Skip to main content

Abstract

During the first decade since the discovery of the Mössbauer effect, instrumentation and techniques have been developed to a high degree of sophistication. The present instrumentation is the result of many innovations by the researchers in this field, and commercial spectrometers now available are based upon their design. Much work has been done in the development of associated equipment to study Mössbauer sources or absorbers at variable temperatures in an applied magnetic field or at high pressures. Procedures for making sources are well documented for many isotopes, and for the more popular isotopes the sources are available commercially. Backscattering techniques have reduced the problem of sample preparation and opened the way for possible commercial applications. However, the time required to obtain a spectrum is still relatively long, even with high-speed counting systems, and the data processing requires a computer, particularly for the more complicated spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Frauenfelder, The Mössbauer Effect (W. A. Benjamin, New York, 1962), Chap. 3.

    Google Scholar 

  2. E. Kankeleit, Rev. Sci. Instr. 35, 194 (1964).

    Article  CAS  Google Scholar 

  3. F. C. Ruegg, J. J. Spijkerman, and J. R. DeVoe, Rev. Sci. Instr. 36, 356 (1965).

    Article  CAS  Google Scholar 

  4. J. R. DeVoe, Ed., NBS Tech. Note No. 248 (1964), p. 29.

    Google Scholar 

  5. G. K. Wertheim, Physics Today 20, 31 (1967).

    Article  CAS  Google Scholar 

  6. R. Riesenman, J. Steger, and E. Kostiner, Nucl. Instr. Methods 72, 109 (1969).

    Article  Google Scholar 

  7. NBS Misc. Publ. No. 260–13 (1967).

    Google Scholar 

  8. J. R. DeVoe, Ed., NBS Tech. Note No. 276 (1966), p. 84.

    Google Scholar 

  9. R. Fritz and D. Schulze, Nucl. Instr. Methods 62, 317 (1963).

    Article  Google Scholar 

  10. P. A. Flinn, Rev. Sci. Instr. 34, 1422 (1963).

    Article  Google Scholar 

  11. C. Protop and C. Nistor, Rev. Roum. Phys. 12, 653 (1967).

    CAS  Google Scholar 

  12. G. K. Wertheim, Mössbauer Effect (Academic Press, New York, 1964), Chap. 4.

    Google Scholar 

  13. M. W. Holm, Ed., Debye Characteristic Temperatures Table and Bibliography, U.S. At. Energy Comm. Rept. No. ID-16399 (1957).

    Google Scholar 

  14. U. Shimony, Nucl. Instr. Methods 37, 350 (1965).

    Article  CAS  Google Scholar 

  15. L. May and D. K. Snediker, Nucl. Instr. Methods 55, 183 (1967).

    Article  CAS  Google Scholar 

  16. R. M. Housley, N. E. Erickson, and J. G. Dash, Nucl. Instr. Methods 27, 29 (1964).

    Article  CAS  Google Scholar 

  17. R. M. Housley, Nucl. Instr. Methods 35, 77 (1965).

    Article  Google Scholar 

  18. M. Kalvius, Mössbauer Effect Methodology 1, 163 (1965).

    Google Scholar 

  19. N. Benczer-Koller and R. H. Herber, in Chemical Applications of Mössbauer Spectroscopy, V. I. Gol’danskii and R. H. Herber, Eds. (Academic Press, New York, 1968), p. 114.

    Google Scholar 

  20. J. C. Travis and J. J. Spijkerman, Mössbauer Effect Methodology 4, 237 (1968).

    CAS  Google Scholar 

  21. W. A. Steyert and M. D. Daybell, Mössbauer Effect Methodology 4, 3 (1968).

    CAS  Google Scholar 

  22. F. van der Woude and G. Boom, Rev. Sci. Instr. 36, 800 (1965).

    Article  Google Scholar 

  23. B. Sharon and D. Treves, Rev. Sci. Instr. 37, 1252 (1966).

    Article  CAS  Google Scholar 

  24. J. R. DeVoe, Ed., NBS Tech. Note No. 501 (1969), p. 7.

    Google Scholar 

  25. K. R. Swanson and J. J. Spijkerman, J. Appl. Phys. 41, 3155 (1970).

    Article  CAS  Google Scholar 

  26. J. H. Terrell and J. J. Spijkerman, Appl Phys. Letters 13, 11 (1968).

    Article  CAS  Google Scholar 

  27. J. R. DeVoe, Ed., NBS Tech. Note No. 501 (1969), p. 17.

    Google Scholar 

  28. J. R. Gabriel and S. L. Ruby, Nucl. Instr. Methods 36, 23 (1965).

    Article  Google Scholar 

  29. E. Rhodes, A. Polinger, J. J. Spijkerman, and B. W. Christ, Trans. Met. Soc. AIME 242, 1922 (1968).

    Google Scholar 

  30. L. May, S. J. Druck, and Martha Sellers, U.S. At. Energy Comm. Rept. No. NYO-3798–2 (1968).

    Google Scholar 

  31. B. L. Chrisman and T. A. Tumolillo, Computer Analysis of Mössbauer Spectra, Dept. of Physics, Univ. of Illinois, Urbana, 111. Available from the Clearing House, U.S. Dept. of Commerce, Springfield, Va. 22151, as Document AD-654 929 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Spijkerman, J.J. (1971). Instrumentation. In: May, L. (eds) An Introduction to Mössbauer Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8911-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8911-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8913-2

  • Online ISBN: 978-1-4684-8911-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics