Skip to main content

Endothelial Cell Function in Hemostasis and Thrombosis

  • Chapter
Vascular Endothelium in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 242))

Abstract

The endothelium comprises a single layer of polygonal cells lining the entire length of blood vessels. It plays a pivotal role in modulating a number of physiologic and pathophysiologic processes including hemostasis, thrombosis, inflammation and immune responses.1 This review will focus on the endothelial cell function in hemostasis and thrombosis. Hemostasis is a complex event involving multiple interactions between blood cells and the damaged vessel wall, the coagulation proteins and blood cell constituents and the cell-cell interactions. These complex biologic processes generally do not occur without endothelial damage. Intact endothelium appears to function not only as a physical barrier which blocks active interaction between the cellular and protein constituents of blood and the vessel wall but also as a biologically active tissue capable of synthesizing compounds that promote and control hemostatic function. Moreover, its surface possesses specific properties for modulating certain key reactions in the coagulation cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Gimbrone, ed., “Vascular endothelium in Hemostasis and Thrombosis,” Churchill Livingstone, Edinburgh (1986).

    Google Scholar 

  2. C.T. Esmon and W.G. Owen, Identification of an endothelial cell cofactor for thrombin catalyzed activation of protein, C. Proc, Natl. Acad. Sci (USA) 78:2249–2252 (1981).

    Article  CAS  Google Scholar 

  3. W.G. Owen and C.T. Esmon, Functional properties of an endothelial cell cofactor for thrombincatalyz-ed activation of protein, C. J. Biol. Chem. 256:5532–5535 (1981).

    CAS  Google Scholar 

  4. F.J. Walker, P.W. Sexton and C.T. Esmon, The inhibition of blood coagulation by activated protein C through the selective inactivation of activated factor V, Biochim. Biophys. Acta 571:333–342 (1979).

    Article  PubMed  CAS  Google Scholar 

  5. F.J. Walker, Regulation of activated protein C by protein S: The role of phospholipid in factor Va inactivation, J. Biol. Chem. 256:11128–11131 (1981).

    PubMed  CAS  Google Scholar 

  6. P.C. Comp and C.T. Esmon, Generation of fibrinolytic activity by infusion of activated protein C into dogs, J. Clin. Invest. 68:1221–1228 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. N. Savion, J.D. Issacs, D. Gospaclarowicz and M.A. Shuman, Internalization and degradation of thrombin and up regulation of thrombin binding sites in corneal endothelial cells, J. Biol. Chem. 256:4514–4519 (1981).

    PubMed  CAS  Google Scholar 

  8. J.A. Marcimi and R.D. Rosenberg, Anticoagulantly active heparin-like molecules from vascular tissue, Biochem. 23:1730–1737 (1984).

    Article  Google Scholar 

  9. J.A. Marcum, L. Fritze, S.J. Galli, G. Karp and R.D. Rosenberg: Microvascular heparin-like species with anticoagulant activity, Amer. J. Physiol. 245:H725–733 (1983).

    PubMed  CAS  Google Scholar 

  10. Y. Nemerson and R. Bach: Tissue factor revisited, Progress in Hemost. and Thromb. 6:237–261 (1982).

    CAS  Google Scholar 

  11. M.P. Bevilacqua, J.S. Pober, G.R. Majeau, R.S. Cotran and M.A. Gimbrone, Jr. Interleukin-1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells, J. Exp. Med. 160:618–623 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. D.M. Stern, M. Drillings, H.L. Nossel, A. Hurlet-Jensen, K. La Gamma and J. Owen, Binding of factor IX and IXa to cultured vascular endothelial cells, Proc. Natl. Acad. Sci. (USA) 80:4119–4123 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. P.P. Nawroth and D.M. Stern, An endothelial cell coagulant pathway,J. Cellular Biochem 28:253–264 (1985).

    Article  CAS  Google Scholar 

  14. D.M. Stern, P.P. Nawroth, W. Kisil, G. Vehar and C.T. Esmon, The binding of factor IXa to cultured bovine aortic endothelial cells, J. Biol. Chem. 260:6717–6722 (1985).

    PubMed  CAS  Google Scholar 

  15. T.S. Zimmerman, Z.M. Ruggeri and C.A. Fulcer, Factor VIII/VWF factor. In “Progress in Hematology,” E.B. Brown, ed., Grune and Stratton, New York. Vol. 13, P. 279–309 (1983).

    Google Scholar 

  16. D.C. Lynch, R. Williams, T.S. Zimmerman, E.P. Kirby and D.M. Livingston, Biosynthesis of the subunit of factor VIIIR by bovine aortic endothelial cells, Proc. Natl. Acad. Sci. (USA) 180: 2738–2742 (1983).

    Article  Google Scholar 

  17. D.D. Wagner and V.G. Marder, Biosynthesis of vWF protein by human endothelial cells, J. Biol. Chem. 258:2065–2067 (1983).

    PubMed  CAS  Google Scholar 

  18. D.D. Wagner, J.B. Olmstead and V.J. Marder, Immunolocalization of vWF in Weibel-Palade bodies of human endothelial cells, Cell Biol. 95:355–360 (1982).

    Article  CAS  Google Scholar 

  19. B.M. Ewenstein, M.J. Warhol, R.I. Handln and J.S. Pober, Composition of the vWF storage organelle (Weibel-Palde body) isolated from cultured human umbilical vein endothelial cells, J. Cell Biol. 104:1423–1433 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. J.J. Sixma, K.S. Sakariassen and P.A. Bohuis, The relationship between the multimeric structure of factor VIII/vWF and the facilitation of platelet adhesion to human subendothelium, Thromb. andHaemost. 46:199 (1981).

    Google Scholar 

  21. L.W. Hoyer, The factor VIII complex: Structure cell function, Blood 58:1–13 (1981).

    PubMed  CAS  Google Scholar 

  22. D.F. Mosher, M.J. Doyle and E.A. Jaffe, Synthesis and secretion of thrombospondin by cultured human endothelial cells, J. Cell Biol. 93:343–348 (1982).

    Article  PubMed  CAS  Google Scholar 

  23. H. Sage, Characterization and modulation of extracellular glycoproteins secreted by endothelial cells in culture in vascular endothelium, in “Hemostasis and Thrombosis.” M.A. Gimbrone Jr., ed. Livingstone, Edinburgh, pp. 187–208 (1986).

    Google Scholar 

  24. D. Collen, On the regulation and control of fibrinolysis,Thromb. and Haemost. 43:77–89 (1980).

    CAS  Google Scholar 

  25. D.J. Loskutoff and T.S. Edgington, Synthesis of a fibrinolytic activator and inhibitor by endothelial cells, Proc. Natl. Acad. Sci. (USA) 74:3903–3907 (1977).

    Article  CAS  Google Scholar 

  26. D.J. Loskutoff, J.A. VanMourik, L.A. Erickson and D. Lawrence, Detection of an unusually stable fibrinolytic inhibitor produced by bovine endothelial cells, Proc. Natl. Acad. Sci. (USA) 80:2956–2960 (1983).

    Article  CAS  Google Scholar 

  27. S. Moncada, R. Gryglewski, S. Bunting and J.R. Vane, An enzyme isolated from arteries transform prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature 263:663–665 (1974).

    Article  Google Scholar 

  28. B.B. Weksler, Prostacyclin. In “Progress in Hemostasis and Thrombosis,” T.H. Spaet ed., Grune and Staton, New York. Vol. 6 113–138 (1982).

    Google Scholar 

  29. B.B. Weksler, C.W. Ley and E.A. Jaffe, Stimulation of endothelial cell prostacyclin production by thrombin, trypsin and ionophore A23187, Clin. Invest. 62:923–930 (1978).

    Article  CAS  Google Scholar 

  30. N.L. Baenziger, L.E. Force and P.R. Becherer, Histamine stimulates PGI2 synthesis in cultured human umbilical vein endothelial cells, Biochem. Biophys. Res. Comm. 92:1435–1440 (1980).

    Article  PubMed  CAS  Google Scholar 

  31. J.C. Goldsmith and J.J. McCormick, Immunologic injury to vascular endothelial cells: Effects on release of prostacyclin. Blood 63:984–989 (1984).

    PubMed  CAS  Google Scholar 

  32. F. Alhence-Gelas, S.J. Tsai, K.S. Callahan, W.B. Campbell and A.R. Johnson, Stimulation of prostaglandin formation by vasoactive cells, Prostagl. 24:723–742 (1982).

    Article  Google Scholar 

  33. D.K. Miller, S. Sadowski, D.D. Soderman and F.A. Kuehl, Endothelial prostacyclin production induced by activated neutrophils, J. Biol. Chem. 260:1006–1014 (1985).

    PubMed  CAS  Google Scholar 

  34. D.J. Loskutoff, Effect of thrombin on the fibrinolytic activity of cultured bovine endothelial cells, J. Clin, Invest. 64:329–332 (1979).

    Article  CAS  Google Scholar 

  35. M.P. Bevilacqua, J.S. Pober, M.E. Wheeler, R.S. Cotran and M.A. Gimbrone Jr., IL-1 activation of vascular endothelium: effects on procoagulant activity and leukocyte adhesion, Am. J. Pathol. 121:394–403 (1985).

    PubMed  CAS  Google Scholar 

  36. M.P. Bevilacque, R.R. Schleef, M A Jr. Gimbrone and D.J. Loskutoff, Regulation of fibrinolyticsystem of cultured human vascular endothelium by IL-1, Clin. Invest 78:587–591 (1986).

    Article  Google Scholar 

  37. D.A. Morgan, F.W. Ruscelli and R.C. Gallo, Selective in vitro growth of lymphocytes from normal human bone marrows, Science 193:1007–1008 (1976).

    Article  PubMed  CAS  Google Scholar 

  38. F.W. Ruscetti, D.A. Morgan and R.C. Gallo, Functional and morphologic characterization of human T cell continuously growth in vitro,J. Immunol. 119:131–138 (1977).

    PubMed  CAS  Google Scholar 

  39. J.M. Zarling and F.H. Bach, Continuous culture of T cells cytotoxic for autologous human leukemiacells, Nature 280:685–688 (1979).

    Article  PubMed  CAS  Google Scholar 

  40. S. Gillis, K.A. Smith and J. Watson, Biochemical and biologic characterization of lymphocyte regulatory molecules. II. Purification of a class of rat and human lymphokines, J. Immunol. 124:1954–1962 (1980).

    PubMed  CAS  Google Scholar 

  41. C.S. Henney, K. Kuribayashi, D.E. Kern and S. Gillis, Interleukin-2 augments natural killer cell activity, Nature 291: 335–338 (1981).

    Article  PubMed  CAS  Google Scholar 

  42. J.R. Ortaldo, A.T. Mason, J.P. Gerard, L.E. Henderson, W. Farrar, R.F. Hopkins, R.B. Herber-man and H. Rabin, Effect of natural and recombinant IL-2 on regulation of IFN-y production and natural killer cell activity, J. Immunol. 133:779–783 (1984).

    PubMed  CAS  Google Scholar 

  43. M.C. Mingari, F. Gerora, G. Carra, R.S. Acold, A. Moretta, R.H. Zubler, T.A. Waldman and L. Moretta, Human interleukin-2 promotes proliferation of activated B cells via surface receptors similar to those of activated T cells, Nature 312:641–643 (1984).

    Article  PubMed  CAS  Google Scholar 

  44. B.C. Pike, A. Raubitischets and G.J.V. Nossal, Human interleukin 2 can promote the growth and differentiation of single hapten-specific B cells in the presence of specific antigen, Proc. Natl. Acad. Sci. 81:7917–7921 (1984).

    Article  PubMed  CAS  Google Scholar 

  45. E.A. Grimm, A. Mazumder, H. Zhang and S.A. Rosenber, Lymphokine-activated killer cell phenomenon: Lysis of natural killer resistant fresh solid tumor cells by interleukin 2 activated autologous human peripheral blood lymphocytes, J. Exp. Med. 155:1823–1841 (1982).

    Article  PubMed  CAS  Google Scholar 

  46. A. Mazumder and S.A. Rosenberg, Successful immunotherapy of natural killer resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of synegeneic lymphocytes activated in vitro by interleukin 2, J. Exp. Med. 159:495–507 (1984).

    Article  PubMed  CAS  Google Scholar 

  47. E.R. Hall, A.C. Papp, W.E. Jr. Scifert and K.K. Wu, Stimulation of endothelial cell prostacyclin formation by IL-2,Lymphokine Res. 5:87–96 (1986).

    PubMed  CAS  Google Scholar 

  48. E.A. Hann, R.A. Egan, D.D. Soderman, P.H. Gale and F.A. Kuehl, Jr., Peroxidase-dependent deactivation of prostacyclin synthetase, J. Biol. Chem. 254:2191–2194 (1979).

    Google Scholar 

  49. R.W. Egan, J. Paxton and F.A. Keuhl, Jr., Mechanism for irreversible self-deactivation of prostaglandin synthetase, J. Biol. Chem. 251:7325–7335 (1976).

    Google Scholar 

  50. M.E. Hemler and W.E.M. Lands, Evidence for a peroxide-initiated free radical mechanism of prostaglandin biosynthesis, J. Biol. Chem. 255:6253–6261 (1980).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Wu, K.Ky., Frasier-Scott, K., Hatzakis, H. (1988). Endothelial Cell Function in Hemostasis and Thrombosis. In: Chien, S. (eds) Vascular Endothelium in Health and Disease. Advances in Experimental Medicine and Biology, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8935-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8935-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8937-8

  • Online ISBN: 978-1-4684-8935-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics