Skip to main content

The Cauchy Data and the Scattering Relation

  • Conference paper
Geometric Methods in Inverse Problems and PDE Control

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 137))

Abstract

As mentioned in the preface to this volume a combination of unique continuation results with the boundary control method has led to the solution of the inverse problem of determining a metric of a Riemannian manifold (with boundary) from the dynamic Dirichlet-to-Neumann map associated with the wave equation. Although these results are very satisfactory it requires too much information. By just looking at the singularities of the dynamic Dirichlet-to-Neumann (DN) map one can determine the boundary distance function (the minimal travel time along geodesies connecting points on the boundary of a Riemannian manifold) in the case that there are no conjugate points of the metric, i. e. no caustics. This is shown in Section 3 of this article using geometrical optics expansions. A natural question to ask if one can determine the metric from this data alone; this question is at the center of the boundary rigidity problem studied in Riemannian geometry which is one of the main topics of this volume.

The research for this paper was partly supported by NSF and a John Simon Guggenheim fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alessandrini, Stable determination of conductivity by boundary measure ments, App. Anal. 27 (1988), 153–172.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Equations 84 (1990), 252–272.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. A. Barceló, T. Barceló, and A. Ruiz, Stability of the inverse conductivity problem in the plane for less regular conductivities, J. Diff. Equations 173 (2001), no. 2, 231–270.

    Article  MATH  Google Scholar 

  4. R. Beals and R. Coifman, The spectral problem for the Davey-Stewarson and Ishimori hierarchies, in Nonlinear evolution equations: Integrability and spectral methods, Manchester University Press (1988), 15–23.

    Google Scholar 

  5. M. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Problems 13 (1997), no. 5, R1-R45.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Belishev and Y. Kurylev, To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. PDE 17 (1992), 767–804.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions. Comm. Partial Diff. Equations 22 (1997), 1009–1027.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bukhgeim and G. Uhlmann, Determining a potential from partial Cauchy data, Comm. PDE 27 (2002), 653–668.

    Article  MathSciNet  Google Scholar 

  9. A.P. Calderón; On an inverse boundary value problem, Seinar on Numeri cal Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matematica, Rio de Janeiro (1980), 65–73.

    Google Scholar 

  10. C. Croke, This IMA Volume in Mathematics and its Applications,Geometric methods in inverse problems and PDE control. Editors: Christopher B. Croke, Irena Lasiecka, Gunther Uhlmann, and Michael Vogelius. Publisher: Springer- Verlag, New York.

    Google Scholar 

  11. J.J. Duistermaat, Fourier Integral Operators, Birkhäuser.

    Google Scholar 

  12. L. Faddeev, Growing solutions of the Schrödinger equation, Dokl. Akad. Nauk SSSR 165 (1965), 514–517 (translation in Sov. Phys. Dokl. 10, 1033).

    MathSciNet  Google Scholar 

  13. E. Francini, Recovering a complex coefficient in a planar domain from the Dirich- let -to-Neumann map, Inverse Problems 16 (2000), 107–119.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Guillemin, Sojourn times and asymptotic properties of the scattering matrix, Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976), Piibl. Res. Inst. Math. Sei. 12 (1976/77), supplement, 69–88.

    Google Scholar 

  15. S. Hansen and G. Uhlmann, Propagation of polarization for the equations in elastodynamics with residual stress and travel times, to appear Math. Annalen.

    Google Scholar 

  16. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol III, Springer-Verlag Berlin Heidelberg New York Tokyo (1985).

    Google Scholar 

  17. M. Ikehata, The enclosure method and its applications, International Society for Analysis, Applications and Computation, Vol. 9, Kluwer Academic Pub., DORDRECHT (2001), 87–203 (edited by S. Saito, N. Hayashi, and M. Ya- mamoto.)

    Google Scholar 

  18. A. Katchalov, Y. Kurylev, and M. Lassas, Inverse boundary spectral problems, Chapman&Hall/CRC, 2001.

    Google Scholar 

  19. A. Katchalov, Y. Kurylev, and M. Lassas, This IMA Volume in Mathematics and its Applications, Geometric methods in inverse problems and PDE control, Editors: Christopher B. Croke, Irena Lasiecka, Gunther Uhlmann, and Michael Vogelius. Publisher: Springer-Verlag, New York.

    Google Scholar 

  20. A. Katsuda, Y. Kurylev, and M. Lassas, Stability on inverse boundary spectral problem, in; New Geom. and Anal. Meth. in Inv. Probl. (Eds. Y. Kurylev and E. Somersalo), Springer Lect. Notes, to appear.

    Google Scholar 

  21. K. Knudsen and A. Tamasan, Reconstruction of less regular conductivities in the plane, MSRI preprint series, Berkeley, 2001.

    Google Scholar 

  22. R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, in Inverse Problems, edited by D. McLaughlin, SIAM-AMS Proc. no. 14, Amer. Math. Soc, Providence (1984), 113–123.

    Google Scholar 

  23. R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math. 37 (1984), 289–298.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Annales Scientifiques de 1’ Ecole Normale Su- periéure 34 (2001), 771–787.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Lassas, V. Sharafutdinov, and G. Uhlmann, Semiglobal boundary rigidity for Riemannian metrics, to appear Math. Annalen.

    Google Scholar 

  26. J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), 1097–1112.

    Article  MathSciNet  MATH  Google Scholar 

  27. R.G. Mukhometov, A problem of reconstructing a Riemannian metric, Siberian Math. J. 22 (1982), 420–433.

    Article  Google Scholar 

  28. R.G. Mukhometov, The reconstruction problem of a two-dimensional Rieman nian metric, and integral geometry (Russian), Dokl. Akad. Nauk SSSR 232 (1977), no. 1, 32–35

    MathSciNet  Google Scholar 

  29. A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), 71–96.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Nachman, Reconstructions from boundary measurements, Annals of Math. 128, (1988), 531–587.

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Rachele, An inverse problem in elastodynamics: Determination of the wave speeds in the interior, J. Diff Eqs. 162 (2000), 300–325.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Rachele, Uniqueness of the density in an inverse problem for isotropic elas todynamics, to appear Trans. AMS.

    Google Scholar 

  33. L. Robianno, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients. Invent. Math. 131 (1998), 493–539.

    Article  MathSciNet  Google Scholar 

  34. V.A. Sharafutdinov, This IMA Volume in Mathematics and its App Hcations, Geometric methods in inverse problems and PDE control, Editors: Christopher B. Croke, Irena Lasiecka, Gunther Uhlmann, and Michael Vogelius. Publisher: Springer-Verlag, New York.

    Google Scholar 

  35. P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal. 154 (1998), 330–358.

    MathSciNet  MATH  Google Scholar 

  36. P. Stefanov and G. Uhlmann, Rigidity for metrics with the same lengths of geodesies, Math. Res. Lett. 5 (1998), 83–96.

    MathSciNet  MATH  Google Scholar 

  37. L. Sung, An inverse scattering transform for the Davey-Stewarts on II equations. I, II, III, J. Math. Anal. Appl. 183 (1994), 121–154, J. Math. Anal. Appl. 183 (1994), 289–325. J. Math. Anal. Appl. 183 (1994), 477–494.

    Google Scholar 

  38. J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. (1990), 201–232.

    Google Scholar 

  39. J. Sylvester and G. Uhlmann, Inverse problems in anisotropic media, Contemp. Math. 122 (1991), 105–117.

    Article  MathSciNet  Google Scholar 

  40. J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. 125 (1987), no. 2, 153–169.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection. Comm. Pure Appl. Math. 39 (1986), 91–112

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundarycontinuous dependence. Comm. Pure Appl. Math. 41 (1988), 197–221.

    Article  MathSciNet  Google Scholar 

  43. D. Tataru, Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem. Comm. Partial Differential Equations 20 (1995), 855–884.

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Tataru. This IMA Volume in Mathematics and its Applications,Geometric methods in inverse problems and PDE control, Editors: Christopher B. Croke, Irena Lasiecka, Gunther Uhlmann, and Michael Vogelius. Publisher: Springer- Verlag, New York.

    Google Scholar 

  45. G. Uhlmann, Developments in inverse problems since Calderón’s foundational paper, chapter 19 of Essays in Harmonic Analysis and Partial Differential Equations, University of Chicago Press, edited by M. Christ, C. Kenig, C. Sadosky (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Uhlmann, G. (2004). The Cauchy Data and the Scattering Relation. In: Croke, C.B., Vogelius, M.S., Uhlmann, G., Lasiecka, I. (eds) Geometric Methods in Inverse Problems and PDE Control. The IMA Volumes in Mathematics and its Applications, vol 137. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-9375-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9375-7_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2341-7

  • Online ISBN: 978-1-4684-9375-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics