chem. Commun. 30, 1343–1357 (1965).

    Google Scholar 

  8. W.B. Maier II and R.F. Holland, Emission from metastable states in a nitrogen ion beam, J. Chem. Phys. 52, 2997–3001 (1970).

    CAS  Google Scholar 

  9. S. J. Wisniewski, R. P. Clow, and J. H. Futrell, On the competition between unimolecular dissociation and ion-molecule reaction of cis-2-butene molecular ions, J. Phys. Chem. 74, 2234–2235 (1970).

    CAS  Google Scholar 

  10. J.C. Light, J. Ross, and K.E. Schuler, in “Kinetic Processes in Gases and Plasmas” (A.R. Hochstim, ed.), pp. 281–320, Academic Press, New York (1969).

    Google Scholar 

  11. D.R. Herschbach, in “Advances in Chemical Physics” (J. Ross, ed.), Vol. 10, pp. 319–393, Interscience, New York (1966).

    Google Scholar 

  12. J. L.J. Rosenfeld and J. Ross, Calculation of chemical reaction probabilities from elastic scattering data, J. Chem. Phys. 44, 188–194 (1966).

    CAS  Google Scholar 

  13. R.J. Beuhler, Jr. and R.B. Bernstein, Crossed-beam study of the reactive asymmetry of oriented methyl iodide molecules with rubidium, J. Chem. Phys. 51, 5305–5315 (1969).

    CAS  Google Scholar 

  14. P.R. Brooks, Molecular beam reaction of K with oriented CF3I. Evidence for harpooning?, J. Chem. Phys. 50, 5031–5032 (1969).

    CAS  Google Scholar 

  15. E. F. Greene and A. Kuppermann, Chemical reaction cross sections and rate constants, J. Chem. Ed. 45, 361–369 (1968).

    CAS  Google Scholar 

  16. J.P. Toennies, Molecular beam investigations of bimolecular reactions, Ber. Bunsenges. Phys. Chem. 72, 927–949 (1968).

    CAS  Google Scholar 

  17. M. Menzinger and R. Wolfgang, The meaning and use of the Arrhenius activation energy, Angew. Chem. Internat. Edit. 8, 438–444 (1969).

    CAS  Google Scholar 

  18. J. I. Steinfeld and J. L. Kinsey, in “Progress in Reaction Kinetics” (G. Porter, ed), Vol. 5, pp. 1–28, Pergamon Press, Oxford (1970).

    Google Scholar 

  19. J. E. Jordan, E. A. Mason, and I. Amdur, in “Physical Methods in Chemistry” (A. Weissberger and B.W. Rossiter, eds.), Interscience, New York (in press).

    Google Scholar 

  20. L. A. Melton and R. G. Gordon, Extraction of reaction cross section from rate constant data: D + H2 → HD + H, J. Chem. Phys. 51, 5449–5457 (1969).

    CAS  Google Scholar 

  21. J.C. Light, Phase-space theory of chemical kinetics, J. Chem. Phys. 40, 3221–3229 (1964).

    CAS  Google Scholar 

  22. J.C. Light, Conversion of phenomenological to microscopic cross sections for ion-molecule reactions, J. Chem. Phys. 41, 586–587 (1964).

    CAS  Google Scholar 

  23. G. Gioumousis, Cross Sections and Rate Constants for Ion-Molecule Reactions, Lockheed Research Laboratory, Palo Alto, California, Report No. 2–12–66–4 (October 1966).

    Google Scholar 

  24. V. L. Talrose and E. L. Frankevich, Pulse method of determining the rate constants of ion-molecule reactions, Russian J. Phys. Chem. 34, 1275–1279 (1960).

    Google Scholar 

  25. C.W. Pyun, Nonequilibrium effects in free-radical recombination and ion-molecule reaction kinetics, J. Chem. Phys. 48, 1306–1311 (1968).

    CAS  Google Scholar 

  26. C. W. Pyun, Nonequilibrium effects in gas reactions, J. Chem. Phys. 50, 2782–2783 (1969).

    CAS  Google Scholar 

  27. I. Szabo, Consecutive ion-molecule reactions in ethylene investigated by means of positive ion-impact, Arkiv Fysik 33, 57–71 (1967).

    Google Scholar 

  28. P. Warneck, Studies of ion-neutral reactions by a photoionization mass-spectrometer technique. I, J. Chem. Phys. 46, 502–512 (1967).

    CAS  Google Scholar 

  29. L. W. Sieck, S.K. Searles, and P. Ausloos, High-pressure photoionization mass spectrometry. I. Unimolecular and bimolecular reactions of C4H8 + from cyclobutane, J. Am. Chem. Soc. 91, 7627–7634 (1969).

    CAS  Google Scholar 

  30. E.W. McDaniel, in “Methods of Experimental Physics” (B. Bederson and W. L. Fite, eds.), Vol. 7A, pp. 361–390, Academic Press, New York (1968).

    Google Scholar 

  31. C.F. Barnett and H.B. Gilbody, in “Methods of Experimental Physics” (B. Bederson and W.L. Fite, eds.), Vol. 7A, pp. 390–476, Academic Press, New York (1968).

    Google Scholar 

  32. E.W. McDaniel, V. Čermák, A. Dalgarno, E.E. Ferguson, and L. Friedman, “Ion-Molecule Reactions,” Wiley-Interscience, New York (1970).

    Google Scholar 

  33. C. F. Giese and W. B. Maier II, Energy dependence of cross sections for ion-molecule reactions. Transfer of hydrogen atoms and hydrogen ions, J. Chem. Phys. 39, 739–748 (1963).

    CAS  Google Scholar 

  34. M.J. Henchman, H. Otwinowska, and F.H. Field, in “Advances in Mass Spectrometry” (W.L. Mead, ed.), Vol. 3, pp. 359–375, Institute of Petroleum, London (1966).

    Google Scholar 

  35. L. Matus, I. Opauszky, D. Hyatt, A.J. Masson, K. Birkinshaw, and M. J. Henchman, Kinematic investigations of ion-neutral collision mechanisms at ~ 1 eV, Disc. Faraday Soc. 44, 146–156 (1967).

    Google Scholar 

  36. E.W. McDaniel, Possible sources of large error in determinations of ion-molecule reaction rates with drift tube-mass spectrometers, J. Chem. Phys. 52, 3931–3935 (1970).

    CAS  Google Scholar 

  37. D.W. Vance, Relative population of N+ and N2 + in a “mass-14” ion beam, J. Chem. Phys. 48, 1873–1874 (1968).

    CAS  Google Scholar 

  38. A.J. Masson, Ph.D. Thesis, Brandeis University (1971); A.J. Masson and M.J. Henchman, unpublished work.

    Google Scholar 

  39. K. R. Ryan and J. H. Futrell, Effect of translational energy on ion-molecule reaction rates. I, J. Chem. Phys. 42, 824–829 (1965).

    CAS  Google Scholar 

  40. J.H. Futrell, in “Advances in Mass Spectrometry” (W.L. Mead, ed.), Vol. 3, p. 432, Institute of Petroleum, London (1966).

    Google Scholar 

  41. H. Pauly and J. P. Toennies, in “Methods of Experimental Physics” (B. Bederson and W.L. Fite, ed.), Vol. 7A, pp. 227–341, Academic Press, New York (1968).

    Google Scholar 

  42. A.G. Harrison and J.J. Myher, Ion-molecule reactions in mixtures with D2 or CH4, J. Chem. Phys. 46, 3276–3277 (1967).

    CAS  Google Scholar 

  43. M.G. Holliday, J.T. Muckerman, and L. Friedman, Isotopic studies of the proton-hydrogen molecule reaction, J. Chem. Phys. 54, 1058–1072 (1971).

    CAS  Google Scholar 

  44. T.M. Miller, Ph.D. Thesis, Georgia Institute of Technology (1968).

    Google Scholar 

  45. J. Heimerl, R. Johnsen, and M. Biondi, Ion-molecule reactions, He+ + O2 and He+ + N2, at thermal energies and above, J. Chem. Phys. 51, 5041–5048 (1969).

    CAS  Google Scholar 

  46. P. J. Chantry, Doppler broadening in beam experiments, Bull. Am. Phys. Soc. 16, 212–213 (1971).

    Google Scholar 

  47. W.B. Maier II, Atom transfer in endothermic ion-molecule reactions, J. Chem. Phys. 46, 4991–4992 (1967).

    CAS  Google Scholar 

  48. D.G. Truhlar, Statistical phase-space theory of the reaction C+ + D2 including threshold behavior, J. Chem. Phys. 51, 4617–4623 (1969).

    CAS  Google Scholar 

  49. P. J. Chantry, Doppler broadening in beam experiments J. Chem. Phys. 55, 2746–2759 (1971).

    CAS  Google Scholar 

  50. E. Lindholm, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P.J. Ausloos, ed.), pp. 1–19, American Chemical Society, Washington, D.C.(1966).

    Google Scholar 

  51. R. L. Champion and L. D. Doverspike, Charge transfer and dissociative charge transfer between rare-gas ions and molecular nitrogen, J. Chem. Phys. 49, 4321–4329 (1968).

    CAS  Google Scholar 

  52. A. J. Masson, K. Birkinshaw, and M. J. Henchman, Collision mechanism of a dissociative charge-transfer reaction at low energy, J. Chem. Phys. 50, 4112–4114 (1969).

    CAS  Google Scholar 

  53. R. S. Lehrle, J. C. Robb, and D. W. Thomas, A modified time-of-flight mass spectrometer for studying ion-molecule or neutral particle-molecule interactions, J. Sci. Instr. 39, 458–463 (1962).

    CAS  Google Scholar 

  54. J.B. Homer, R.S. Lehrle, J.C. Robb, and D.W. Thomas, Gas-phase ion-molecule interactions involving atom transfer; limitations of the orbiting theory in accounting for the variation of cross-section with energy, Nature 202, 795–797 (1964).

    CAS  Google Scholar 

  55. D. Hyatt and K. Lacmann, Chemical reaction kinematics. VIII. Cross sections of some D-atom transfer reactions in the energy range 1–100 eV, Z. Naturforsch. 23a, 2080–2083 (1968).

    Google Scholar 

  56. E. R. Wiener, G. R. Hertel, and W. S. Koski, Gas phase reactions between carbon tetrachloride and mass analyzed ions of nitrogen between 3 and 200 eV, J. Am. Chem. Soc., 86, 788–793 (1964).

    Google Scholar 

  57. G. R. Hertel and W. S. Koski, Ion-molecule reactions between rare gas ions and methane, J. Am. Chem. Soc. 87, 1686–1691 (1965).

    CAS  Google Scholar 

  58. M. A. Berta, B. Y. Ellis, and W. S. Koski, Reaction of HD+ with rare gases, J. Chem. Phys. 44, 4612–4615 (1966).

    CAS  Google Scholar 

  59. Z. Herman, J. Kerstetter, T. Rose, and R. Wolfgang, Crossed-beam studies of ion-molecule reaction mechanisms, Disc. Faraday Soc. 44, 123–136 (1967).

    Google Scholar 

  60. V. Čermák and Z. Herman, Molecular dissociation in charge-transfer reactions, Nucleonics 19(9), 106–114 (1961).

    Google Scholar 

  61. A. J. Masson, P. F. Fennelly, and M. J. Henchman, in “Advances in Mass Spectrometry,” Vol. 5, pp. 207–212, Institute of Petroleum, London (1971).

    Google Scholar 

  62. R. L. Wolfgang, private communication.

    Google Scholar 

  63. L. Friedman, in “Annual Review of Physical Chemistry” (H.L. Eyring, ed.), Vol. 19, pp. 273–300, Annual Reviews, Palo Alto, Calif. (1968).

    Google Scholar 

  64. W. R. Gentry, E. A. Gislason, B. H. Mahan, and C. W. Tsao, Dynamics of the reaction of N2 + with H2, D2, and HD, J. Chem. Phys. 49, 3058–3070 (1968);

    CAS  Google Scholar 

  65. E. A. Gislason, B.H. Mahan, C. W. Tsao, and A.S. Werner, Dynamics of the reactions of N2 + with CH4 and CD4, J. Chem. Phys. 50, 142–150 (1969).

    CAS  Google Scholar 

  66. J. F. Paulson, F. Dale, and S. A. Studniarz, Study of ion-neutral reactions with a time-of-flight mass spectrometer, Int. J. Mass Spectrom. Ion Phys. 5, 113–126 (1970).

    CAS  Google Scholar 

  67. E. Teloy and D. Gerlich, private communication; D. Gerlich, Diplomarbeit Thesis, University of Freiburg (1971).

    Google Scholar 

  68. W. Paul and H. Steinwedel, Ein neues Massenspektrometer ohne Magnetfeld, Z. Naturforsch. 8a, 448–450 (1953).

    CAS  Google Scholar 

  69. C.F. Giese and W.B. Maier II, Dissociative ionization of CO by ion impact, J. Chem. Phys. 39, 197–200 (1963).

    CAS  Google Scholar 

  70. B. R. Turner, M. A. Fineman, and R. F. Stebbings, Crossed-beam investigation of N2D+ production in N2 +-D2 collisions, J. Chem. Phys. 42, 4088–4096 (1965).

    CAS  Google Scholar 

  71. J. Colwell and M.A. Fineman, Calculation of the total cross section from angular measurements in crossed-beam experiments, J. Chem. Phys. 42, 4097–4100 (1965).

    CAS  Google Scholar 

  72. R.H. Neynaber, in “Advances in Atomic and Molecular Physics” (D. R. Bates and I. Estermann, eds.), Vol. 5, pp. 57–108, Academic Press, New York (1969).

    Google Scholar 

  73. V. A. Belyaev, B. G. Brezhnev, and E. M. Erastov, Resonance charge exchange of protons and deuterons at low energies, Soviet Physics—JETP 25, 777–782 (1967).

    Google Scholar 

  74. V.A. Belyaev, B.G. Brezhnev, and E. M. Erastov, Resonant-charge transfer of low-energy carbon and nitrogen ions, Soviet Physics—JETP 27, 924–926 (1968).

    Google Scholar 

  75. R. H. Neynaber, S. M. Trujillo, and E. W. Rothe, Symmetric resonance charge transfer in Ar from 0.1–20 eV using merging beams, Phys. Rev. 157, 101–102 (1967).

    CAS  Google Scholar 

  76. R.H. Neynaber and S.M. Trujillo, Study of H2 + + H2 → H3 + + H using merging beams, Phys. Rev. 167, 63–66 (1968) [Erratum: Phys. Rev. 171, 282 (1968)].

    CAS  Google Scholar 

  77. P. K. Rol, Low-Energy Interaction Studies by a Merging Beams Technique, Space Science Laboratory, General Dynamics/Convair, Report AFCRL-69–0324 (GDC-DBE69–006) (1970).

    Google Scholar 

  78. P. K. Rol and E. A. Entemann, Low-Energy Interaction Studies by a Merging Beams Technique, Space Science Laboratory, General Dynamics/Convair, Report AFCRL-69--0022 (GDC-DBE69–002) (January 1969).

    Google Scholar 

  79. P.K. Rol and E.A. Entemann, NaO+ production from Na and O2 + in merged beams, J. Chem. Phys. 49, 1430–1431 (1968).

    CAS  Google Scholar 

  80. T. W. Shannon, F. Meyer, and A. G. Harrison, A pulsed ion source for the study of uni-molecular and bimolecular reactions of gas-phase ions, Can. J. Chem. 43, 159–174 (1965).

    CAS  Google Scholar 

  81. S. K. Gupta, E. G. Jones, A. G. Harrison, and J. J. Myher, Reactions of thermal energy ions. VI. Hydrogen-transfer ion-molecule reactions involving polar molecules, Can. J. Chem. 45, 3107–3117 (1967).

    CAS  Google Scholar 

  82. K. Birkinshaw, A.J. Masson, D. Hyatt, L. Matus, I. Opauszky, and M.J. Henchman, in “Advances in Mass Spectrometry” (E. Kendrick, ed.), Vol. 4, pp. 379–390, Institute of Petroleum, London (1968).

    Google Scholar 

  83. M.S.B. Munson, J.L. Franklin, and F.H. Field, A mass spectrometric study of homo-nuclear and heteronuclear rare gas molecule ions, J. Phys. Chem. 67, 1542–1548 (1963).

    CAS  Google Scholar 

  84. L.M. Draper, Ph.D. Thesis, University of New South Wales (1964).

    Google Scholar 

  85. V.L. Talrose and A.K. Lyubimova, Secondary processes in a mass spectrometer ion source, Dokl. Akad. Nauk. SSSR 86, 909–912 (1952).

    Google Scholar 

  86. F.H. Field and J.L. Franklin, Reactions of gaseous ions. X. Ionic reactions in xenon-methane mixtures, J. Am. Chem. Soc. 83, 4509–4515 (1961).

    CAS  Google Scholar 

  87. M.J. Henchman, Ion-molecule reactions and reactions in crossed molecular beams, Ann. Rep. Chem. Soc. 62, 39–62 (1965).

    CAS  Google Scholar 

  88. D. P. Stevenson, in “Mass Spectrometry” (C. A. McDowell, ed.), pp. 589–615, McGraw-Hill, New York (1963).

    Google Scholar 

  89. W.A. Chupka and M.E. Russell, Photoionization study of ion-molecule reactions in mixtures of hydrogen and rare gases, J. Chem. Phys. 49, 5426–5437 (1968).

    CAS  Google Scholar 

  90. J. C. Light and J. Lin, Phase-space theory of chemical kinetics.II. Ion-molecule reactions, J. Chem. Phys. 43, 3209–3219 (1965).

    CAS  Google Scholar 

  91. K. R. Ryan and J. H. Futrell, Effect of translational energy on ion-molecule reaction rates. II, J. Chem. Phys. 43, 3009–3014 (1965).

    CAS  Google Scholar 

  92. K. R. Ryan, J. H. Futrell, and C. D. Miller, Method for studying low energy ion-molecule reactions using monoenergetic ions, Rev. Sci. Instr. 37, 107–110 (1966).

    CAS  Google Scholar 

  93. J.H. Futrell and T.O. Tiernan, in “Fundamental Processes in Radiation Chemistry,” (P.J. Ausloos, ed.), pp. 171–280, Interscience, New York (1968).

    Google Scholar 

  94. D.J. Hyatt, E.A. Dodman, and M.J. Henchman, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P.J. Ausloos, ed.), pp. 131–149, American Chemical Society, Washington, D. C. (1966).

    Google Scholar 

  95. R. A. Challinor and R. A. Duncan, The effects of thermal energy and ion-removal time on the “pulsed source” method for mass spectrometer investigations of ion-molecule reactions, Austr. J. Phys. 20, 633–642 (1967).

    CAS  Google Scholar 

  96. K. R. Ryan, Ionic collision processes in gaseous nitrogen, J. Chem. Phys. 51, 570–576 (1969).

    CAS  Google Scholar 

  97. J.S. Dahler, J.L. Franklin, M.S.B. Munson, and F.H. Field, Rare-gas molecule-ion formation by mass spectrometry. Kinetics of Ar2 +, Ne2 +, and He2 + formation by second- and third-order processes, J. Chem. Phys. 36, 3332–3344 (1962).

    CAS  Google Scholar 

  98. F.W. Lampe, J.L. Franklin, and F.H. Field, in “Progress in Reactions Kinetics” (G. Porter, ed.), Vol. 1. pp. 67–103, Pergamon Press, New York (1961).

    Google Scholar 

  99. G.G. Meisels and H.F. Tibbals, Higher order ion-molecule reactions, Part I. Theoretical basis, J. Phys. Chem. 72, 3746–3753 (1968).

    CAS  Google Scholar 

  100. I. Szabo, Theoretical analysis of consecutive ion-molecule reactions. I. The mechanisms in a tandem mass spectrometer of perpendicular type. II. The mechanisms in a tandem mass spectrometer of longitudinal type, Int. J. Mass Spectrom. Ion Phys. 3, 103–129, 169–188 (1969).

    CAS  Google Scholar 

  101. P. Warneck, Studies of ion-neutral reactions by a photoionization mass-spectrometer technique. II. Charge-transfer reactions of argon ions at near-thermal energies, J. Chem. Phys. 46, 513–519 (1967).

    CAS  Google Scholar 

  102. C.J. Ogle, Ph.D. Thesis, University of Leeds, 1968; M.J. Henchman and C.J. Ogle, unpublished work.

    Google Scholar 

  103. J. F. Paulson, Low energy charge exchange and ion-molecule reactions, Ann. Geophys. 20,75–87 (1964).

    CAS  Google Scholar 

  104. A. G. Harrison, J. J. Myher, and J. C. J. Thynne, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), pp. 150–166, American Chemical Society, Washington, D.C. (1966).

    Google Scholar 

  105. A.A. Herod, A.G. Harrison, R.M. O’Malley, A.T. Ferrer-Correia, and K. R. Jennings, A comparison of the zero-field pulsing technique and the ICR technique for studying ion-molecule reactions, J. Phys. Chem. 74, 2720–2722 (1970).

    CAS  Google Scholar 

  106. J. Bracher, H. Ehrhardt, R. Fuchs, O. Osberghaus, and R. Taubert, in “Advances in Mass Spectrometry” (R.M. Elliott, ed.), Vol. 2, pp. 285–295, Pergamon Press, Oxford (1963).

    Google Scholar 

  107. T.H. McGee and M.J. Henchman, unpublished work.

    Google Scholar 

  108. G.V. Karachevtsev, M.I. Markin, and V.L. Talrose, Mass-spectrometric impulse method of investigating elementary processes of charge exchange of thermal ions in molecules, Kinetics Catalysis 5, 331–339 (1964).

    Google Scholar 

  109. B.G. Reuben, A. Lifshitz, and C. Lifshitz, Calculations of rate constants for ion-molecule reactions in a pulsed-source mass spectrometer, Int. J. Mass Spectrom. Ion Phys. 2, 385–390 (1969).

    CAS  Google Scholar 

  110. D. A. Durden, P. Kebarle, and A. Good, Thermal ion-molecule reaction rate constants at pressures up to 10 Torr with a pulsed mass spectrometer. Reactions in methane, krypton, and oxygen, J. Chem. Phys. 50, 805–813 (1969).

    CAS  Google Scholar 

  111. T. H. McGee, P. F. Fennelly, and M.J. Henchman, in “Abstracts of Papers, Sixth International Conference on the Physics of Electronic and Atomic Collisions” (I. Amdur, ed.), pp. 321–324, M.I.T. Press, Cambridge (1969).

    Google Scholar 

  112. R. Johnsen, H.L. Brown, and M.A. Biondi, Ion-molecule reactions involving N2 +, N+, O2 +, and O+ ions from 300°K to ~ 1 eV, J. Chem. Phys. 52, 5080–5084 (1970).

    CAS  Google Scholar 

  113. J.T. Moseley, R.M. Snuggs, D.W. Martin, and E.W. McDaniel, Mobilities, diffusion coefficients, and reaction rates of mass-identified nitrogen ions in nitrogen, Phys. Rev. 178, 240–248 (1969).

    CAS  Google Scholar 

  114. M.T. Bowers, D. D. Elleman, and J. L. Beauchamp, Ion cyclotron resonance of olefins. I. A study of the ion-molecule reactions in electron-impacted ethylene, J. Phys. Chem. 72, 3599–3612 (1968).

    CAS  Google Scholar 

  115. S. E. Buttrill, Jr., Measurement of ion-molecule reaction rate constants using ion cyclotron resonance, J. Chem. Phys. 50, 4125–4132 (1969).

    CAS  Google Scholar 

  116. R. P. Clow and J. H. Futrell, Ion-cyclotron resonance study of the kinetic energy dependence of ion-molecule reaction rates. I. Methane, hydrogen, and rare gas-hydrogen systems, Int. J. Mass Spectrom. Ion Phys. 4, 165–179 (1970).

    CAS  Google Scholar 

  117. J. L. Beauchamp and S. E. Buttrill Jr., Proton affinities of H2S and H2O, J. Chem. Phys. 48, 1783–1789 (1968).

    CAS  Google Scholar 

  118. L. R. Anders, Study of the energetics of ion-molecule reactions by pulsed ion cyclotron double resonance, J. Phys. Chem. 73, 469–470 (1969).

    CAS  Google Scholar 

  119. R. C. Dunbar, Energy dependence of methanol proton transfer reaction rate, J. Chem. Phys. 52, 2780–2781 (1970).

    CAS  Google Scholar 

  120. D. Wobschall, R. A. Fluegge, and J. R. Graham, Jr., Collision cross sections of hydrogen and other ions as determined by ion cyclotron resonance, J. Chem. Phys. 47, 4091–4094 (1967).

    CAS  Google Scholar 

  121. J. L. Beauchamp, Theory of collision-broadened ion cyclotron resonance spectra, J. Chem. Phys. 46, 1231–1243 (1967).

    CAS  Google Scholar 

  122. J.L. Beauchamp and J.T. Armstrong, An ion ejection technique for the study of ion-molecule reactions with ion cyclotron resonance spectroscopy, Rev. Sci. Instr. 40, 123–128 (1969).

    CAS  Google Scholar 

  123. J.H. Futrell, private communication.

    Google Scholar 

  124. M.T. Bowers and D.D. Elleman, Kinetic analysis of the concurrent ion-molecule reactions in mixtures of argon and nitrogen with H2, D2, and HD utilizing ion-ejection-ion-cyclotron-resonance techniques, J. Chem. Phys. 51, 4606–4617 (1969).

    CAS  Google Scholar 

  125. J. King Jr., and D. D. Elleman, Charge-exchange reactions in xenon-methane mixtures, J. Chem. Phys. 48, 4803–4804 (1968).

    CAS  Google Scholar 

  126. R. P. Clow and J. H. Futrell, Observation of charge exchange in xenon-methane mixtures by ion-cyclotron double resonance, J. Chem. Phys. 50, 5041–5042 (1969).

    CAS  Google Scholar 

  127. A. G. Marshall and S. E. Buttrill Jr., Calculation of ion-molecule reaction rate constants from ion cyclotron resonance spectra: methyl fluoride, J. Chem. Phys. 52, 2752–2759 (1970).

    CAS  Google Scholar 

  128. M.T. Bowers, D.D. Elleman, and J. King Jr., Kinetic analysis of the ion-molecule reactions in nitrogen-hydrogen mixtures using ion cyclotron resonance, J. Chem. Phys. 50, 1840–1845 (1969).

    CAS  Google Scholar 

  129. W.L. Fite, in “Methods of Experimental Physics” (B. Bederson and W.L. Fite, eds.), Vol. 7B, pp. 124–139, Academic Press, New York (1968).

    Google Scholar 

  130. W.L. Fite, Positive ion reactions, Can. J. Chem. 47, 1797–1807 (1969).

    CAS  Google Scholar 

  131. W. C. Lineberger and L. J. Puckett, Positive ions in nitric oxide afterglows, Phys. Rev. 186, 116–127 (1969).

    CAS  Google Scholar 

  132. W.C. Lineberger and L.J. Puckett, Hydrated positive ions in nitric-oxide-water afterglows, Phys. Rev. 187, 286–291 (1969).

    CAS  Google Scholar 

  133. L.J. Puckett and W.C. Lineberger, Negative-ion reactions in NO-H2O mixtures, Phys. Rev. A 1, 1635–1641 (1970).

    Google Scholar 

  134. N.G. Adams, D. K. Bohme, D. B. Dunkin, and F.C. Fehsenfeld, Temperature dependences of the rate coefficients for the reactions of Ar+ with O2, H2, and D2, J. Chem. Phys. 52, 1951–1955 (1970).

    CAS  Google Scholar 

  135. F.C. Fehsenfeld, A.L. Schmeltekopf, D.B. Dunkin, and E.E. Ferguson, Compilation of Reaction Rate Constants Measured in the ESSA Flowing Afterglow System to August 1969, ESSA Technical Report ERL 135-AL 3 (September 1969).

    Google Scholar 

  136. H. I. Schiff, A. E. Roche, F. C. Fehsenfeld, and D. K. Bohme, in “Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions” (L. Branscomb, ed.), pp. 984–986, North-Holland, Amsterdam (1971).

    Google Scholar 

  137. D. K. Bohme and L. B. Young, Gas-phase reactions of oxide radical ion and hydroxide ion with simple olefins and of carbanions with oxygen, J. Am. Chem. Soc. 92, 3301–3309 (1970).

    CAS  Google Scholar 

  138. R. C. Bolden, R. S. Hemsworth, M. J. Shaw, and N. D. Twiddy, Measurement of thermal-energy ion-neutral reaction rate coefficients for rare-gas ions, J. Phys. B. 3, 45–60 (1970).

    CAS  Google Scholar 

  139. A.L. Farragher, Ion-molecule reaction rate studies in a flowing afterglow system, Trans. Faraday Soc. 66, 1411–1422 (1970).

    CAS  Google Scholar 

  140. R.C. Bolden, R.S. Hemsworth, M.J. Shaw, and N.D. Twiddy, The measurement of penning ionization cross sections for helium 2 3S metastables using a steady-state flowing afterglow method, J. Phys. B. 3, 61–71 (1970).

    CAS  Google Scholar 

  141. W.A. Chupka, M.E. Russell, and K. Refaey, Ion-molecule and chemi-ionization reactions in H2 by photoionization, J. Chem. Phys. 48, 1518–1527 (1968).

    CAS  Google Scholar 

  142. N. Sbar and J. Dubrin, Study of the rotational kinetic energy dependence of the reaction cross section: Ar+ + H2 → ArH+ + H, J. Chem. Phys. 53, 842–843 (1970).

    CAS  Google Scholar 

  143. F.C. Fehsenfeld, D.L. Albritton, J.A. Burt and H.I. Schiff, Associative-detachment reactions of CT and O2 - by O2(1Δ g ), Can. J. Chem. 47, 1793–1795 (1969).

    CAS  Google Scholar 

  144. M. J. Henchman, D. Hyatt, and L. Matus, in “Proceedings of the XIV Colloquium Spec-troscopicum Internationale,” pp. 1535–1539, Adam Hilger, London (1967).

    Google Scholar 

  145. L. Matus, D.J. Hyatt, and M.J. Henchman, Collision mechanisms of ion-molecule reactions at energies of 1 eV, J. Chem. Phys. 46, 2439–2440 (1967).

    CAS  Google Scholar 

  146. C.W. Hand and H. von Weyssenhoff, Ion-molecule reactions studied by time-of-flight mass spectrometry. II. Reactions in CO-D2 and CH4-D2 mixtures, Can. J. Chem. 42, 2385–2392 (1964).

    CAS  Google Scholar 

  147. J.L. Franklin, Y. Wada, P. Natalis, and P.M. Hierl, Ion-molecule reactions in acetonitrile and propionitrile, J. Phys. Chem. 70, 2353–2361 (1966).

    CAS  Google Scholar 

  148. K. Birkinshaw, Ph.D. Thesis, University of Leeds (1968); K. Birkinshaw and M.J. Henchman, unpublished results.

    Google Scholar 

  149. R.A. Fluegge, Ion-molecule reactions in alpha-particle-irradiated methane and water vapor, J. Chem. Phys. 50, 4373–4380 (1969).

    CAS  Google Scholar 

  150. C. Lifshitz and B.G. Reuben, Ion-molecule reactions in aromatic systems. I. Secondary ions and reaction rates in benzene, J. Chem. Phys. 50, 951–960 (1969).

    CAS  Google Scholar 

  151. M. Inoue and S. Wexler, Isotopic exchange in CH4-D2 and CD4-H2 mixtures studied by ion cyclotron resonance spectroscopy. The mechanism of self-induced labeling of methane by tritium, J. Am. Chem. Soc. 91, 5730–5740 (1969).

    CAS  Google Scholar 

  152. D. Holtz, J. L. Beauchamp, and J. R. Eyler, Acidity, basicity and ion-molecule reactions of phosphine in the gas phase by ion cyclotron resonance spectroscopy, J. Am. Chem. Soc. 92, 7045–7055 (1970).

    CAS  Google Scholar 

  153. K. R. Ryan, Ionic collision processes in water vapor, J. Chem. Phys. 52, 6009–6016 (1970).

    CAS  Google Scholar 

  154. F. H. Field, J. L. Franklin, and F. W. Lampe, Reactions of gaseous ions. I. Methane and ethylene, J. Am. Chem. Soc. 79, 2419–2429 (1957).

    CAS  Google Scholar 

  155. T. W. Martin and C. E. Melton, Hydrogen atom abstraction reactions by cyanide ion-radicals, J. Chem. Phys. 32, 700–704 (1960).

    CAS  Google Scholar 

  156. A. Giardini-Guidoni and L. Friedman, Energy transfer in ion-molecule reactions in the methane system, J. Chem. Phys. 45, 937–943 (1966).

    CAS  Google Scholar 

  157. W. Poschenrieder and P. Warneck, Gas analysis by photo-ionization mass spectrometry, J. Appl. Phys. 37, 2812–2820 (1966).

    CAS  Google Scholar 

  158. J. H. Futrell, T. O. Tiernan, F. P. Abramson, and C. D. Miller, Modification of a time-of-flight mass spectrometer for investigation of ion-molecule reactions at elevated pressures, Rev. Sci. Instr. 39, 340–345 (1968).

    CAS  Google Scholar 

  159. S. Wexler and N. Jesse, Consecutive ion-molecule reactions in methane, J. Am. Chem. Soc. 84, 3425–3432 (1962).

    Google Scholar 

  160. F.H. Field, J.L. Franklin, and M.S.B. Munson, Reactions of gaseous ions. XII. High pressure mass spectrometric study of methane, J. Am. Chem. Soc. 85, 3575–3583 (1963).

    CAS  Google Scholar 

  161. G.A.W. Derwish, A. Galli, A. Giardini-Guidoni, and G.G. Volpi, Ion-molecule reactions in methane and in ethane, J. Chem. Phys. 40, 5–12 (1964).

    CAS  Google Scholar 

  162. S. Wexler, A. Lifshitz, and A. Quattrochi, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P.J. Ausloos, ed.), pp. 193–209, American Chemical Society, Washington, D.C. (1966).

    Google Scholar 

  163. S.O. Colgate and T.W. Schmidt, Energy-dependence measurement of the CH4 + + CH4 = CH3 + CH5 + reaction cross section, J. Chem. Phys. 45, 367–369 (1966).

    CAS  Google Scholar 

  164. F. P. Abramson and J. H. Futrell, On the reaction of CH4 + with CD4, J. Chem. Phys. 46, 3264–3266 (1967).

    CAS  Google Scholar 

  165. C.E. Melton and W.H. Hamill, Appearance potentials by the retarding potential-difference method for secondary ions produced by excited-neutral, excited ion-neutral, and ion-neutral reactions, J. Chem. Phys. 41, 1469–1474 (1964).

    CAS  Google Scholar 

  166. W. A. Chupka and J. Berkowitz, Photoionization of methane: ionization potential and proton affinity of CH4, J. Chem. Phys. 54, 4256–4259 (1971).

    CAS  Google Scholar 

  167. H. Gutbier, Massenspecktrometrische Untersuchung der reaktion X+ + H2 → HX+ + H, Z. Naturforsch. 12a, 499–507 (1957).

    CAS  Google Scholar 

  168. G. Gioumousis and D.P. Stevenson, Reactions of gaseous molecule ions with gaseous molecules. V. Theory, J. Chem. Phys. 29, 294–299 (1958).

    CAS  Google Scholar 

  169. Z. Herman and V. Čermák, Mass spectrometric investigation of the reactions of ions and excited neutral particles in mixtures containing mercury vapour, Collection Czech. Chem. Commun. 28, 799–807 (1963).

    CAS  Google Scholar 

  170. J. H. Green and D. M. Pinkerton, Hydride ion transfer and radiolysis reactions in pentane and isopentane, J. Phys. Chem. 68, 1107–1111 (1964).

    CAS  Google Scholar 

  171. V. Aquilanti, A. Galli, A. Giardini-Guidoni, and G.G. Volpi, Ion-molecule reactions in hydrogen-rare-gas mixtures, J. Chem. Phys. 43, 1969–1973 (1965).

    CAS  Google Scholar 

  172. J. Sayers and D. Smith, Ion and charge exchange reactions involving atmospheric gases, Disc. Faraday Soc. 37, 167–175 (1964).

    Google Scholar 

  173. D.B. Dunkin, F.C. Fehsenfeld, A.L. Schmeltekopf, and E.E. Ferguson, Ion-molecule reaction studies from 300° to 600°K in a temperature-controlled flowing afterglow system, J. Chem. Phys. 49, 1365–1371 (1968).

    CAS  Google Scholar 

  174. W.B. Maier II, Reactions of He+ with N2 and O2 in the upper atmosphere, Planetary Space Sci. 16, 477–493 (1968).

    CAS  Google Scholar 

  175. B. Ziegler, Der Wirkungsquerschnitt sehr langsamer ionen, Z. Physik 136, 108–118 (1953).

    CAS  Google Scholar 

  176. W. H. Cramer, Elastic and ineleastic scattering of low-velocity ions: Ne+ in A, A+ in Ne, and A+ in A, J. Chem. Phys. 30, 641–642 (1959).

    CAS  Google Scholar 

  177. B. J. Nichols and F. C. Witteborn, Measurements of Resonant Charge Exchange Cross Sections in Nitrogen and Argon between 0.5 and 17 eV, NASA Technical Note NASA TN D-3265 (February 1966).

    Google Scholar 

  178. P. Mahadevan and G. D. Magnuson, Low-energy (1- to 100-eV) charge-transfer cross-section measurements for noble-gas-ion collisions with gases, Phys. Rev. 171, 103–109 (1968)

    CAS  Google Scholar 

  179. I. Popescu Iovitsu and N. Ionescu-Pallas, Resonant charge-exchange and the kinetics of ions, Soviet Phys.-Tech. Phys. 4, 781–791 (1960).

    Google Scholar 

  180. D. Rapp and W. E. Francis, Charge exchange between gaseous ions and atoms, J. Chem. Phys. 37, 2631–2645 (1962).

    CAS  Google Scholar 

  181. R. M. Snuggs, D. J. Volz, I. R. Gatland, J. H. Schummers, D. W. Martin, and E. W. McDaniel, Ion-molecule reactions between O- and O2 at thermal energies and above, Phys. Rev. A 3, 487–493 (1971).

    Google Scholar 

  182. B. G. Reuben and L. Friedman, Isotopic hydrogen-ion-molecule reactions, J. Chem. Phys. 37, 1636–1642 (1962).

    CAS  Google Scholar 

  183. J. J. Leventhal and L. Friedman, Diatomic-ion-molecule reactions: N2 +-N2, CO+ — CO, and O2 + — O2, J. Chem. Phys. 46, 997–1005 (1967).

    CAS  Google Scholar 

  184. W.B. Maier II. Is N3 produced in reactions between N2 + and N2?, J. Chem. Phys. 47, 859–860 (1967).

    CAS  Google Scholar 

  185. S. E. Buttrill, Jr., Calculation of ion-molecule reaction product distributions using the quasiequilibrium theory of mass spectra, J. Chem. Phys. 52, 6174–6183 (1970).

    CAS  Google Scholar 

  186. J. C. Light, Statistical theory of bimolecular exchange reactions, Disc. Faraday Soc. 44, 14–29 (1967).

    Google Scholar 

  187. D. K. Bohme, J. B. Hasted, and P. P. Ong, Calculation of interchange reaction rates by a “nearest resonance” method, J. Phys. B 1, 879–892 (1968).

    Google Scholar 

  188. J. J. Kaufman and W. S. Koski, Theoretical justification of the apparently anomalous low-energy behavior of some ion-molecule reactions, J. Chem. Phys. 50, 1942–1945 (1969).

    CAS  Google Scholar 

  189. T. F. O’Malley, Simple model for high energy reaction of O+ ions with N2, J. Chem. Phys. 52, 3269–3277 (1970).

    Google Scholar 

  190. E. E. Nikitin, in “Chemische Elementarprozesse” (H. Hartmann, ed.), pp. 43–77, Springer-Verlag, Berlin (1968).

    Google Scholar 

  191. J. C. Light and J. Horrocks, Molecular rearrangement collisions at high impact energies, Proc. Phys. Soc. 84, 527–530 (1964).

    CAS  Google Scholar 

  192. A. Henglein, in “Molecular Beams and Reaction Kinetics” (Ch. Schlier, ed.), pp. 139–183, Academic Press, New York (1970).

    Google Scholar 

  193. D. R. Bates, C. J. Cook, and F. J. Smith, Classical theory of ion-molecule rearrangement collisions at high impact energies, Proc. Phys. Soc. 83, 49–57 (1964).

    CAS  Google Scholar 

  194. G. K. Ivanov and Yu. S. Sayasov, The theory of direct atom-molecule reactions, Part I, Theor. Exp. Chem. 3, 95–101 (1967).

    Google Scholar 

  195. V.L. Talrose, Ion-molecular reactions in gases, Pure Appl. Chem. 5, 455–486 (1962).

    Google Scholar 

  196. V. L. Talrose and G. V. Karachevtsev, in “Advances in Mass Spectrometry” (W. L. Mead, ed.), Vol. 3, pp. 211–233, Institute of Petroleum, London (1966).

    Google Scholar 

  197. A. Henglein, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P.J. Ausloos, ed.), pp. 63–79, American Chemical Society, Washington, D.C. (1966).

    Google Scholar 

  198. J. H. Futrell and F. P. Abramson, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), pp. 107–130, American Chemical Society, Washington, D. C. (1966).

    Google Scholar 

  199. F. A. Wolf and B. R. Turner, Energy dependence of charge-transfer reactions in the thermal and low-electron-volt region, J. Chem. Phys. 48, 4226–4233 (1968).

    CAS  Google Scholar 

  200. R. W. Rozett and W. S. Koski, Helium ion-hydrogen reactions, J. Chem. Phys. 48, 533–534 (1968).

    CAS  Google Scholar 

  201. J. J. Leventhal, T. F. Moran, and L. Friedman, Molecular resonant charge-transfer proccesses; H2 + — H2 and N2 + — N2, J. Chem. Phys. 46, 4666–4672 (1967).

    CAS  Google Scholar 

  202. J.C. Light and S. Chan, Isotopic distributions in exothermic ion-molecule reactions. A simple model, J. Chem. Phys. 51, 1008–1015 (1969).

    CAS  Google Scholar 

  203. A. Ding, A. Henglein, and K. Lacmann, Chemische reaktionskinematik. VI. Komplex- und stripping-mechanismus der reaktion CD4 + + CD4 → CD5 + + CD3, Z. Naturforsch. 23a, 779–780 (1968).

    Google Scholar 

  204. E. Vogt and G. H. Wannier, Scattering of ions by polarization forces, Phys. Rev. 95, 1190–1198 (1954).

    CAS  Google Scholar 

  205. J. V. Dugan Jr. and J. L. Magee, Capture collisions between ions and polar molecules, J. Chem. Phys. 47, 3103–3112 (1967).

    CAS  Google Scholar 

  206. E. W. McDaniel, “Collision Phenomena in Ionized Gases,” John Wiley and Sons, New York (1964).

    Google Scholar 

  207. J. V. Dugan Jr., J. H. Rice, and J. L. Magee, On the nature of ion-molecule collisions, Chem. Phys. Letters 2, 219–222 (1968).

    CAS  Google Scholar 

  208. R.C.C. Lao, R.W. Rozett, and W.S. Koski, Ion-molecule reactions of C+ with N2 and O2, J. Chem. Phys. 49, 4202–4209 (1968).

    CAS  Google Scholar 

  209. G. R. North and J. J. Leventhal, Two-channel model for electron transfer in ion-molecule collisions, J. Chem. Phys. 51, 4236–4237 (1969).

    CAS  Google Scholar 

  210. N. Boelrijk and W. H. Hamill, Effects of relative velocity upon gaseous ion-molecule reactions; charge transfer to the neopentane molecule, J. Am. Chem. Soc. 84, 730–742 (1962).

    CAS  Google Scholar 

  211. A. MacKenzie Peers, The hard-sphere correction for ion-molecule collisions, Int. J. Mass. Spectrom. Ion Phys. 3, 99–102 (1969).

    Google Scholar 

  212. A. Jacobson, T. H. McGee, and M. J. Henchman, unpublished results.

    Google Scholar 

  213. J.L. Franklin, J.G. Dillard, H.M. Rosenstock, J.T. Herron, K. Draxl, and F.H. Field, “Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions,” Nat. Stand. Ref. Data Ser., Nat. Bur. Stand (U.S.) Vol. 26, U.S. Dept. of Commerce (1969).

    Google Scholar 

  214. I. G. Csizmadia, R. E. Kari, J. C. Polanyi, A. C. Roach, and M. A. Robb, Ab initio SCF-MO-CI calculations for H-, H2, and H3 + using Gaussian basis sets, J. Chem. Phys. 52, 6205–6211 (1970).

    CAS  Google Scholar 

  215. J. D. Payzant and P. Kebarle, Clustering equilibrium N2 + + 2N2 = N4 + + N2 and the bond dissociation energy of N4 +, J. Chem. Phys. 53, 4723–4724 (1970).

    CAS  Google Scholar 

  216. F. H. Field and D. P. Beggs, Reversible reactions of gaseous ions. III. Studies with methane at 0.1–1.0 Torr and 77–300°K, J. Am. Chem. Soc. 93, 1585–1591 (1971).

    CAS  Google Scholar 

  217. W.A. Lester, Jr., Interaction potential between Li+ and H2. I. Region appropriate for rotational excitation, J. Chem. Phys. 53, 1511–1515 (1970).

    CAS  Google Scholar 

  218. T. L. Gilbert and A. C. Wahl, Single-configuration wave functions and potential curves for low-lying states of He2 +, Ne2 +, Ar2 +, F2 -, Cl2 - and the ground states of Cl2, J. Chem. Phys. 55, 5247–5261 (1971).

    CAS  Google Scholar 

  219. M. Krauss, Compendium of ab initio Calculations of Molecular Energies and Properties, NBS Technical Note 438, U. S. Dept. of Commerce (December 1967).

    Google Scholar 

  220. C. F. Giese, in “Advances in Mass Spectrometry” (W. L. Mead, ed.), Vol. 3, pp. 321–330, Institute of Petroleum, London (1966).

    Google Scholar 

  221. J. B. Hasted, in “Advances in Atomic and Molecular Physics” (D. R. Bates and I. Estermann, ed.), Vol. 4, pp. 237–266, Academic Press, New York (1968).

    Google Scholar 

  222. E. F. Greene and J. Ross, Molecular beams and a chemical reaction, Science 159, 587–595 (1968).

    CAS  Google Scholar 

  223. G. H. Dunn, Franck-Condon factors for the ionization of H2 and D2, J. Chem. Phys. 44, 2592–2594 (1966).

    CAS  Google Scholar 

  224. D.P. Ridge and J.L. Beauchamp, Analysis of collision-broadened ion cyclotron resonance lineshapes: ions in methane. Cited in Ref. (321).

    Google Scholar 

  225. R. C. Dunbar, Energy dependence of ion-molecule reactions, J. Chem. Phys. 47, 5445–5446 (1967).

    CAS  Google Scholar 

  226. E. E. Ferguson, in “Advances in Electronics and Electron Physics” (L. Marton, ed.), Vol. 24, pp. 1–50, Academic Press, New York (1968).

    Google Scholar 

  227. C. Lifshitz and R. Grajower, Electron transfer reactions between polyatomic negative molecule-ions and neutral molecules at thermal energies, Int. J. Mass Spectrom. Ion Phys. 3, App. 5–8 (1969).

    Google Scholar 

  228. H. M. Rosenstock, C. R. Mueller, M. B. Wallenstein, M. L. Vestal, A. Tory, D. Rivers, and W. H. Johnston, Ion-Molecule Reactions, Report # JLI-650–3–7, U. S. Dept. of Commerce (October 1959).

    Google Scholar 

  229. D. R. Herschbach, unpublished results.

    Google Scholar 

  230. C. F. Giese, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), pp. 20–27, American Chemical Society, Washington, D. C. (1966).

    Google Scholar 

  231. C. F. Giese, in “Advances in Chemical Physics” (J. Ross, ed.), Vol. 10, pp. 247–273, Interscience, New York (1966).

    Google Scholar 

  232. J. Schaefer and J. M. S. Henis, Electron density rearrangement description of ion-molecule reactions, J. Chem. Phys. 49, 5377–5381 (1968).

    CAS  Google Scholar 

  233. A. L. Schmeltekopf, F. C. Fehsenfeld, and E. E. Ferguson, Laboratory measurement of the rate constant for H- + H → H2 + e, Astrophys. J. 148, L155-L156 (1967).

    CAS  Google Scholar 

  234. D. Hyatt and L. Stanton, Application of a multipole potential in a theoretical investigation of collision cross-sections for ions with linear molecules, Proc. Roy. Soc. Lond. A 318, 107–118 (1970). [Errata: Chem. Phys. Letters 10, 12 (1971)].

    CAS  Google Scholar 

  235. A. M. Arthurs and A. Dalgarno. The mobilities of ions in molecular gases, Proc. Roy. Soc. Lond. A 256, 552–558 (1960).

    CAS  Google Scholar 

  236. J. V. Dugan Jr., and J. L. Magee, in “Advances in Chemical Physics” (J. O. Hirschfelder and D. Henderson, eds.), Vol. 21, pp. 207–235, Interscience, New York (1971).

    Google Scholar 

  237. D. P. Beggs and F. H. Field, Reversible reactions of gaseous ions. I. Methane-water system, J. Am. Chem. Soc. 93, 1567–1575 (1971).

    Google Scholar 

  238. J. H. Futrell, M. J. Henchman, D. Hyatt, and T. H. McGee, to be published.

    Google Scholar 

  239. J. V. Dugan Jr. and R. B. Canright Jr., A preliminary study of vibrational effects in ion-dipole collisions: “classical tunneling,” Chem. Phys. Letters 8, 253–258 (1971).

    CAS  Google Scholar 

  240. K. R. Ryan, Ionic collision processes in gaseous ammonia, J. Chem. Phys. 53, 3844–3848 (1970).

    CAS  Google Scholar 

  241. J. V. Dugan, Jr., Comparison of numerical capture cross sections with experimental reaction cross sections for NH3 + + NH3, Chem. Phys. Letters 8, 198–200 (1971).

    CAS  Google Scholar 

  242. L. J. Leger and G. G. Meisels, Preferred dipole orientation in ion-polar molecule reactions, Chem. Phys. Letters 1, 661–664 (1968).

    CAS  Google Scholar 

  243. L. J. Leger and G. G. Meiseis, Ion-polar-molecule reactions: energy dependency of hydrogen atom and ion transfer in the methanol-acetaldehyde system, J. Chem. Phys. 52, 4319–4324 (1970).

    CAS  Google Scholar 

  244. W.B. Maier II, Reactions between H+ and D2, J. Chem. Phys. 54, 2732–2739 (1971).

    CAS  Google Scholar 

  245. J. Krenos and R. Wolfgang, “Simplest” chemical reactions: exchange in the H3 + system, J. Chem. Phys. 52, 5961–5962 (1970).

    CAS  Google Scholar 

  246. T. F. George and R. J. Suplinskas, Kinematic model for reaction. III. Detailed dynamics of the reaction of Ar+ with D2, J. Chem. Phys. 54, 1037–1045 (1971).

    CAS  Google Scholar 

  247. T. F. George and R. J. Suplinskas, Kinematic model for reaction. IV. Orientation and isotope effect in the Ar+ + HD reaction, J. Chem. Phys. 54, 1046–1049 (1971).

    CAS  Google Scholar 

  248. A. E. Roche, M. M. Sutton, D. K. Bohme, and H. I. Schiff, Determination of proton affinity from the kinetics of proton transfer reactions. I. Relative proton affinities, J. Chem. Phys. 55, 5480–5484 (1971).

    CAS  Google Scholar 

  249. H.-U. Mittmann, H.-P. Weise, A. Ding, and A. Henglein, Streuung von Ionen. I. Regenbogeneffekt bei der elastischen Streuung von Protonen an Argon, Z. Naturforsch. 26a, 1112–1121 (1971).

    Google Scholar 

  250. A. C. Roach and P. Kuntz, The potential curve of ArH+ and the heats of the reactions Ar+ + H2 → ArH+ + H and Ar + H2 + → ArH+ + H, Chem. Comm. 1336–1337 (1970).

    Google Scholar 

  251. T. F. Moran and L. Friedman, Application of the Piatt electrostatic model to diatomic hydride ions, J. Chem. Phys. 40, 860–866 (1964).

    CAS  Google Scholar 

  252. E. E. Nikitin, Present-day state of the theory of bimolecular reactions, Russ. Chem. Rev. 38, 505–512 (1969).

    Google Scholar 

  253. M. Vestal, in “Fundamental Processes in Radiation Chemistry” (P. J. Ausloos, ed.), pp. 59–118, Interscience, New York (1968).

    Google Scholar 

  254. M. H. Chiang, E. A. Gislason, B. H. Mahan, C. W. Tsao, and A. S. Werner, Dynamics of the reactions of O2 + with H2 and D2, J. Phys. Chem. 75, 1426–1437 (1971).

    Google Scholar 

  255. A. S. Werner, Ph.D. Thesis, University of California at Berkeley (1971); Lawrence Radiation Laboratory Report UCRL-20363 (April 1971).

    Google Scholar 

  256. Z. Herman, A. Lee, and R. Wolfgang, Crossed-beam studies of energy dependence of intermediate complex formation in an ion-molecule reaction, J. Chem. Phys. 51, 452–454 (1969);

    CAS  Google Scholar 

  257. R. Wolfgang, Energy and chemical reaction. I. Dynamics of simple ionic and atomic processes, Accounts Chem. Res. 2, 248–256 (1969).

    CAS  Google Scholar 

  258. W. A. Chupka and M. Kaminsky, Energy distribution and fragmentation processes resulting from electron impact on propane and n-butane, J. Chem. Phys. 35, 1991–1998 (1961).

    CAS  Google Scholar 

  259. F. P. Abramson and J. H. Futrell, Ion-molecule reactions of methane, J. Chem. Phys. 45, 1925–1931 (1966).

    CAS  Google Scholar 

  260. H. von Koch, Dissociation of ethane molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of ethane, Arkiv Fysik 28, 559–574 (1965).

    CAS  Google Scholar 

  261. E. V. Waage and B. S. Rabinovitch, Centrifugal effects in reaction rate theory, Chem. Rev. 70. 377–387 (1970).

    CAS  Google Scholar 

  262. J. L. Franklin and M. A. Haney, Translational energies of products of exothermic ion-molecule reactions, J. Phys. Chem. 73, 2857–2863 (1969).

    CAS  Google Scholar 

  263. D.K. Bohme, D.B. Dunkin, F.C. Fehsenfeld, and E.E. Ferguson, Flowing afterglow studies of ion-molecule association reactions, J. Chem. Phys. 51, 863–872 (1969).

    CAS  Google Scholar 

  264. J. M. S. Henis, An ion cyclotron resonance study of ion-molecule reactions in methanol, J. Am. Chem. Soc. 90, 844–851 (1968).

    Google Scholar 

  265. Z. Herman, P. Hierl, A. Lee, and R. Wolfgang, Direct mechanism of reaction CH3 + + CH4 → C2H5 + + H2, J. Chem. Phys. 51, 454–455 (1969).

    CAS  Google Scholar 

  266. J. C. Polanyi, Dynamics of chemical reactions, Disc. Faraday Soc. 44, 293–307 (1967).

    Google Scholar 

  267. S. N. Ghoshal, An experimental verification of the theory of compound nucleus, Phys. Rev. 80, 939–942 (1950).

    CAS  Google Scholar 

  268. J. N. Butler and G. B. Kistiakowsky, Reactions of methylene. IV. Propylene and cyclopropane, J. Am. Chem. Soc. 82, 759–765 (1960).

    CAS  Google Scholar 

  269. R. Wolfgang, Energy and chemical reaction. II. Intermediate complexes vs. direct mechanisms, Acccounts Chem. Res. 3, 48–54 (1970).

    CAS  Google Scholar 

  270. P. Pechukas and J. C. Light, On detailed balancing and statistical theories of chemical kinetics, J. Chem. Phys. 42, 3281–3291 (1965).

    CAS  Google Scholar 

  271. F. A. Wolf, Computer calculations of ion-molecule reactions, J. Chem. Phys. 44, 1619–1628 (1966).

    CAS  Google Scholar 

  272. L. M. Tannenwald, On the rarity of certain ion-molecule reactions, Proc. Phys. Soc. Lond. 87, 109–117 (1966).

    CAS  Google Scholar 

  273. E. E. Nikitin, Statistical theory of exothermic ion-molecule reactions, Theor. Exp. Chem. 1, 275–280 (1965).

    Google Scholar 

  274. F. A. Wolf and J. L. Haller, Statistical theory of four-body bimolecular resonant ion-molecule reactions, J. Chem. Phys. 52, 5910–5922 (1970).

    CAS  Google Scholar 

  275. R. Wolfgang, Disc. Faraday Soc. 44, 80 (1967).

    Google Scholar 

  276. J. C. Light, Disc. Faraday Soc. 44, 80–81 (1967).

    Google Scholar 

  277. R. D. Levine, Disc. Faraday Soc. 44, 81–82 (1967).

    Google Scholar 

  278. J. C. Tully, Z. Herman, and R. Wolfgang, Crossed-beam study of the reaction N+ + O2, → NO+ + O, J. Chem. Phys. 54, 1730–1737 (1971).

    CAS  Google Scholar 

  279. P. M. Hierl, Z. Herman and R. Wolfgang, Chemical accelerator studies of isotope effects on collision dynamics of ion-molecule reactions: elaboration of a model for direct reactions, J. Chem. Phys. 53, 660–673 (1970).

    CAS  Google Scholar 

  280. D. L. Albritton, A. L. Schmeltekopf, and E. E. Ferguson, in “Abstracts of Papers, Sixth International Conference on the Physics of Electronic and Atomic Collisions” (I. Amdur, ed.), pp. 331–332, M.I.T. Press, Cambridge (1969).

    Google Scholar 

  281. D. C. Fullerton and T. F. Moran, Application of the statistical phase-space theory to the reactions of rare-gas ions with nitrogen molecules, J. Chem. Phys. 54, 5221–5230 (1971).

    CAS  Google Scholar 

  282. T. F. Moran and L. Friedman, Energy transfer in the reaction of He+ with O2, J. Geophys. Res. 70, 4992–4994 (1965).

    CAS  Google Scholar 

  283. J. F. Paulson, private communication of unpublished results.

    Google Scholar 

  284. J.J. Leventhal, Collision mechanism leading to the formation of NO+ in O+-N2 collisions, J. Chem. Phys. 54, 5102–5103 (1971).

    CAS  Google Scholar 

  285. E. E. Ferguson, F. C. Fehsenfeld, P. D. Goldan, and A. L. Schmeltekopf, and H. I. Schiff, Laboratory measurement of the rate of the reaction N2 + + O → NO+ + N at thermal energy, Plantary Space Sci. 13, 823–827 (1965).

    CAS  Google Scholar 

  286. I. Opauszky, K. Birkinshaw, and M. J. Henchman, unpublished results.

    Google Scholar 

  287. J. J. Leventhal, Energetics of HeH+ formed in H2 +-He collisions, J. Chem. Phys. 54, 3279–3282 (1971).

    CAS  Google Scholar 

  288. F. S. Klein and L. Friedman, Intramolecular isotope effects in the HD-rare gas ion-molecule reactions, J. Chem. Phys. 41, 1789–1798 (1964).

    CAS  Google Scholar 

  289. C. R. Iden, R. Liardon, and W. S. Koski, Complex formation in the reaction C+(D2,D) CD+, J. Chem. Phys. 54, 2757–2758 (1971).

    CAS  Google Scholar 

  290. E. E. Nikitin, Statistical theory of endothermic reactions. Part 1. Bimolecular reactions, Theor. Exp. Chem. 1, 83–89 (1965).

    Google Scholar 

  291. L. D. Doverspike and R. L. Champion, Experimental investigations of ion-molecule reactions of D2 + with D2 and H2, J. Chem. Phys. 46, 4718–4725 (1967).

    CAS  Google Scholar 

  292. J. Durup and M. Durup, Collisions réactives entre ions et molécules à énergie incidente de 1 à 50 eV. Le système D2 + + D2, J. Chim. Phys. 64, 386–394 (1967).

    CAS  Google Scholar 

  293. B. H. Mahan, Molecular orbital correlations and ion-molecule reaction dynamics. J. Chem. Phys. 55, 1436–1446 (1971).

    CAS  Google Scholar 

  294. G. Bosse, A. Ding, and A. Henglein, Chemische Reaktionskinematik. XIV. Die Winkel-und Geschwindigkeitsverteilung für die Reaktion O2 + + D2 → O2D+ + D, und der Isotopieeffekt für die Reaktion mit HD, Ber. Bunsenges. Physik. Chem. 75, 413–420 (1971).

    CAS  Google Scholar 

  295. R. K. Preston and J. C. Tully, Effects of surface crossing in chemical reactions: the H3 + system, J. Chem. Phys. 54, 4297–4304 (1971).

    CAS  Google Scholar 

  296. E. E. Ferguson, D. K. Bohme, F. C. Fehsenfeld, and D. B. Dunkin, Temperature dependence of slow ion-atom interchange reactions, J. Chem. Phys. 50, 5039–5040 (1969).

    CAS  Google Scholar 

  297. A. L. Schmeltekopf, F. C. Fehsenfeld, G. I. Gilman, and E. E. Ferguson, Reaction of atomic oxygen ions with vibrationally excited nitrogen molecules, Planetary Space Sci. 15, 401–406 (1967).

    CAS  Google Scholar 

  298. P. Stubbe, Temperature dependence of the rate constants for the reactions O+ + O2 → O2 + + O and O+ + N2 → NO+ + N, Planetary Space Sci. 17, 1221–1331 (1969).

    CAS  Google Scholar 

  299. J. B. Hasted and L. Moore, in “Abstracts of Papers, Sixth International Conference on the Physics of Electronic and Atomic Collisions” (I. Amdur, ed.), pp. 328–330, M. I. T. Press, Cambridge (1969).

    Google Scholar 

  300. Ju. N. Demkov, in “Atomic Collision Processes” (M. R. C. McDowell, ed.), pp. 831–838, North-Holland Publishing Co., Amsterdam (1964).

    Google Scholar 

  301. K. Birkinshaw and J. B. Hasted, Inelastic collisions between atomic ions and diatomic molecules, J. Phys. B4, 1711–1725 (1971).

    Google Scholar 

  302. R. L. Champion, L. D. Doverspike, and T. L. Bailey, Collision-induced dissociation of D2 + ions by argon and nitrogen, J. Chem. Phys. 45, 4377–4384 (1966).

    CAS  Google Scholar 

  303. T. O. Tiernan and R. E. Marcotte, Collision-induced dissociation of NO+ and O2 + at low kinetic energies. Effects of internal ionic excitation, J. Chem. Phys. 53, 2107–2122 (1970).

    CAS  Google Scholar 

  304. M. H. Cheng, M. Chiang, E. A. Gislason, B. H. Mahan, C. W. Tsao, and A. S. Werner, Collision induced dissociation of molecular ions, J. Chem. Phys. 52, 5518–5525 (1970).

    CAS  Google Scholar 

  305. R. W. Rozett and W. S. Koski, Collision-induced dissociation on HD+ by rare gases, J. Chem. Phys. 49, 2691–2695 (1968).

    CAS  Google Scholar 

  306. P. Wilmenius and E. Lindholm, Dissociation of methanol molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of methanol with very slow positive ions, Arkiv Fysik 21, 97–122 (1962).

    CAS  Google Scholar 

  307. T. F. Moran and L. Friedman, Cross sections and intramolecular isotope effects in AB-HD ion-molecule reactions, J. Chem. Phys. 42, 2391–2405 (1965).

    CAS  Google Scholar 

  308. W. S. Koski, Some ion-molecule reactions of the C+ ion in the gas phase, Record Chem. Progr. (Kresge-Hooker Sci. Lib.) 31, 155–170 (1970).

    CAS  Google Scholar 

  309. M. A. Berta and W. S. Koski, The argon-deuterium hydride ion reaction, J. Am. Chem. Soc. 86, 5098–5101 (1964).

    CAS  Google Scholar 

  310. R. D. Levine, Quasi-bound states in molecular collisions, Accounts Chem. Res. 3, 273–280 (1970).

    CAS  Google Scholar 

  311. G. Heiche and E. A. Mason, Ion mobilities with charge exchange, J. Chem. Phys. 53, 4687–4696 (1970).

    CAS  Google Scholar 

  312. J. Krenos, R. Preston, J. Tully and R. Wolfgang, Reaction of hydrogen atomic ions with hydrogen molecules: experiment, ab initio theory, and a conceptual model, Chem. Phys. Letters 10, 17–21 (1971).

    CAS  Google Scholar 

  313. G. A. Sinnott, Bibliography of Ion-Molecule Reaction Rate Data, JILA Information Center Report # 9, University of Colorado (August 1969).

    Google Scholar 

  314. A.R. Hochstim (ed.), “Bibliography of Chemical Kinetics and Collision Processes,” IFI/Plenum, New York-Washington (1969).

    Google Scholar 

  315. “Mass Spectrometry Bulletin,” Mass Spectrometry Data Center, AWRE, Aldermaston, Berks, England, Vols. 1–5 (1966–71).

    Google Scholar 

  316. “Bibliography of Atomic and Molecular Processes,” Atomic and Molecular Processes Information Center, Oak Ridge National Laboratory, Tenn. Vols. 1–13 (1963–69).

    Google Scholar 

  317. J. Polanyi, Nonequilibrium processes, Appl. Optics. 10, 1717–1724 (1971).

    CAS  Google Scholar 

  318. B. R. Turner, J. A. Rutherford, and D. M. J. Compton, Abundance of excited ions in O+ and O2 + ion beams, J. Chem. Phys. 48, 1602–1608 (1968).

    CAS  Google Scholar 

  319. R. F. Mathis, B. R. Turner, and J. A. Rutherford, Abundance of exicted ions in an NO+ ion beam, J. Chem. Phys. 49, 2051–2056 (1968).

    CAS  Google Scholar 

  320. J. L. Kinsey, Microscopic reversibility for rates of chemical reactions carried out with partial resolution of the product and reactant states, J. Chem. Phys. 54, 1206–1217 (1971).

    CAS  Google Scholar 

  321. J. Dubrin and M. J. Henchman, in “MTP International Review of Science. Physical Chemistry,” Ser. 1, Vol. 9: Reaction Kinetics (J. C. Polanyi, ed.) Chapter 7, Butterworths, London (1972).

    Google Scholar 

  322. M. B. Comisarow, Comprehensive theory for ion cyclotron resonance power absorption: application to line shapes for reactive and nonreactive ions, J. Chem. Phys. 55, 205–217 (1971).

    CAS  Google Scholar 

  323. J. L. Beauchamp, in “Annual Reviews of Physical Chemistry” (H. L. Eyring, ed.), Vol. 22, pp. 527–561, Annual Reviews, Palo Alto (1971).

    Google Scholar 

  324. A. Pipano and J. J. Kaufman, in “Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions” (L. Branscomb, ed.), pp. 966–968, North-Holland, Amsterdam (1971).

    Google Scholar 

  325. R. D. Levine, in “MTP International Review of Science, Physical Chemistry,” Ser. 1, Vol. 1: Theoretical Chemistry (W. Byers Brown, ed.), Chapter 7, Butterworths, London (1972).

    Google Scholar 

  326. M. G. Holliday, J. T. Muckerman, and L. Friedman, Investigation of back-scattering in the D+/H2 reaction system, J. Chem. Phys. 54, 3853–3856 (1971).

    CAS  Google Scholar 

  327. S. B. Woo and S. F. Wong, Interpretation of rate constants measured in drift tubes in terms of cross sections, J. Chem. Phys. 55, 3531–3541 (1971).

    CAS  Google Scholar 

  328. G. A. Gray, in “Advances in Chemical Physics” (I. Prigogine and S. A. Rice, eds.), Vol. 19, pp. 141–207, Wiley-Interscience, New York (1971).

    Google Scholar 

  329. R. C. Dunbar, Transient ion cyclotron resonance method for studying ion-molecule collision and charge-transfer rates: N2 + and CH4 +, J. Chem. Phys. 54, 711–719 (1971).

    CAS  Google Scholar 

  330. R. T. McIver, Jr., A trapped ion analyzer cell for ion cyclotron resonance spectroscopy, Rev. Sci. Instr. 41, 555–558 (1970).

    CAS  Google Scholar 

  331. R. T. Mclver, Jr., and M. A. Haney, cited in Ref. 321.

    Google Scholar 

  332. T. B. McMahon and J. L. Beauchamp, Determination of ion-transit times in an ion cyclotron resonance spectrometer, Rev. Sci. Instr. 42, 1632–1638 (1971).

    CAS  Google Scholar 

  333. W. T. Huntress Jr., M. M. Mosesman, and D. D. Elleman, Relative rates and their dependence on kinetic energy for ion-molecule reactions in ammonia, J. Chem. Phys. 54, 843–849 (1971).

    CAS  Google Scholar 

  334. A. G. Marshall, Theory for ion cyclotron resonance absorption line shapes, J. Chem. Phys. 55, 1343–1354 (1971).

    CAS  Google Scholar 

  335. J. A. Burt, J. L. Dunn, M. J. McEwan, M. M. Sutton, A. E. Roche, and H. I. Schiff, Some ion-molecule reactions of H3 + and the proton affinity of H2, J. Chem. Phys. 52, 6062–6075 (1970).

    CAS  Google Scholar 

  336. Y. Kaneko, N. Kobayashi, and I. Kanomata, Low energy ion-neutral reactions. I. 22Ne+ + 20Ne, and Ar+ + N2, J. Phys. Soc. Japan 27, 992–998 (1969); Y. Kaneko, private communication.

    CAS  Google Scholar 

  337. R. D. Levine, “Quantum Mechanics of Molecular Rate Processes,” Oxford University Press, London (1969), pp. 252–259.

    Google Scholar 

  338. G. Bosse, A. Ding, and A. Henglein, Chemische Reaktionskinematik. XV. Winkel- und Geschwindingskeitsverteilung des Produkt-Ions der Reaktion Kr+ + D2 → KrD+ + D, Z. Naturforsch. 26a, 932–933 (1971).

    Google Scholar 

  339. P. F. Fennelly, Ph.D. Thesis, Brandeis University (1972); P. F. Fennelly, A. S. Werner, and M. J. Henchman, unpublished results.

    Google Scholar 

  340. B. H. Mahan, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Henchman, M. (1972). Rate Constants and Cross Sections. In: Franklin, J.L. (eds) Ion-Molecule Reactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0088-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0088-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0090-9

  • Online ISBN: 978-1-4757-0088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics