Skip to main content

The Input and Mineralization of Organic Carbon in Anaerobic Aquatic Sediments

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 7))

Abstract

The bottom sediments in both marine and freshwater ecosystems are important sites of mineralization and nutrient recycling, particularly where there is shallow water together with high productivity so that there is rapid input of organic carbon to the sediment. In most coastal and intertidal areas and in eutrophic lakes, productivity is relatively high and detrital input to the bottom sediments is appreciable, with the result that much of the sediments in these regions is anaerobic and reduced, apart perhaps from a thin aerobic surface layer. Therefore, at least potentially, a considerable portion of the organic carbon mineralization in these aquatic ecosystems may go on in the sediment under anaerobic rather than aerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd. Aziz, S. A., and Nedwell, D. B., 1979, Microbial nitrogen transformations in the saltmarsh environment, in: Ecological Processes in the Coastal Environment (R. L. Jefferies and A. J. Davy, eds.), pp. 385–398, Blackwell, Oxford.

    Google Scholar 

  • Abram, J. W., and Nedwell, D. B., 1978a, Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen, Arch. Microbiol. 117:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Abram, J. W., and Nedwell, D. B., 1978b, Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediment. Arch. Microbiol. 117:93–97.

    Article  PubMed  CAS  Google Scholar 

  • Aller, R. C., and Vingst, J. Y., 1980, Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA, Mar. Biol. 56:29–42.

    Article  CAS  Google Scholar 

  • Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle-associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth Planet. Sci. Lett. 47:161–175.

    Article  CAS  Google Scholar 

  • Ansbaek, J., and Blackburn, T. H., 1980, A method for the analysis of acetate turnover in a coastal marine sediment, Microb. Ecol. 5:253–264.

    Article  CAS  Google Scholar 

  • Ansell, A. D., 1974, Sedimentation of organic detritus in Lochs Etive and Creran, Argyll, Scotland, Mar. Biol. 27:263–273.

    Article  CAS  Google Scholar 

  • Balba, M. T., and Evans, W. C., 1977, The methanogenic fermentation of aromatic substrates, Biochem. Soc. Trans. 5:302–304.

    PubMed  CAS  Google Scholar 

  • Balba, M. T., and Evans, W. C., 1980, The anaerobic dissimilation of benzoate by Pseudomonas aeruginosa coupled with Desulfovibrio vulgaris. with sulphate as terminal electron acceptor, Biochem. Soc. Trans. 8:624–625.

    PubMed  CAS  Google Scholar 

  • Balba, M. T., and Nedwell, D. B., 1982, Microbial metabolism of acetate, propionate and butyrate in anoxic sediment from Colne Point saltmarsh, Essex, U.K., J. Gen. Microbiol. 128:1415–1422.

    CAS  Google Scholar 

  • Banat, I. M., and Nedwell, D. B., 1983, Mechanisms of turnover of C2-C4 fatty acids in highsulphate and low-sulphate anaerobic sediments, FE MS Microbiol. Lett. 17:107–110.

    Article  CAS  Google Scholar 

  • Banat, I. M., Lindström, E. B., Nedwell, D. B., and Balba, M. T., 1981, Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment, Appl. Environ. Microbiol. 42:985–992.

    PubMed  CAS  Google Scholar 

  • Banat, L M., Nedwell, D. B., and Balba, M. T., 1983, Stimulation of methanogenesis by slurries of saltmarsh sediment by addition of molybdate to inhibit sulphate-reducing bacteria, J. Gen. Microbiol. 129:123–129.

    CAS  Google Scholar 

  • Barber, R. T., 1968, Dissolved organic carbon from deep waters resists microbial oxidation, Nature (London) 220:274–275.

    Article  CAS  Google Scholar 

  • Benoit, G. J., Turekian, K. K., and Benninger, L. K., 1979, Radiocarbon dating of a core from Long Island Sound, Estuarine Coastal Mar. Sci. 9:171–180.

    Article  CAS  Google Scholar 

  • Berner, R. A., 1978, Sulfate reduction and the rate of deposition of marine sediments, Earth Planet. Sci. Lett. 37:492–498.

    Article  Google Scholar 

  • Berner, R. A., 1980a, Early Diagenesis—A Theoretical Approach. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Berner, R. A., 1980b, A rate model for organic matter decomposition during bacterial sulphate reduction in marine sediments, in: Biogéochemie de la Matière Organique a I’Interface Eau-Sediment Marin (R. Daumas, ed.), pp. 35–45, CNRS, Paris.

    Google Scholar 

  • Billen, G., 1982, Modelling the processes of organic matter degradation and nutrients recycling in sedimentary systems, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 15–52, Academic Press, London.

    Google Scholar 

  • Billen, G., and Verbeustel, S., 1980, Distribution of microbial metabolisms in natural environments displaying gradients of oxidation-reduction reactions, in: Biogéochemie de la Matière Organique a Vlnterface Eau-Sediment Marin (R. Daumas, ed.), pp. 291–300, CNRS, Paris.

    Google Scholar 

  • Bloesch, J., Stadelmann, P., and Buhrer, H., 1977, Primary production, mineralization, and sedimentation in the euphotic zone of two Swiss lakes, Limnol. Oceanogr. 22:511–526.

    Article  CAS  Google Scholar 

  • Boone, D. R., and Bryant, M. P., 1980, Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems, Appl. Environ. Microbiol. 40:626–632.

    PubMed  CAS  Google Scholar 

  • Bouldin, D. R., 1968, Models for describing the diffusion of oxygen and other mobile constituents across the mud-water interface, J. Ecol. 56:77–87.

    Article  Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii. a symbiotic association of two species of bacteria. Arch. Microbiol. 59:20–31.

    CAS  Google Scholar 

  • Burns, R. G., 1978, Soil Enzymes. Academic Press, London.

    Google Scholar 

  • Cappenberg, T. E., 1974a, Interrelations between sulphate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. 1. Field observations, Antonie van Leeuwenhoek J. Microbiol. Serol. 40:285–295.

    CAS  Google Scholar 

  • Cappenberg, T. E., 1974b, Interrelations between sulphate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. II. Inhibition experiments, Antonie van Leeuwenhoek J. Microbiol. Serol. 40:297–306.

    CAS  Google Scholar 

  • Cappenberg, T. E., 1975, A study of mixed continuous cultures of sulphate-reducing and methane-producing bacteria, Microb. Ecol. 2:60–72.

    Article  Google Scholar 

  • Cappenberg, T. E., and Jongejan, E., 1978, Microcnvironments for sulfate reduction and methane production in freshwater sediments, in: Environmental Biogeochemistry and Geomicrobiology. Vol. 1 (W. E. Krumbein, ed.), pp. 129–138, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Cappenberg, T. E., and Prins, R. A., 1974, Interrelations between sulphate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. III. Experiments with 14C-labelled substrates, Antonie van Leeuwenhoek J. Microbiol Serol. 40:457–469.

    Article  CAS  Google Scholar 

  • Christensen, D., and Blackburn, T. H., 1980, Turnover of tracer (14C, 3H labelled) alanine in inshore marine sediments. Mar. Biol. 58:97–103.

    Article  CAS  Google Scholar 

  • Christian, R. R., and Wiebe, W. J., 1978, Anaerobic microbial community metabolism in Spartina alterniflora soils, Limnol. Oceanogr. 23:328–336.

    Article  CAS  Google Scholar 

  • Davies, J. M., 1975, Energy flow through the benthos in a Scottish sea loch, Mar. Biol. 31:353–362.

    Article  CAS  Google Scholar 

  • Degens, E. T., and Mopper, K., 1976, Factors controlling the distribution and early diagenesis of organic material in marine sediments, in: Chemical Oceanography (J. P. Riley and R. Chester, eds.), pp. 59–113, Academic Press, London.

    Google Scholar 

  • De la Cruz, A. A., 1975, Proximate nutritive value changes during decomposition of saltmarsh plants, Hydrobiologia 47:475–480.

    Article  Google Scholar 

  • Evans, W. C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (London) 270:17–22.

    Article  CAS  Google Scholar 

  • Fallon, R. D., and Pfaender, F. K., 1976, Carbon metabolism in model microbial systems from a temperate salt marsh, Appl. Environ. Microbiol. 31:959–968.

    PubMed  CAS  Google Scholar 

  • Fallon, R. D., Harrits, S., Hanson, R. S., and Brock, T. D., 1980, The role of methane in internal carbon cycling in Lake Mendota during summer stratification, Limnol. Oceanogr. 25:357–360.

    Article  CAS  Google Scholar 

  • Fenchel, T., and Blackburn, T. H., 1979, Bacteria and Mineral Cycling. Academic Press, London.

    Google Scholar 

  • Fenchel, T., and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 285–299, Blackwell, Oxford.

    Google Scholar 

  • Fenchel, T., and J0rgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, Adv. Microb. Ecol. 1:1–58.

    CAS  Google Scholar 

  • Ferry, J. G., and Wolfe, R. S., 1976, Anaerobic degradation of benzoate to methane by a microbial consortium, Arch. Microbiol. 107:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Fogg, G. E., 1966, The extracellular products of algae, Oceanogr. Mar. Biol. Annu. Rev. 4:195–212.

    CAS  Google Scholar 

  • Francis, A. J., Duxbury, J. M., and Alexander, M., 1975, Formation of volatile organic products in soils under anaerobiosis. II. Metabolism of amino acids, Soil Biol. Biochem. 7:51–56.

    Article  CAS  Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. Cosmochim. Acta 43:1075–1090.

    Article  CAS  Google Scholar 

  • Fry, J. C., 1982, Interactions between bacteria and benthic invertebrates, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 171–201, Academic Press, London.

    Google Scholar 

  • Godshalk, G. L., and Wetzel, R. G., 1978a, Decomposition of aquatic angiosperms. 1. Dissolved components, Aquat. Bot. 5:281–300.

    Article  CAS  Google Scholar 

  • Godshalk, G. L., and Wetzel, R. G., 1978b, Decomposition of aquatic angiosperms. II. Particulate components, Aquat. Bot. 5:301–327.

    Article  CAS  Google Scholar 

  • Godshalk, G. L., and Wetzel, R. G., 1978c, Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition, Aquat. Bot. 5:329–354.

    Article  CAS  Google Scholar 

  • Hackett, W. F., Connors, W. J., Kirk, T. K., and Zeikus, J. G., 1977, Microbial decomposition of synthetic ‘‘14C-labelled lignins in nature: Lignin biodegradation in a variety of natural materials, Appl. Environ. Microbiol. 33:43–51.

    PubMed  CAS  Google Scholar 

  • Hall, K. J., Kleiber, P. M., and Jesaki, I., 1972, Heterotrophic uptake of organic solutes by microorganisms in the sediment, Mem. 1st. Ital. Idrobiol. Suppl 29:441–471.

    CAS  Google Scholar 

  • Hanson, R. B., and Gardner, W. S., 1978, Uptake and metabolism of two amino acids by anaerobic microorganisms in four diverse salt marsh soils. Mar. Biol 46:101–108.

    Article  CAS  Google Scholar 

  • Hargrave, B. T., 1972, Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content, Limnol. Oceanogr. 17:583–596.

    Article  CAS  Google Scholar 

  • Hines, M. E., and Buck, J. D., 1982, Distribution of methanogenic and sulfate-reducing bacteria in near-shore marine sediments, Appl. Environ. Microbiol. 43:447–453.

    PubMed  CAS  Google Scholar 

  • Hippe, H., Caspari, D., Fiebig, K., and Gottschalk, G., 1979, Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri, Proc. Natl. Acad. Sci. U.S.A. 76:494–498.

    Article  PubMed  CAS  Google Scholar 

  • Holm-Hansen, O., 1972, The distribution and chemical composition of particulate material in marine and freshwaters, Mem. 1st. Ital. Idrobiol. Suppl. 29:37–51.

    CAS  Google Scholar 

  • Honjo, S., 1978, Sedimentation of materials in the Sargasso Sea at a 5367 m deep station, J. Mar. Res. 36:469–492.

    CAS  Google Scholar 

  • Honjo, S., and Roman, M. R., 1978, Marine copepod faecal pellets: Production, preservation and sedimentation, J. Mar. Res. 36:45–57.

    Google Scholar 

  • Howeller, R. H., 1972, The oxygen status of lake sediments, J. Environ. Qual. 1:366–371.

    Article  Google Scholar 

  • Hylleberg, J., and Henriksen, K., 1980, The central role of bioturbation in sediment mineralization and element recycling, Ophelia Suppl. 1:1–16.

    CAS  Google Scholar 

  • Iannotti, E. L., Kafkewitz, C., Wolin, M. J., and Bryant, M. P., 1973, Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: Changes caused by interspecies transfer of H2, J. Bacteriol. 114:1231–1240.

    PubMed  CAS  Google Scholar 

  • Ingvorsen, K., Zeikus, J. G., and Brock, T. D., 1981, Dynamics of bacterial sulfate reduction in a eutrophic lake, Appl. Environ. Microbiol. 42:1029–1036.

    PubMed  CAS  Google Scholar 

  • Iturriaga, R., 1979, Bacterial activity related to sedimenting particulate matter. Mar. Biol. 55:157–169.

    Article  CAS  Google Scholar 

  • Iversen, N., and Blackburn, T. H., 1981, Seasonal rates of methane oxidation in anoxic marine sediments, Appl. Environ. Microbiol. 41:1295–1300.

    PubMed  CAS  Google Scholar 

  • Jones, J. G., 1971, Studies on freshwater bacteria: Factors which influence the population and its activity, J. Ecol. 59:593–613.

    Article  Google Scholar 

  • Jones, J. G., 1976, The microbiology and decomposition of seston in open water and experimental enclosures in a productive lake, J. Ecol. 64:241–278.

    Article  CAS  Google Scholar 

  • Jones, J. G., 1982, Activities of aerobic and anaerobic bacteria in lake sediments and their effect on the water column, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 107–145, Academic Press, London.

    Google Scholar 

  • Jones, J. G., and Simon, B. M., 1980, Decomposition processes in the profundal region of Blelham Tarn and the Lund Lakes, J. Ecol. 68:493–512.

    Article  CAS  Google Scholar 

  • Jones, J. G., and Simon, B. M., 1981, Differences in microbial decomposition processes in profundal and littoral lake sediments, with particular reference to the nitrogen cycle, J. Gen. Microbiol. 123:297–312.

    CAS  Google Scholar 

  • Jones, J. G., Simon, B. M., and Gardner, S., 1982, Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake, J. Gen. Microbiol. 128:1–11.

    CAS  Google Scholar 

  • Jørgensen, B. B., 1978, A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation from mathematical models, Geomicrobiol. J. 1:29–47.

    Article  Google Scholar 

  • Jørgensen, B. B., 1980, Mineralization and the bacterial cycling of carbon, nitrogen and sulphur in marine sediments, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 239–252, Academic Press, London.

    Google Scholar 

  • Jorgensen, B. B., 1982, Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature (London) 296:643–645.

    Article  Google Scholar 

  • Khailov, K. M., and Burlakova, Z. P., 1969, Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities, Limnol. Oceanogr. 14:521–527.

    Article  Google Scholar 

  • King, G. M., and Wiebe, W. J., 1980, Tracer analysis of methanogenesis in saltmarsh soil, Appl. Environ. Microbiol. 39:877–881.

    PubMed  CAS  Google Scholar 

  • Kristjansson, J. K., Schönheit, P., and Thauer, R. K., 1982, Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria, Arch. Microbiol. 131:278–282.

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., and Pfennig, N., 1981, Oxidation of short chain fatty acids by sulfate-reducing bacteria in freshwater and marine sediments, Arch. Microbiol. 128:330–335.

    Article  PubMed  CAS  Google Scholar 

  • Lastein, E., 1976, Recent sedimentation and resuspension of organic matter in eutrophic Lake Esrom, Denmark, Oikos 27:44–49.

    Article  Google Scholar 

  • Latham, M. J., and Wolin, M. J., 1977, Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium, Appl. Environ. Microbiol. 34:297–301.

    PubMed  CAS  Google Scholar 

  • Lee, J. J., 1980, A conceptual model of marine detrital decomposition and the organisms associated with the process, Adv. Aquat. Microbiol. 2:257–291.

    CAS  Google Scholar 

  • Lovely, D. R., and Klug, M. J., 1982, Intermediary metabolism of organic matter in the sediments of a eutrophic lake, Appl. Environ. Microbiol. 43:552–560.

    Google Scholar 

  • Maccubbin, A. E., and Hodson, R. E., 1980, Mineralization of detrital lignocelluloses by salt marsh sediment microflora, Appl. Environ. Microbiol. 40:735–740.

    PubMed  CAS  Google Scholar 

  • Mann, K. H., 1976, Decomposition of marine macrophytes, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 247–267, Blackwell, Oxford.

    Google Scholar 

  • Mclnerney, M. J., and Bryant, M. P., 1981, Basic principles of bioconversions in anaerobic digestion and methanogenesis, in: Biomass Conversion Processes for Energy and Fuels (S. S. Sofer and O. R. Zaborsky, eds.), pp. 277–296, Plenum Press, New York.

    Chapter  Google Scholar 

  • Mclnerney, M. J., Bryant, M. P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens, Arch. Microbiol. 122:129–135.

    Article  Google Scholar 

  • Mclnerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W., 1981, Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. Microbiol. 41:1029–1039.

    Google Scholar 

  • Mechalas, B. J., 1974, Pathways and environmental requirements for biogenic gas production in the oceans, in: Natural Gases in Marine Sediments (I. R. Kaplan, ed.), pp. 12–25, Plenum Press, New York.

    Google Scholar 

  • Menzel, D. W., 1966, Bubbling of seawater and the production of organic particles: A revaluation, Deep-Sea Res. 13:963–966.

    CAS  Google Scholar 

  • Miller, D., Brown, C. M., Pearson, T. H., and Stanley, S. O., 1979, Some biologically important low molecular weight organic acids in the sediments of Loch Eil, Mar. Biol. 50:375–383.

    Article  CAS  Google Scholar 

  • Molongoski, J. J., and Klug, M. J., 1976, Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments, Appl. Environ. Microbiol. 31:83–90.

    PubMed  CAS  Google Scholar 

  • Molongoski, J. J., and Klug, M. J., 1980a, Quantification and characterization of sedimenting particulate organic matter in a shallow hypereutrophic lake, Freshwater Biol. 10:497–506.

    Article  CAS  Google Scholar 

  • Molongoski, J. J., and Klug, M. J., 1980b, Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake, Freshwater Biol. 10:507–518.

    Article  CAS  Google Scholar 

  • Mopper, K., 1980, Carbohydrates in the marine environment: Recent developments, in: Biogéochemie de la Matière Organique a I’Interface Eau-Sediment Marin (R. Daumas, ed.), pp. 35–45, CNRS, Paris.

    Google Scholar 

  • Morris, J. G., 1975, The physiology of obligate anaerobiosis. Adv. Microb. Physiol. 12:169–246.

    Article  CAS  Google Scholar 

  • Mountfort, D. O., and Asher, R. A., 1981, Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of Waimea Inlet, Nelson, New Zealand, Appl. Environ. Microbiol. 42:252–258.

    PubMed  CAS  Google Scholar 

  • Mountfort, D. O., Asher, R. A., Mays, E. L., and Tiedje, J. M., 1980, Carbon and electron flow in mud and sandflat intertidal sediments at Delaware Inlet, Nelson, New Zealand, Appl. Environ. Microbiol. 39:686–694.

    PubMed  CAS  Google Scholar 

  • Nedwell, D. B., and Banat, I. M., 1981, Hydrogen as an electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment, Microb. Ecol. 7:305–313.

    Article  CAS  Google Scholar 

  • Nelson, D. R., and Zeikus, J. G., 1974, Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism, Appl. Microbiol. 28:258–261.

    PubMed  CAS  Google Scholar 

  • Odum, E. P., and de la Cruz, A. A., 1967, Particulate organic detritus in a Georgia salt marshestuarine system, in: Estuaries (G. H. Laufl, ed.), pp. 383–390, American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Oppenheimer, C. H., 1960, Bacterial activity in sediments of shallow marine bays, Geochim. Cosmochim. Acta 19:244–260.

    Article  CAS  Google Scholar 

  • Oremland, R. S., and Taylor, B. P., 1978, Sulphate reduction and methanogenesis in marine sediments, Geochim. Cosmochim. Acta 42:209–214.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Marsh, L., and DesMarais, D. J., 1982a, Methanogenesis in Big Soda Lake, Nevada: An alkaline, moderately hypersaline desert lake, Appl. Environ. Microbiol. 43:462–468.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., Marsh, L. M., and Polcin, S., 1982b, Methane production and simultaneous sulphate reduction in anoxic salt marsh sediments. Nature (London) 296:143–145.

    Article  CAS  Google Scholar 

  • Otsuki, A., and Hanya, T., 1972a, Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition, Limnol. Oceanogr. 17:248–264.

    Article  CAS  Google Scholar 

  • Otsuki, A., and Hanya, T., 1972b, Production of dissolved organic matter from dead green algal cells. II. Anaerobic microbial decomposition, Limnol. Oceanogr. 17:258–264.

    Article  CAS  Google Scholar 

  • Parsons, T. R., 1963, Suspended organic matter in seawater, in: Progress in Oceanography. Vol. 1 (M. Sears, ed.), pp. 205–239, Pergamon Press, Oxford.

    Google Scholar 

  • Peck, H. D., 1959, The ATP-dependent reduction of sulphate with hydrogen in extracts of Desulfovibrio desulfuricans, Proc. Natl. Acad. Sci. U.S.A. 45:701–708.

    Article  PubMed  CAS  Google Scholar 

  • Pennington, W., 1974, Seston and sediment formation in five Lake District lakes, J. Ecol. 62:215–251.

    Article  CAS  Google Scholar 

  • Piatt, H. M., 1979, Sedimentation and the distribution of organic matter in a sub-Antarctic marine bay, Estuar. Coastal Mar. Sci. 9:51–62.

    Article  Google Scholar 

  • Postgate, J. R., 1979, The Sulphate-Reducing Bacteria. Cambridge University Press, Cambridge.

    Google Scholar 

  • Qasim, S. Z., and Sankaranarayanan, V. V., 1972, Organic detritus of a tropical estuary. Mar. Biol. 15:193–199.

    Article  CAS  Google Scholar 

  • Redfield, A. C., Ketchum, B. H., and Richards, F. A., 1963, The influence of organisms on the composition of sea-water, in: The Sea. Vol. 2 (M. N. Hill, ed.), pp. 26–77, Interscience, New York.

    Google Scholar 

  • Reeburgh, W. S., 1980, Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett. 47:345–352.

    Article  CAS  Google Scholar 

  • Reeburgh, W. S., and Heggie, D. T., 1977, Methane consumption reactions and their efl’ect on methane distributions in freshwater and marine environments, Limnol. Oceanogr. 22:1–9.

    Article  CAS  Google Scholar 

  • Revsbech, N. P., Serensen, J., and Blackburn, T. H., 1980, Distribution of oxygen in marine sediments measured with microelectrodes, Limnol. Oceanogr. 25:403–411.

    Article  CAS  Google Scholar 

  • Rowe, G. T., and Gardner, W. D., 1979, Sedimentation rates in the slope water of the northwest Atlantic Ocean measured directly with sediment traps, J. Mar. Res. 37:581–600.

    CAS  Google Scholar 

  • Saunders, G. W., 1976, Decomposition in freshwater, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 341–373, Blackwell, Oxford.

    Google Scholar 

  • Scheifinger, C. C., Lineham, B., and Wolin, M. J., 1975, H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria, Appl. Microbiol. 29:480–483.

    PubMed  CAS  Google Scholar 

  • Schink, B., and Zeikus, J. G., 1980, Microbial methanol formation: A major end product of pectin metabolism, Curr. Microbiol. 4:387–390.

    Article  CAS  Google Scholar 

  • Schink, B., and Zeikus, J. G., 1982, Microbial ecology of pectin decomposition in anoxic lake sediments, J. Gen. Microbiol. 128:393–404.

    CAS  Google Scholar 

  • Schönheit, P., Kristjansson, J. K., and Thauer, R. K., 1982, Kinetic mechanism for the ability of sulfate reducers to outcompete methanogens for acetate. Arch. Microbiol. 132:285–288.

    Article  Google Scholar 

  • Seki, H., Skelding, J., and Parsons, T. R., 1968, Observations on the decomposition of a marine sediment, Limnol. Oceanogr. 13:440–448.

    Article  CAS  Google Scholar 

  • Senez, J. C., and Leroux-Gitteron, J., 1954, Preliminary note on the anaerobic degradation of cysteine and cystine by sulphate-reducing bacteria. Bull. Soc. Chim. Biol. 36:553–559.

    PubMed  CAS  Google Scholar 

  • Senior, E., Lindström, E. B., Banat, I. M., and Nedwell, D. B., 1982, Sulfate reduction and methanogenesis in the sediment of a saltmarsh on the east coast of the United Kingdom, Appl. Environ. Microbiol. 43:987–996.

    PubMed  CAS  Google Scholar 

  • Slater, J. H., and Godwin, D., 1980, Microbial adaptation and selection, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 137–160, Academic Press, London.

    Google Scholar 

  • Smith, R. L., and Klug, M. J., 1981, Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments, Appl. Environ. Microbiol. 42:116–121.

    PubMed  CAS  Google Scholar 

  • S0rensen, J., Christensen, D., and Jorgensen, B. B., 1981, Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments, Appl. Environ. Microbiol. 42:5–11.

    PubMed  Google Scholar 

  • Steele, J. H., 1974, The Structure of Marine Ecosystems. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Stephens, K., Sheldon, R. W., and Parsons, T. R., 1967, Seasonal variations in the availability of food for benthos in a coastal environment.Ecology 48:852–855.

    Article  Google Scholar 

  • Strayer, R. F., and Tiedje, J. M., 1978, Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment, Appl. Environ. Microbiol. 36:330–340.

    PubMed  CAS  Google Scholar 

  • Suess, E., and Muller, P. J., 1980, Productivity, sedimentation rate and sedimentary organic matter in the oceans. IL Elemental fractionation, in: Biogéochemie de la Matière Organique a I’Interface Eau-Sediment Marin (R. Daumas, ed.), pp. 17–26, CNRS, Paris.

    Google Scholar 

  • Taguchi, S., 1982, Sedimentation of newly produced particulate organic matter in a subtropical inlet, Kaneohe Bay, Hawaii, Estuarine Coastal Shelf Sci. 14:533–544.

    Article  CAS  Google Scholar 

  • Tewes, F. J., and Thauer, R. K., 1980, Regulation of ATP-synthesis in glucose-fermenting bacteria involved in interspecies hydrogen transfer, in: Anaerobes and Anaerobic Infections (G. Gottschalk, N. Pfennig, and H. Werner, eds.), pp. 97–104, Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Toth, D. J., and Lerman, A., 1977, Organic matter reactivity and sedimentation rates in the ocean, Am. J. Sci. 277:465–485.

    Article  CAS  Google Scholar 

  • Turekian, K. K., Benoit, G. J., and Benninger, L. K., 1980, The mean residence time of planktonderived carbon in a Long Island Sound sediment core: A correction, Estuarine Coastal Mar. Sci. 11:583.

    Article  Google Scholar 

  • Vigneaux, M., Dumon, J. C., Faugeres, J. C., Grousset, F., Jouanneau, J. M., Latouche, C., Poutiers, J., and Pujol, C., 1980, Matières organiques et sedimentation en milieu marin, in: Biogéochemie de la Matière Organique a I’Interface Eau-Sediment Marin (R. Daumas, ed.), pp. 113–128, CNRS, Paris.

    Google Scholar 

  • Webster, T. J. M., Paranjape, M. A., and Mann, K. H., 1975, Sedimentation of organic matter in St. Margarets Bay, Nova Scotia, J. Fish. Res. Board Canada 32:1399–1407.

    Article  CAS  Google Scholar 

  • Wellinger, A., and Wuhrmann, K., 1977, Influence of sulfide compounds on the metabolism of Methanobacterium strain AZ, Arch. Microbiol. 115:13–17.

    Article  PubMed  CAS  Google Scholar 

  • Wetzel, R. G., Rich, P. R., Miller, M. C., and Allen, H. L., 1972, Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake, Mem. 1st. I tal. Idrobiol. Suppl. 29:185–243.

    Google Scholar 

  • Widdel, F., 1980, Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfat-reduzierender Bakterien, Doctoral thesis, University of Göttingen, FDR.

    Google Scholar 

  • Wiebe, P. H., Boyd, S. H., and Winget, C., 1976, Particulate matter sinking to the deep-sea floor at 2000 m in the Tongue of the Ocean, Bahamas, with a description of a new sedimentation trap, J. Mar. Res. 34:341–354.

    Google Scholar 

  • Winfrey, M. R., and Zeikus, J. G., 1977, Efl’ect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments, Appl. Environ. Microbiol. 33:275–281.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., and Zeikus, J. G., 1979, Anaerobic metabolism of immediate methane precursors in Lake Mendota, Appl. Environ. Microbiol. 37:244–253.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., Nelson, D. R., Klevickis, S. C., and Zeikus, J. G., 1977, Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments, Appl. Environ. Microbiol. 33:312–318.

    PubMed  CAS  Google Scholar 

  • Winter, J., and Wolfe, R. S., 1980, Methane formation from fructose by syntrophic association of Acetobacterium woodii and difl’erent strains of methanogens, Arch. Microbiol. 124:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, R. S., 1971, Microbial formation of methane. Adv. Microb. Physiol. 6:107–146.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, R. S., and Higgins, L J., 1979, Microbial biochemistry of methane—a study in contrasts: Microbial Biochemistry, Int. Rev. Biochem. 21:270–300.

    Google Scholar 

  • Wolin, M. J., 1976, Interactions between H2-producing and methane-producing species, in: Microbial Formation and Utilization of Gases (H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds.), pp. 141–150, E. Goltze K. G., Gottingen.

    Google Scholar 

  • Zaiss, U., 1981, Seasonal studies of methanogenesis and desulfurication in sediments of the River Saar, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1: Orig. C 2:76–89.

    Google Scholar 

  • Zeikus, J. G., 1981, Lignin metabolism and the carbon cycle: Polymer biosynthesis, biodegradation, and environmental recalcitrance. Adv. Microb. Ecol. 5:211–243.

    CAS  Google Scholar 

  • Zeitschel, B., 1965, Zur Sedimentation von Seston, eine produktionsbiologische Untersuchung von Sinkstoffen und Sedimentation der westlichen und mittleren Ostsee, Kieler Meeresforsch. 21:55–80.

    Google Scholar 

  • Zinder, S. H., and Brock, T. D., 1978, Methane, carbon dioxide and hydrogen sulfide production from the terminal thiol group of methionine by anaerobic lake sediments, Appl. Environ. Microbiol. 35:344–352.

    PubMed  CAS  Google Scholar 

  • Zobell, C. E., 1946, Marine Microbiology. Chronica Botanica, Waltham, Massachusetts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Nedwell, D.B. (1984). The Input and Mineralization of Organic Carbon in Anaerobic Aquatic Sediments. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8989-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8989-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8991-0

  • Online ISBN: 978-1-4684-8989-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics