Skip to main content

Skeletal Muscle Proteases and Protein Turnover

  • Chapter
Animal Growth Regulation

Abstract

Schoenheimer and Rittenberg’s paper published nearly 50 years ago (Schoen-heimer and Rittenberg, 1940) established that accumulation of muscle tissue or muscle growth must depend on both the rate of muscle protein synthesis and the rate of muscle protein degradation. Despite this axiom, most of the attention of animal scientists during the period from 1940 to 1980 focused on increasing the rate of muscle growth by increasing the rate of muscle protein synthesis. Because of this, a great deal is known about the mechanism of muscle protein synthesis and how it is controlled. Little is known, however, about the mechanism of muscle protein degradation. It is clear that muscle proteins turn over metabolically with half lives ranging from 2 to 20 days (Low and Goldberg, 1973; Koizumi, 1974; Rubenstein et al., 1976; Martin et al., 1977; Zak et al., 1977; Millward et al., 1978; Martin, 1981; Wolitsky et al., 1984), but the nature of the proteolytic enzymes responsible for this turnover remains unknown. It was learned in 1969 that the rate of muscle protein degradation can vary over a wide range in response to physiological demand (Goldberg, 1969a,b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afifi, A. K., A. M. Al-Gailany, J. M. Salman and N. B. Bahuth. 1977. Nerve and muscle in steroid-induced weakness in the rabbit. Arch. Phys. Med. Rehabil. 58:143.

    Google Scholar 

  • Bachmair, A., D. Finley and A. Varshavsky. 1986. In vivo half-life of a protein is a function of its amino-terminal sequence. Science 234:179.

    PubMed  CAS  Google Scholar 

  • Ballard, F. J., F. M. Thomas and L. M. Stern. 1979. Increased turnover of muscle contractile proteins in Duchenne muscular dystrophy as assessed by 3-methylhistidine and creatinine excretion. Clin. Sci. 56:347.

    PubMed  CAS  Google Scholar 

  • Barrett, A. J., and J. K. McDonald. 1980. Mammalian Proteases: A Glossary and Bibliography. Vol. I. Academic Press, New York.

    Google Scholar 

  • Barrett, A. J. and G. Salvesen. 1986. Proteinase Inhibitors. Elsevier, Amsterdam.

    Google Scholar 

  • Bertorini, T. E., S. K. Bhattacharya, G. M. A. Palmieri, C. M. Chesney, D. Pifer and B. Baker. 1982. Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology 32:1088.

    PubMed  CAS  Google Scholar 

  • Beynon, R. J. and J. Kay. 1978. The inactivation of native enzymes by a neutral proteinase from rat intestinal muscle. Biochem. J. 173:291.

    PubMed  CAS  Google Scholar 

  • Bhan, A., A. Malhotra and V. B. Hatcher. 1978. Partial characterization of a protease from cardiac myofibrils of dystrophic hamsters. In: H. L. Segal and D. J. Doyle (Ed.) Protein Turnover and Lysosome Function, pp 607–618. Academic Press, New York.

    Google Scholar 

  • Bird, J. W. C. and J. H. Carter. 1980. Proteolytic enzymes in striated and non-striated muscle. In: K. Wildenthal (Ed.) Degradative Processes in Heart and Skeletal Muscle. pp. 51–85. Elsevier North-Holland Publ. Col, Amsterdam.

    Google Scholar 

  • Bird, J. W. C, A. M. Spanier and W. N. Schwartz. 1978. Cathepsins B and D: proteolytic activity and ultrastructural localization in skeletal muscle. In: H. L. Segal and D. J. Doyle (Ed.) Protein Turnover and Lysosome Function. pp 589–604. Academic Press, New York.

    Google Scholar 

  • Bodensteiner, J. B. and A. G. Engel. 1978. Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. Neurology 28:439.

    PubMed  CAS  Google Scholar 

  • Bodwell, C. E. and A. M. Pearson. 1964. The activity of partially purified bovine catheptic enzymes on various natural and synthetic substrates. J. Food Sci. 29:602.

    CAS  Google Scholar 

  • Brooks, B. A., D. E. Goll, Y.-S. Peng, J. A. Greweling and G. Hennecke. 1983a. Effect of starvation and refeeding on activity of a Ca2 +-dependent protease in rat skeletal muscle. J. Nutr. 113:145.

    PubMed  CAS  Google Scholar 

  • Brooks, B. A., D. E. Goll, Y.-S. Peng, J. A. Greweling and G. Hennecke. 1983b. Effect of alloxan diabetes on a Ca2 +-activated proteinase in rat skeletal muscle. Amer. J. Physiol. 244:C175.

    Google Scholar 

  • Busch, W. A., M. H. Stromer. D. E. Goll and A. Suzuki. 1972. Ca2+-specific removal of Z-lines from rabbit skeletal muscle. J. Cell Biol. 52:367.

    PubMed  CAS  Google Scholar 

  • Canonico, P. G. and J. W. C. Bird. 1970. Lysosomes in skeletal muscle tissue. Zonal centrifu-gation evidence for multiple cellular sources. J. Cell Biol. 45:321.

    PubMed  CAS  Google Scholar 

  • Carney, I. T., C. G. Curtis, J. Kay and N. L. Birket. 1980. A low-molecular-weight inhibitor of the neutral proteinase from rat intestinal smooth muscle. Biochem. J. 185:423.

    PubMed  CAS  Google Scholar 

  • Chin, D. T., N. Carlson, L. Kuehl and M. Rechsteiner. 1986. The degradation of guanidinated lysozyme in reticulocyte lysate. J. Biol. Chem. 261:3883.

    PubMed  CAS  Google Scholar 

  • Coolican, S. A. and D. R. Hathaway. 1984. Effect of L-a-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis. J. Biol. Chem. 259:11627.

    PubMed  CAS  Google Scholar 

  • Cottin, P., P. L. Vidalenc, and A. Ducastaing. 1981. Ca2 +-dependent association between a Ca2 + -activated neutral protease (CaANP) and its specific inhibitor. FEBS Lett. 136:221.

    PubMed  CAS  Google Scholar 

  • Crisona, N. J. and R. C. Strohman. 1983. Inhibition of contraction of cultured muscle fibers results in increased turnover of myofibrillar proteins but not of intermediate filament proteins. J. Cell Biol. 96:684.

    PubMed  CAS  Google Scholar 

  • Cullen, M. J., S. T. Appleyard and L. Bindoff. 1979. Morphological aspects of muscle breakdown and lysosomal activtion. Ann. N.Y. Acad. Sci. 317:440.

    PubMed  CAS  Google Scholar 

  • Cullen, M. J. and J.J. Fulthorpe. 1982. Phagocytosis of the A-band following Z line and I band loss. Its signficance in skeletal muscle breakdown. J. Pathol. 138:129.

    PubMed  CAS  Google Scholar 

  • Cullen, M. J. and M. G. Pluskal. 1977. Early changes in the ultrastructure of denervated rat skeletal muscle. Exp. Neurol 56:115.

    PubMed  CAS  Google Scholar 

  • Dahlmann, B., I. Block, L. Kuehn, M. Rutschmann and H. Reinauer. 1982. Immunological evidence for the identity of three proteinases from rat skeletal muscle. FEBS Lett. 138:88.

    PubMed  CAS  Google Scholar 

  • Dahlmann, B., L. Kuehn, M. Rutschmann and H. Reinauer. 1985a. Purification and characterization of a multicatalytic high-molecular-mass proteinase from rat skeletal muscle. Biochem. J. 228:161.

    PubMed  CAS  Google Scholar 

  • Dahlmann, B., M. Rutschmann, L. Kuehn and H. Reinauer. 1985b. Activation of the mutlicatal-ytic proteinase from rat skeletal muscle by fatty acids or sodium dodecyl sulfate. Biochem. J. 228:171.

    PubMed  CAS  Google Scholar 

  • Dayton, W. R., D. E. Goll, M. H. Stromer, W. J. Reville, M. G. Zeece and R. M. Robson. 1975. Some properties of a calcium-activated protease that may be involved in myofibrillar protein turnover. In: E. Reich, D. B. Rifkin and E. Shaw (Ed.) Cold Spring Harbor Conferences on Cell Proliferation. Vol. 2, pp. 551–577. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Dayton, W. R., D. E. Goll, M. G. Zeece, R. M. Robson and W. J. Reville, 1976a. A Ca2 + -activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry 15:2150.

    PubMed  CAS  Google Scholar 

  • Dayton, W. R., W. J. Reville, D. E. Goll and M. H. Stromer. 1976b. A Ca2 +-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry 15:2159.

    PubMed  CAS  Google Scholar 

  • Dayton, W. R. and J. V. Schollmeyer. 1981. Immunocytochemical localization of a calcium-activated protease in skeletal muscle cells. Exp. Cell Res. 136:423.

    PubMed  CAS  Google Scholar 

  • Dayton, W. R., J. V. Schollmeyer, A. C. Chan and C. E. Allen. 1979. Elevated levels of a calcium-activated muscle protease in rapidly atrophying muscles from vitamin E-deficient rabbits. Biochim. Biophys. Acta 584:216.

    PubMed  CAS  Google Scholar 

  • Dayton, W. R., J. V. Schollmeyer, R. A. Lepley and L. R. Cortes. 1981. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease. Biochim. Biophys. Acta 659:48.

    PubMed  CAS  Google Scholar 

  • DeMartino, G. N. 1983. Identification of a high molecular weight alkaline protease in rat heart. J. Mol. Cell. Cardiol. 15:17.

    PubMed  CAS  Google Scholar 

  • Dhalla, N. S., P. K. Das and G. P. Sharma. 1978. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10:363.

    PubMed  CAS  Google Scholar 

  • Eaton, D. L. and J. B. Baker. 1983. Evidence that a variety of cultured cells secrete protease nexin and produce a distinct cytoplasmic serine protease-binding factor. J. Cell. Physiol. 117:175.

    PubMed  CAS  Google Scholar 

  • Emery, A. E. H. and D. Burt. 1980. Intracellular calcium and pathogenesis and antenatal diagnosis of Duchenne muscular dystrophy. Brit. Med. J. 280:355.

    PubMed  CAS  Google Scholar 

  • Emori, Y., H. Kawaskai, S. Imajoh, K. Imahori and K. Suzuki. 1987. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proc. Natl. Acad. Sci. USA 84:3590.

    PubMed  CAS  Google Scholar 

  • Emori, Y., H. Kawaskai, S. Imajoh, S. Kawashima and K. Suzuki. 1986a. Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-dependent protease. J. Biol. Chem. 261:9472.

    PubMed  CAS  Google Scholar 

  • Emori, Y., H. Kawasaki, H. Sugihara, S. Imajoh, S. Kawashima and K. Suzuki. 1986b. Isolation and sequence analyses of cDNA clones for the large subunits of two isozymes of rabbit calcium-dependent protease. J. Biol. Chem. 261:9465.

    PubMed  CAS  Google Scholar 

  • Fagan, J. M., L. Waxman and A. L. Goldberg. 1987. Skeletal muscle and liver contain a soluble ATP-ubiquitin-dependent proteolytic system. Biochem. J. 243:335.

    PubMed  CAS  Google Scholar 

  • Faust, P. L., S. Kornfeld, and J. M. Chirgwin. 1985. Cloning and sequence analysis of cDNA for human cathepsin D. Proc. Natl. Acad. Sci. U.S.A. 82:4910.

    CAS  Google Scholar 

  • Festoff, B. M., M. R. Patterson and K. Romstedt. 1982. Plasminogen activator: the major secreted neutral protease of cultured skeletal muscle cells. J. Cell. Physiol. 110:190.

    PubMed  CAS  Google Scholar 

  • Fox, H. 1975. Aspects of tail muscle ultrastructure and its degeneration in Rana temporaria. J. Embryol. Exp. Morphol. 24:191.

    Google Scholar 

  • Fox, J. E. B., D. E. Goll, C. C. Reynolds and D. R. Phillips. 1985. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2 + -dependent protease during platelet aggregation. J. Biol. Chem. 260:1060.

    PubMed  CAS  Google Scholar 

  • Gerard, K. W. and D. L. Schneider. 1979. Evidence for degradation of myofibrillar proteins in lysosomes. Myofibrillar proteins derivatized by intramuscular injection of N-ethymaleimide are sequestered in lysosomes. J. Biol. Chem. 254:11798.

    PubMed  CAS  Google Scholar 

  • Goldberg, A. L. 1969a. Protein turnover in skeletal muscle. I. Protein catabolism during work-induced hypertrophy and growth induced with growth hormone. J. Biol. Chem. 244:3217.

    PubMed  CAS  Google Scholar 

  • Goldberg, A. L. 1969b. Protein turnover in skeletal muscle. II. Effects of denervation and cortisone on protein catabolism in skeletal muscles. J. Biol. Chem. 244:3223.

    PubMed  CAS  Google Scholar 

  • Goldberg, A. L. and J. F. Dice. 1974. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43:835.

    PubMed  CAS  Google Scholar 

  • Goldberg, A. L., J. Kowit, J. Etlinger and Y. Klemes. 1978. Selective degradation of abnormal proteins in animal and bacterial cells. In: H. L. Segal and D. J. Doyle (Ed.) Protein Turnover and Lysosome Function, pp 171–196. Academic Press, New York.

    Google Scholar 

  • Goldberg, A. L. and A. C. St. John. 1976. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu. Rev. Biochem. 45:747.

    PubMed  CAS  Google Scholar 

  • Goldspink, D. F., P. J. Garlick and M. A. McNurlan. 1983. Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem. J. 210:89.

    PubMed  CAS  Google Scholar 

  • Goll, D. E., T. Edmunds, W. C. Kleese, S. K. Sathe and J. D. Shannon. 1985. Some properties of the Ca2 +-dependent proteinase. In: E. A. Khairallah, J. S. Bond and J. W. C. Bird (Ed.) Intracellular Protein Catabolism. pp 151–164. Alan R. Liss, New York.

    Google Scholar 

  • Goll, D. E., W. C. Kleese, D. A. Sloan, J. D. Shannon and T. Edmunds. 1986. Properties of the Ca2 + -dependent proteinases and their protein inhibitor. Cienc. Biol. (Luanda) 11:75.

    CAS  Google Scholar 

  • Goll, D. E., Y. Otsuka, P. A. Nagainis, J. D. Shannon, S. K. Sathe and M. Muguruma. 1983a. Role of muscle proteinases in maintenance of muscle integrity and mass. J. Food Biochem. 7:137.

    CAS  Google Scholar 

  • Goll, D. E., R. M. Robson and M. H. Stromer. 1976. Muscle proteins. In: J. R. Whitaker and S. Tannenbaum (Ed.) Food Proteins, pp 121–174. AVI Publ. Co., Westport, CT.

    Google Scholar 

  • Goll, D. E., R. M. Robson and M. H. Stromer. 1984. Skeletal muscle. In: M. J. Swenson (Ed.) Dukes’ Physiology of Domestic Animals (10th Ed.). pp 548–580. Cornell Univ. Press, Ithaca, NY.

    Google Scholar 

  • Goll, D. E., J. D. Shannon, T. Edmunds, S. K. Sathe, W. C. Kleese and P. A. Nagainis. 1983b. Properties and regulation of the Ca2+-dependent proteinase. In: B. de Bernard, G. L. Sottocasa, G. Sandri, E. Carafoli, A. N. Taylor, T. C. Vanaman and R. J. P. Williams (Ed.) Calcium-Binding Proteins. pp. 19–35. Elsevier, Amsterdam.

    Google Scholar 

  • Gopinath, R. and W. D. Kitts. 1984. Growth, NT-methylhistidine excretion and muscle protein degradation in growing beef steers. J. Anim. Sci. 59:1262.

    PubMed  CAS  Google Scholar 

  • Hathaway, D. R., D. K. Werth and J. R. Haeberle. 1982. Limited autolysis reduces the Ca2+requirement of a smooth muscle Ca2+ -activated protease. J. Biol. Chem. 257:9072.

    PubMed  CAS  Google Scholar 

  • Hershko, A. and A. Ciechanover. 1982. Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 51:335.

    CAS  Google Scholar 

  • Holmes, D., M. E. Parsons, D. C. Park and R. J. Pennington. 1971. An alkaline proteinase in muscle homogenates. Biochem. J. 125:98p.

    Google Scholar 

  • Hough, R., G. Pratt and M. Rechsteiner. 1986. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261:2400.

    PubMed  CAS  Google Scholar 

  • Hudecki, M. S., C. M. Pollina, R. R. Heffner and A. K. Bhargava. 1981. Enhanced functional ability in drug-treated dystrophic chickens: trial results with indomethacin, diphenylhydantoin, and prednisolone. Exp. Neurol. 73:173.

    PubMed  CAS  Google Scholar 

  • Hurst, L. C, M. A. Badalamente, J. Ellstein and A. Stracher. 1984. Inhibition of neural and muscle degeneration after epineural neurorrhaphy. J. Hand Surg 9A:564.

    Google Scholar 

  • Iodice, A. A., J. Chin, S. Perker and I. M. Weinstock. 1972. Cathepsins A, B, C. D, and autolysis during development of breast muscle of normal and dystrophic chickens. Arch. Biochem. Biophys. 152:166.

    PubMed  CAS  Google Scholar 

  • Imajoh, S., H. Kawashima, Y. Emori, S. Ishiura, Y. Minami, H. Sugita, K. Imahori, and K. Suzuki. 1987. A fragment of an endogenous inhibitor produced in Escherichia coli for calcium-activated neutral protease (CANP) retains an inhibitory activity. FEBS Lett. 215:274.

    PubMed  CAS  Google Scholar 

  • Ishidoh, K., S. Imajoh, Y. Emori, S. Ohno, H. Kawasaki, Y. Minami, E. Kominami, N. Katunuma, and K. Suzuki. 1987. Molecular cloning and sequencing of cDNA for rat cathepsin H. Homology in pro-peptide regions of cysteine proteinases. FEBS Lett. 226:33.

    PubMed  CAS  Google Scholar 

  • Ishidoh, K., T. Towatari, S. Imajoh, H. Kawasaki, E. Kominami, H. Katunuma, and K. Suzuki. 1987. Molecular cloning and sequencing of cDNA for rat cathepsin L. FEBS Lett. 223:69.

    PubMed  CAS  Google Scholar 

  • Ishiura, S., I. Nonaka, H. Nakase, A. Tada and H. Sugita. 1984. Two-step mechanism of myofibrillar protein degradation in acute plasmid-induced muscle necrosis. Biochim. Biophys. Acta 798:333.

    PubMed  CAS  Google Scholar 

  • Ishiura, S., M. Sano, K. Kamakura and H. Sugita. 1985. Isolation of two forms of the high-molecular-mass serine protease, ingensin, from porcine skeletal muscle. FEBS Lett. 189:119.

    PubMed  CAS  Google Scholar 

  • Ishiura, S. and H. Sugita. 1986. Ingensin, a high-molecular-mass alkaline protease from rabbit reticulocyte. J. Biochem. 100:753.

    PubMed  CAS  Google Scholar 

  • Ishiura, S., H. Sugita, I. Nonaka and K. Imahori. 1980. Calcium-activated neutral protease. Its localization in the myofibril especially at the Z-band. J. Biochem. 87:343.

    PubMed  CAS  Google Scholar 

  • Ishiura, S., H. Sugita, K. Suzuki and K. Imahori. 1979. Studies of a calcium-activated neutral protease from chicken skeletal muscle. II. Substrate specificity. J. Biochem. 86:579.

    PubMed  CAS  Google Scholar 

  • Ishiura, S., S. Tsuji, H. Murofushi and K. Suzuki. 1982. Purification of an endogenous 68,000-dalton inhibitor of Ca2+-activated neutral protease from chicken skeletal muscle. Biochim. Biophys. Acta 701:216.

    PubMed  CAS  Google Scholar 

  • Ismail, F. and W. Gevers. 1983. A high-molecular-weight cysteine endopeptidase from rat skeletal muscle. Biochim. Biophys. Acta 742:399.

    PubMed  CAS  Google Scholar 

  • Janeczko, R. A., R. M. Carriere and J. D. Etlinger. 1985. Endocytosis, proteolysis, and exocytosis of exogenous proteins by cultured myotubes. J. Biol. Chem. 260:7051.

    PubMed  CAS  Google Scholar 

  • Jones, S. J., E. D. Aberle and M. D. Judge. 1986. Skeletal muscle protein turnover in broiler and layer chicks. J. Anim. Sci. 62:1576.

    PubMed  CAS  Google Scholar 

  • Kameyama, T. and J. D. Etlinger. 1979. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature 279:344.

    PubMed  CAS  Google Scholar 

  • Kar, N. C. and C. M. Pearson. 1976. A calcium-activated neutral protease in normal and dystrophic human muscle. Clin. Chim. Acta 73:293.

    PubMed  CAS  Google Scholar 

  • Katanuma, N., E. Kominami, K. Kobayashi, Y. Banno. K. Suzuki, K. Chichibu, Y. Hamaguchi and T. Katsunuma. 1975. Studies on new intracellular proteases in various organs of rat. I. Purification and comparison of their properties. Eur. J. Biochem. 52:37.

    Google Scholar 

  • Kay, J. 1978. Intracellular protein degradation. Biochem. Soc. Trans. 6:789.

    PubMed  Google Scholar 

  • Kay, J., R. Heath, B. Dahlmann, L. Kuehn and W. T. Stauber. 1985. Serine proteinases and protein breakdown in muscle. In: E. A. Khairallah, J. S. Bond and J. W. C. Bird (Ed.) Intracellular Protein Catabolism. pp 195–205. Alan R. Liss, New York.

    Google Scholar 

  • Kleese, W. C, D. E. Goll, T. Edmunds and J. D. Shannon. 1987. Immunofluorescent localization of the Ca2+ -dependent proteinase and its inhibitor in tissues of Crotalus atrox. J. Exp. Zool. 241:277.

    PubMed  CAS  Google Scholar 

  • Kohn, R. R. 1969. A proteolytic system involving myofibrils and a soluble factor from normal and atrophying muscle. Lab. Invest. 20:202.

    PubMed  CAS  Google Scholar 

  • Koizumi, T. 1974. Turnover rates of structural proteins of rabbit skeletal muscle. J. Biochem. 76:431.

    PubMed  CAS  Google Scholar 

  • Kominami, E., J. Tsukahara, Y. Bando and N. Katunuma. 1985. Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J. Biochem. 98:87.

    PubMed  CAS  Google Scholar 

  • Koszalka, T. R. and L. L. Miller. 1960. Proteolytic activity of rat skeletal muscle. I. Evidence for the existence of an enzyme active optimally at pH 8.5 to 9.0. J. Biol. Chem. 235:665.

    PubMed  CAS  Google Scholar 

  • Kuehn, L., B. Dahlmann and H. Reinauer. 1984. Identification of four distinct serine proteinase inhibitors in rat skeletal muscle. Biochem. Biophys. Res. Commun. 120:96.

    PubMed  CAS  Google Scholar 

  • Kuo, T. and A. Bhan. 1980. Studies of a myosin-cleaving protease from dystrophic hamster heart. Biochem. Biophys. Res. Commun. 92:570.

    PubMed  CAS  Google Scholar 

  • Kuo, T. H., F. Giacomelli, K. Kithier and A. Malhotra. 1981. Biochemical characterization and cellular localization of serine protease in myopathic hamster. J. Mol. Cell. Cardiol. 13:1035.

    PubMed  CAS  Google Scholar 

  • Lane, R. D., R. L. Mellgren and M. T. Mericle. 1985. Subcellular localization of bovine heart calcium-dependent protease inhibitor. J. Mol. Cell. Cardiol. 17:863.

    PubMed  CAS  Google Scholar 

  • Leonard, J. P. and M. M. Salpeter. 1979. Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J. Cell Biol. 82:811.

    PubMed  CAS  Google Scholar 

  • Lewis, S. E. M., P. Anderson and D. F. Goldspink. 1982. The effects of calcium on protein turnover in skeletal muscles of the rat. Biochem. J. 204:257.

    PubMed  CAS  Google Scholar 

  • Li, J. B. 1980. Protein synthesis and degradation in skeletal muscle of normal and dystrophic hamsters. Amer. J. Physiol. 239:E401.

    Google Scholar 

  • Libby, P. and A. L. Goldberg. 1978. Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles. Science 199:534.

    PubMed  CAS  Google Scholar 

  • Libby, P. and A. L. Goldberg. 1980. Effects of chymostatin and other proteinase inhibitors on protein breakdown and proteolytic activities in muscle. Biochem. J. 188:213.

    PubMed  CAS  Google Scholar 

  • Libelius, R., J. O. Josefsson and I. Lundquist. 1979. Endocytosis in chronically denervated mouse skeletal muscle. A biochemical and ultrastructural study with horseradish peroxidase. Neuroscience 4:283.

    PubMed  CAS  Google Scholar 

  • Lockshin, R. A. 1975. Failure to prevent degeneration of insect muscles with pepstatin. Life Sci. 17:403.

    PubMed  CAS  Google Scholar 

  • Lockshin, R. A. and J. Beaulaton. 1974a. Programmed cell death. Cytochemical evidence for lysosomes during the normal breakdown of the intersegmental muscles. J. Ultrastruct. Res. 46:43.

    PubMed  CAS  Google Scholar 

  • Lockshin, R. A. and J. Beaulaton. 1974b. Programmed cell death. Cytochemical appearance of lysosomes when the death of the intersegmental muscles is prevented. J. Ultrastruct. Res. 46:63.

    PubMed  CAS  Google Scholar 

  • Lorand, L., S. M. Conrad and P. T. Velasco. 1985. Formation of a 55,000-weight cross-linked β-crystallin dimer in the Ca2+-treated lens. A model for cataract. Biochemistry 24:1525.

    PubMed  CAS  Google Scholar 

  • Low, R. B. and A. L. Goldberg. 1973. Nonuniform rates of turnover of myofibrillar proteins in rat diaphragm. J. Cell Biol. 56:590.

    PubMed  CAS  Google Scholar 

  • Lowell, B. B., N. B. Ruderman and M. N. Goodman. 1986. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem. J. 234:237.

    PubMed  CAS  Google Scholar 

  • McCarthy, F. D., W. G. Bergen and D. R. Hawkins. 1983. Muscle protein turnover in cattle of differing genetic backgrounds as measured by urinary NT-methylhistidine excretion. J. Nutr. 113:2455.

    PubMed  CAS  Google Scholar 

  • McDonald, J. K. and A. J. Barrett. 1986. Mammalian Proteases: A Glossary and Bibliography. Vol. 2. Academic Press, New York.

    Google Scholar 

  • McGowan, E. B., S. A. Shafiq and A. Stracher. 1976. Delayed degeneration of dystrophic and normal muscle cells cultures treated with pepstatin, leupeptin, and antipain. Exp. Neurol. 50:649.

    PubMed  CAS  Google Scholar 

  • McKee, E. E., M. G. Clark, C. J. Beinlich, J. A. Lins and H. E. Morgan. 1979. Neutral-alkaline proteases and protein degradation in rat heart. J. Mol. Cell. Cardiol. 11:1033.

    PubMed  CAS  Google Scholar 

  • McKeran, R. O., D. Halliday and P. Purkiss. 1977. Increased myofibrillar protein catabolism in Duchenne muscular dystrophy measured by 3-methylhistidine excretion in the urine. J. Neurol. Neurosurg. Psychiatry 40:979.

    PubMed  CAS  Google Scholar 

  • Maki, M., E. Takano, H. Mori, R. Kannagi, T. Murachi and M. Hatanaka. 1987. Repetitive region of calpastatin is a functional unit of the proteinase inhibitor. Biochem. Biophys. Res. Commun. 143:300.

    PubMed  CAS  Google Scholar 

  • Maron, B. J., V. J. Ferrans and W. C. Roberts. 1975. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Amer. J. Pathol. 79:387.

    CAS  Google Scholar 

  • Martin, A. F., 1981. Turnover of cardiac troponin subunits. Kinetic evidence for precursor pool of troponin I. J. Biol. Chem. 256:964.

    PubMed  CAS  Google Scholar 

  • Martin, A. F., M. Rabinowitz, R. Blough, G. Prior and R. Zak. 1977. Measurements of half-life of rat cardiac myosin heavy chain with leucyl tRNA used as a precursor pool. J. Biol. Chem. 252:3422.

    Google Scholar 

  • Martins, C.B. and J. R. Whitaker. 1968. Catheptic enzymes and meat tenderization. I. Purification of cathepsin D and its action on actomyosin. J. Food Sci. 33:59.

    CAS  Google Scholar 

  • Maruyama, K., M. L. Sunde and R. W. Swick. 1978. Growth and muscle protein turnover in the chick. Biochem. J. 176:573.

    PubMed  CAS  Google Scholar 

  • Matsuishi, M., A. Okitani, Y. Hayakawa, and H. Kato. 1988. Cysteine proteinase inhibitors from rabbit skeletal muscle. Int. J. Biochem. 20:259.

    CAS  Google Scholar 

  • Matsukura, U., A. Okitani, T. Nishimuro and H. Kato. 1981. Mode of degradation of myofibrillar proteins by an endogenous protease, cathepsin L. Biochim. Biophys. Acta 662:41.

    PubMed  CAS  Google Scholar 

  • Mayer, M., R. Amin and E. Shafrir. 1974. Rat myofibrillar protease: enzyme properties and adaptive changes in conditions of muscle protein degradation. Arch. Biochem. Biophys. 161:20.

    CAS  Google Scholar 

  • Mellgren, R. L. 1980. Canine cardiac calcium-dependent proteases: resolution of two forms with different requirements for calcium. FEBS Lett. 109:129.

    PubMed  CAS  Google Scholar 

  • Mellgren, R. L. and T. C. Carr. 1983. The protein inhibitor of calcium-dependent proteases: purification from bovine heart and possible mechanisms of regulation. Arch. Biochem. Biophys. 225:779.

    PubMed  CAS  Google Scholar 

  • Millward, D. J., P. C. Bates, G. J. Laurent and C. C. Lo. 1978. Factors affecting protein break-down in skeletal muscle. In: H. L. Segal and D. J. Doyle (Ed.) Protein Turnover and Lyso-some Function. pp 619–644. Academic Press, New York.

    Google Scholar 

  • Morkin, E. 1970. Postnatal muscle fiber assembly: localization of newly synthesized myofibrillar proteins. Science 167:1499.

    PubMed  CAS  Google Scholar 

  • Mulvaney, D. R., R. A. Merkel and W. G. Bergen. 1985. Skeletal muscle protein turnover in young male pigs. J. Nutr. 115:1057.

    PubMed  CAS  Google Scholar 

  • Murachi, T. and N. Yoshimura. 1985. Intracellular localization of low and high calcium-requiring forms of calpain. In: E. A. Khairallah, J. S. Bond and J. W. C. Bird (Ed.) Intracellular Protein Degradation, pp. 165–174. Alan R. Liss, New York.

    Google Scholar 

  • Murakami, K. and J. D. Etlinger. 1986. Endogenous inhibitor of nonlysosomal high molecular weight protease and calcium-dependent protease. Proc. Natl. Acad. Sci. USA 83:7588.

    PubMed  CAS  Google Scholar 

  • Murakami, U. and K. Uchida. 1979. Degradation of rat cardiac myofibrils and myofibrillar proteins by a myosin-cleaving protease. J. Biochem. 86:553.

    PubMed  CAS  Google Scholar 

  • Nakamura, M., M. Inomata, M. Hayashi, K. Imahori and S. Kawashima. 1985. Purification and characterization of 210,000-dalton inhibitor of calcium-activated neutral protease from rabbit skeletal muscle and its relation to 50,000-dalton inhibitor. J. Biochem. 98:757.

    PubMed  CAS  Google Scholar 

  • Noguchi, T. and M. Kandatsu. 1976. Some properties of alkaline protease in rat muscle compared with that in peritoneal cavity cells. Agr. Biol. Chem. 40:927.

    CAS  Google Scholar 

  • Nonaka, I., A. Takagi, S. Ishiura, H. Nagase and H. Sugita. 1983. Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (maraine). Acta Neuropathol. 60:167.

    PubMed  CAS  Google Scholar 

  • Obinata, T., K. Maruyama, H. Sugita, K. Kohama and S. Ebashi. 1981. Dynamic aspects of structural proteins in vertebrate skeletal muscle. Muscle Nerve 4:456.

    PubMed  CAS  Google Scholar 

  • Okitani, A., D. E. Goll, M. H. Stromer and R. M. Robson. 1976. Intracellular inhibitor of a Ca2+-activated protease involved in myofibrillar protein turnover. Fed. Proc. 35:1746.

    Google Scholar 

  • Okitani, A., M. Matsuishi, T. Matsumoto, E. Kamoshida, M. Sato, U. Matsukura, M. Watanabe, H. Kato, and M. Fujimaki. 1988. Purification and some properties of cathepsin B from rabbit skeletal muscle. Eur. J. Biochem. 171:377.

    PubMed  CAS  Google Scholar 

  • Okitani, A., U. Matsukura, H. Kato, and M. Fujimaki. 1980. Purification and some properties of a myofibrillar protein-degrading protease, cathepsin-L, from rabbit skeletal muscle. J. Biochem. 87:1133.

    PubMed  CAS  Google Scholar 

  • Okitani, A., T. Matsumoto, Y. Kitamura and H. Kato. 1981a. Purification of cathepsin D from rabbit skeletal muscle and its action towards myofibrils. Biochim. Biophys. Acta 662:202.

    PubMed  CAS  Google Scholar 

  • Okitani, A., T. Nishimura and H. Kato. 1981b. Characterization of hydrolase H, a new muscle protease possessing aminoendopeptidase activity. Eur. J. Biochem. 115:269.

    PubMed  CAS  Google Scholar 

  • Orcutt, M. W. and R. B. Young. 1982. Cell differentiation, protein synthesis rate and protein accumulation in muscle cell cultures isolated from embryos of layer and broiler chickens. J. Anim. Sci. 54:769.

    PubMed  CAS  Google Scholar 

  • O’Steen, W. K., C. R. Shear and K. V. Anderson. 1975. Extraocular muscle degeneration and regeneration after exposure of rats to incandescent radiant energy. J. Cell Sci. 18:157.

    PubMed  Google Scholar 

  • Otsuka, Y. and D. E. Goll. 1987. Purification of the Ca2+-dependent proteinase inhibitor from bovine cardiac muscle and its interaction with the millimolar Ca2+-dependent proteinase. J. Biol. Chem. 262:5839.

    PubMed  CAS  Google Scholar 

  • Otsuka, Y., Y. Kumojima, Y. Ishikawa and E. Kawabara. 1985. Ca2+-activated protease activity in vitamin E-deficient rats. Agr. Biol. Chem. 49:2105.

    CAS  Google Scholar 

  • Otsuka, Y., A. Okitani, R. Katakai and M. Fujimaki. 1976. Purification and properties of an aminopeptidase from rabbit skeletal muscle. Agr. Biol. Chem. 40:2335.

    CAS  Google Scholar 

  • Page, E. and P. I. Polimeni. 1977. Ultrastructural changes in the ischemic zone bordering experimental infarcts in rat left ventricles. Amer. J. Pathol. 86:81.

    Google Scholar 

  • Paggi. P. and R. J. Lasek. 1984. Degradation of purified neurofilament subunits by calcium-activated neutral protease: characterization of the cleavage products. Neurochem. Int. 6:589.

    PubMed  CAS  Google Scholar 

  • Pellegrino, C. and C. Franzini. 1963. An electron microscope study of denervation atrophy in red and white skeletal muscle fibers. J. Cell Biol. 17:327.

    PubMed  CAS  Google Scholar 

  • Pickart, C. M. and I. A. Rose. 1985. Ubiquitin-carboxyl-terminal hydrolase acts on ubiquitin-carboxyl-terminal amides. J. Biol. Chem. 260:7903.

    PubMed  CAS  Google Scholar 

  • Pontremoli, S. and E. Melloni. 1986. Extralysosomal protein degradation. Annu. Rev. Biochem. 55:455.

    PubMed  CAS  Google Scholar 

  • Pösö, A. R. and G. E. Mortimore. 1984. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver. Proc. Natl. Acad. Sci. USA 81:4270.

    PubMed  Google Scholar 

  • Publicover, S. J., C. J. Duncan and J. L. Smith. 1978. The use of A23187 to demonstrate the role of intracellular calcium in causing ultrastructural damage in mammalian muscle. J. Neuro-pathol. Exp. Neurol. 37:544.

    CAS  Google Scholar 

  • Ray, K. and H. Harris. 1985. Purification of neutral lens endopeptidase: close similarity to a neutral proteinase in pituitary. Proc. Natl. Acad. Sci. USA 82:7545.

    PubMed  CAS  Google Scholar 

  • Reeds, P. J., S. M. Hay, P. M. Dorwood and R. M. Palmer. 1986. Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. Brit. J. Nutr. 56:249.

    PubMed  CAS  Google Scholar 

  • Reeves, J. P., R. S. Decker, J. S. Crie and K. Wildenthal. 1981. Intracellular disruption of rat heart lysosomes by leucine methyl ester: effects on protein degradation. Proc. Natl. Acad. Sci. USA 78:4426.

    PubMed  CAS  Google Scholar 

  • Reville, W. J., D. E. Goll, M. H. Stromer, R. M. Robson and W. R. Dayton. 1976. A Ca2+ -activated protease possibly involved in myofibrillar protein turnover. Subcellular localization of the protease in porcine skeletal muscle. J. Cell Biol. 70:1.

    PubMed  CAS  Google Scholar 

  • Rodemann, H. P., L. Waxman and A. L. Goldberg. 1982. The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the Ca2+-activated protease. J. Biol. Chem. 257:8716.

    PubMed  CAS  Google Scholar 

  • Rogers, S., R. Wells and M. Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364.

    PubMed  CAS  Google Scholar 

  • Rubenstein, N., J. Chi and H. Holtzer. 1976. Coordinated synthesis and degradation of actin and myosin in a variety of myogenic and non-myogenic cells. Exp. Cell Res. 97:387.

    Google Scholar 

  • Sandoval, I. V. and K. Weber. 1978. Calcium-induced inactivation of microtubule formation in brain extracts. Presence of a calcium-dependent protease acting on polymerization-stimulating microtubule-associated proteins. Eur. J. Biochem. 92:463.

    PubMed  CAS  Google Scholar 

  • Schiaffino, S. and V. Hanzlikova. 1972. Studies on the effect of denervation in developing muscle. II. The lysosomal system. J. Ultrastruct. Res. 39:1.

    PubMed  CAS  Google Scholar 

  • Schoenheimer, R. and D. Rittenberg. 1940. The study of intermediary metabolism of animals with the aid of isotopes. Physiol. Rev. 20:218.

    CAS  Google Scholar 

  • Schollmeyer, J. E. 1986a. Role of Ca2+ and Ca2+-activated protease in myoblast fusion. Exp. Cell. Res. 162:411.

    PubMed  CAS  Google Scholar 

  • Schollmeyer, J. E. 1986b. Possible role of calpain I and calpain II in differentiating muscle. Exp. Cell. Res. 163:413.

    PubMed  CAS  Google Scholar 

  • Schollmeyer, J. E. 1988. Calpain II involvement in mitosis. Science 240:911.

    PubMed  CAS  Google Scholar 

  • Schwartz, W. N. and J. W. C. Bird. 1977. Degradation of myofibrillar proteins by cathepsins B and D. Biochem. J. 167:811.

    PubMed  CAS  Google Scholar 

  • Shii, K., S. Baba, K. Yokono and R. A. Roth. 1985. Covalent linkage of l25I-insulin to a cytosolic insulin-degrading enzyme. J. Biol. Chem. 260:6503.

    PubMed  CAS  Google Scholar 

  • Smith, A. L. N. 1978. Effects of starvation on vacuolar apparatus of cardiac muscle tissue determined by electron microscopy, marker-enzyme assays, and electrolyte studies. Cytobios 18:111.

    Google Scholar 

  • Stauber, W. T. and J. W. C. Bird. 1974. S-p zonal fractionation studies of rat skeletal muscle lysosome-rich fractions. Biochim. Biophys. Acta 338:234.

    CAS  Google Scholar 

  • Stauber, W. T. and V. K. Fritz. 1985. Decreased lysosomal protease content of skeletal muscles from streptozotocin-induced diabetic rats: a biochemical and histochemical study. Histochem. J. 17:613.

    PubMed  CAS  Google Scholar 

  • Stauber, W. T., V. Fritz, B. Dahlmann and H. Reinauer. 1983. Immunohistochemical localization of two proteinases in skeletal muscle. J. Histochem. Cytochem. 31:827.

    PubMed  CAS  Google Scholar 

  • Stracher. A., E. B. McGowan, A. Hedrych and S. A. Shafiq. 1979. In vivo effect of protease inhibitors in denervation atrophy. Exp. Neurol. 66:611.

    PubMed  CAS  Google Scholar 

  • Stracher, A., E. B. McGowan and S. A. Shafiq. 1978. Muscular dystrophy: inhibition of degeneration in vivo with protease inhibitors. Science 200:50.

    PubMed  CAS  Google Scholar 

  • Sugden, P. H. 1980. The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro. Biochem. J. 190:593.

    PubMed  CAS  Google Scholar 

  • Sugita, H., S. Ishiura, K. Suzuki and K. Imahori. 1980. Ca2+-activated neutral protease and its inhibitors: in vitro effect on intact myofibrils. Muscle Nerve 3:335.

    PubMed  CAS  Google Scholar 

  • Suzuki, K. 1987. Calcium-activated neutral protease: domain structure and activity regulation. Trends Biochem. Sci. 12:103.

    CAS  Google Scholar 

  • Suzuki, K., S. Tsuji, S. Ishiura, Y. Kimura, S. Kubota and K. Imahori. 1981a. Autolysis of calcium-activated neutral and protease of chicken skeletal muscle. J. Biochem. 90:1787.

    PubMed  CAS  Google Scholar 

  • Suzuki, K., S. Tsuji, S. Kubota, Y. Kimura and K. Imahori. 1981b. Limited autolysis of Ca2+ -activated neutral protease (CANP) changes its sensitivity to Ca2+ ions. J. Biochem. 90:275.

    PubMed  CAS  Google Scholar 

  • Szpacenko, A., J. Kay, D. E. Goll and Y. Otsuka. 1981. A different form of the Ca2+-dependent proteinase activated by micromolar levels of Ca2+. In: V. Turk and L.j. Vitale (Ed.) Proteinases and Their Inhibitors: Structure, Function, and Applied Aspects, pp 151–161. Pergamon Press, Elmsford, NY.

    Google Scholar 

  • Takahashi-Nakamura, M., S. Tsuji, K. Suzuki and K. Imahori. 1981. Purification and characterization of an inhibitor of calcium-activated neutral protease from rabbit skeletal muscle. J. Biochem. 90:1583.

    PubMed  CAS  Google Scholar 

  • Takano, E., M. Maki, H. Mori, M. Hatanaka, T. Marti, K. Titani, R. Kannagi, T. Oui, and Y. Murachi. 1988. Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in Polyacrylamide gel electrophoresis. Biochemistry 27:1964.

    PubMed  CAS  Google Scholar 

  • Tan, F. C., D. E. Goll, and Y. Otsuka. 1988. Some properties of the millimolar Ca2+-dependent proteinase from bovine cardiac muscle. J. Mol. Cell Card. (in press).

    Google Scholar 

  • Tanaka, K., K. Ii, A. Ichihara, L. Waxman, and A. L. Goldberg. 1986. A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution. J. Biol. Chem. 261:15197.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., L. Waxman and A. L. Goldberg. 1983. ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. J. Cell Biol. 96:1580.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., L. Waxman and A. L. Goldberg. 1984. Vanadate inhibits the ATP-dependent degradation of proteins in reticulocytes without affecting ubiquitin conjugation. J. Biol. Chem. 259:2803.

    PubMed  CAS  Google Scholar 

  • Tsukahara, T., S. Ishiura, and H. Sugita. 1988. The “ATP-dependent protease” in human eryth-roleukemia (K562) cells is identical to a high-molecular-mass protease, ingensin. Proc. Japan Acad. 64B:72.

    Google Scholar 

  • Tweedle, C. D., H. Popiela and C.S. Thornton. 1974. Ultrastructure of the development and subsequent breakdown of muscle in aneurogenic limbs (Ambystoma). J. Exp. Zool. 190:155.

    PubMed  CAS  Google Scholar 

  • van der Westhuyzen, D. R., K. Matsumoto and J. D. Etlinger. 1981. Easily releasable myofilaments from skeletal and cardiac muscles maintained in vitro. Role in myofibrillar assembly and turnover. J. Biol. Chem. 256:11791.

    Google Scholar 

  • Vernon, B. G. and P. J. Buttery. 1976. Protein turnover in rats treated with Trienbolone acetate. Brit. J. Nutr. 36:575.

    CAS  Google Scholar 

  • Warnes, D. M., F. M. Tomas and F. J. Ballard. 1981. Increased rates of myofibrillar protein breakdown in muscle-wasting diseases. Muscle Nerve 4:62.

    PubMed  CAS  Google Scholar 

  • Waxman, L. 1981. Calcium-activated proteases in mammalian tissues. Methods Enzymol. 80:664.

    PubMed  CAS  Google Scholar 

  • Waxman, L., J. M. Fagan and A. L. Goldberg. 1987. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes. one of which degrades ubiquitin conjugates. J. Biol. Chem. 262:2451.

    PubMed  CAS  Google Scholar 

  • Waxman, L., J. M. Fagan, K. Tanaka and A. L. Goldberg. 1985. A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin. J. Biol. Chem. 260:11994.

    PubMed  CAS  Google Scholar 

  • West, C. M. and H. Holtzer. 1982. Protein synthesis and degradation in cultured muscle is altered by a phorbol diester tumor promoter. Arch. Biochem. Biophys. 219:335.

    PubMed  CAS  Google Scholar 

  • Wildenthal, K., J. R. Wakeland, J. M. Ord and J. T. Stull. 1980. Interference with lysosomal proteolysis fails to reduce cardiac myosin degradation. Biochem. Biophys. Res. Commun. 96:793.

    PubMed  CAS  Google Scholar 

  • Wilk, S. and M. Orlowski. 1983. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 40:842.

    PubMed  CAS  Google Scholar 

  • Wilkinson, K. D., M. K. Urban and A. L. Hass. 1980. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255:7529.

    PubMed  CAS  Google Scholar 

  • Wolitsky, B. A., M. S. Hudecki and H. L. Segal. 1984. Turnover of myofibrillar proteins in cultured muscle cells from normal and dystrophic chick embryos. Biochim. Biophys. Acta 803:106.

    Google Scholar 

  • Woodbury, R. G., G. M. Gruzenski and D. Lagunoff. 1978. Immunofluorescent localization of a serine protease in rat small intestine. Proc. Natl. Acad. Sci. USA 75:2785.

    PubMed  CAS  Google Scholar 

  • Wrogemann, K., W. A. K. Hayward and M. C. Blanchaer. 1979. Biochemical aspects of muscle necrosis in hamster dystrophy. Ann. N.Y. Acad. Sci. 317:30.

    PubMed  CAS  Google Scholar 

  • Yoshikawa, A. and T. Masaki. 1981. Increase in protein synthetic activity in chicken muscular dystrophy. J. Biochem. 90:1775.

    PubMed  CAS  Google Scholar 

  • Yoshimura, N., T. Murachi, R. Heath, J. Kay, B. Jasani and G. R. Newman. 1986. Immunogold electron-microscopic localization of calpain I in skeletal muscle of rats. Cell Tissue Res. 244:265.

    PubMed  CAS  Google Scholar 

  • Young, V. R., W. P. Steffee, P. B. Pencharz, J. C. Winterer and N. S. Scrimshaw. 1975. Total human body protein synthesis in relation to protein requirements at various ages. Nature 253:192.

    PubMed  CAS  Google Scholar 

  • Zak, R., A. F. Martin, G. Prior and M. Rabinowitz. 1977. Comparison of turnover of several myofibrillar proteins and critical evaluation of double isotope method. J. Biol. Chem. 252:3430.

    PubMed  CAS  Google Scholar 

  • Zeman, R. J., T. Kameyama, K. Matsumoto, P. Bernstein and J. D. Etlinger. 1985. Regulation of protein degradation in muscle by calcium. Evidence for enhanced nonlysosomal proteolysis associated with elevated cystolic calcium. J. Biol. Chem. 260:13619.

    PubMed  CAS  Google Scholar 

  • Zolfaghari, R., C. R. F. Baker, P. C. Canizaro, A. Amirgholami and F. J. Behal. 1987. A high-molecular-mass neutral endopeptidase-24.5 from human lung. Biochem. J. 241:129.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Goll, D.E., Kleese, W.C., Szpacenko, A. (1989). Skeletal Muscle Proteases and Protein Turnover. In: Campion, D.R., Hausman, G.J., Martin, R.J. (eds) Animal Growth Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8872-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8872-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8874-6

  • Online ISBN: 978-1-4684-8872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics