Skip to main content

Insecticide Resistance as a Model System for Studying Molecular Evolution

  • Chapter
Ecological and Evolutionary Genetics of Drosophila

Abstract

Apart from its applied significance, insecticide resistance is an excellent model system for studying the molecular basis of evolutionary change, in particular, the acquisition of a qualitatively different phenotype. It also has the unusual advantage in evolutionary biology that the change has been widespread and rapid enough to be amenable to analysis; approximately 450 species of insects and mites have developed resistance to chemical insecticides over the past forty years (Georghiou, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, J. T. A., and Whitten, M. J., 1976, The genetic basis for organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera, Calliphoridae), Bull. ent. Res. 66:561–568.

    Article  Google Scholar 

  • Berge, J. B., and Fournier, D., 1988, Advances in molecular genetics of acetylcholinesterase insensitivity in insecticide — resistant insects, Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 461.

    Google Scholar 

  • Board, P. G., and Webb, G. C., 1987, Isolation of a cDNA clone and localization of human glutathione S-transferase 2 genes to chromosome band 6p12, Proc. natn. Acad. Sci. USA 84:2377–2381.

    Article  CAS  Google Scholar 

  • Cavener, D. R., Otteson, D. C., and Kaufman, T. C., 1986, A rehabilitation of the genetic map of the 84B-D region in Drosophila melanogaster, Genetics 114:111–123.

    PubMed  CAS  Google Scholar 

  • Clark, A. G., and Shamaan, N. A., 1984, Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase, Pestic. Biochem. & Physiol. 22:249–261.

    Article  CAS  Google Scholar 

  • Clark, A. G., Shamaan, N. A., Dauterman, W. C., and Hayoaka, T., 1984, Characterization of multiple glutathione transferases from the housefly, Musca domestica (L), Pestic. Biochem. & Physiol. 22:51–59.

    Article  CAS  Google Scholar 

  • Devonshire, A. L., 1977, The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance, Biochem. J. 167:675–683.

    PubMed  CAS  Google Scholar 

  • Devonshire, A. L., 1987, Biochemical studies of organophosphorus and carbamate resistance in house flies and aphids, in: Combating Resistance to Xenobiotics: Biological and Chemical Approaches (M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. M. Sawicki, eds), Weinheim, VCH, Chichester, Ellis, Horwood, pp. 239–255.

    Google Scholar 

  • Feyereisen, R., 1988, Isolation and sequence of cDNA clones for cytochrome P-450 from an insecticide-resistant strain of Musca domestica, Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 465.

    Google Scholar 

  • Feyereisen, R., Koener, J. F., Farnsworth, D. E., and Nebert, D. W., 1989, Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica, Proc. natn. Acad. Sci. USA 86: 1465–1469.

    Article  CAS  Google Scholar 

  • Field, L. M., Devonshire, A. L., and Forde, B. G., 1988, Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene, Biochem. J. 251:309–312.

    PubMed  CAS  Google Scholar 

  • Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J. T. A., and Maffi, G., 1981, Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae), and possible correlations with the linkage maps of Musca domestica L., and Drosophila melanogaster (Mg.), Genet. Res. 37:55–69.

    Article  Google Scholar 

  • Franco, M. G., and Oppenoorth, F. J., 1962, Genetical experiments on the gene for low ali-esterase activity and organophosphate resistance in Musca domestica L., Entomol. exp. Appl. 5:119–123.

    Article  Google Scholar 

  • Georghiou, G. P., 1986, The magnitude of the resistance problem, in: Pesticide Resistance: Strategies and Tactics for Management, National Academy of Sciences, Washington, D.C., pp. 14–43.

    Google Scholar 

  • Grubs, R. E., Adams, P. M., and Soderlund, D. M., 1988, Binding of [3H] saxitoxin to head membrane preparations from susceptible and knockdown-resistant house flies, Pestic. Biochem. & Physiol. 32: 217–223.

    Article  CAS  Google Scholar 

  • Hall, L. M. C., and Spierer, P., 1986, The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5’ leader, EMBO J. 5:2949–2954.

    PubMed  CAS  Google Scholar 

  • Hama, H., 1983, Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 299–331.

    Chapter  Google Scholar 

  • Hoyer, R. F., and Plapp, F. W., 1968, Insecticide resistance in the house fly: identification of a gene that confers resistance to organotin insecticides and acts as an intensifier of parathion resistance, J. econ. Ent. 61:1269 – 1276.

    CAS  Google Scholar 

  • Hughes, P. B., 1982, Organophosphorus resistance in the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae): a genetic study incorporating synergists, Bull. ent. Res. 72:573–582.

    Article  CAS  Google Scholar 

  • Hughes, P. B., and Devonshire, A. L., 1982, The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. & Physiol. 18:289–297.

    Article  CAS  Google Scholar 

  • Hughes, P. B., Green, P. E., and Reichmann, K. G., 1984, Specific resistance to malathion in laboratory and field populations of the Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae), J. econ. Ent. 77:1400–1404.

    CAS  Google Scholar 

  • Hughes, P. B., and Raftos, D. A. 1985, Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), Bull. ent. Res. 75:535–544.

    Article  CAS  Google Scholar 

  • Hutson, D. H., and Roberts, T. R., 1985, Insecticides, in: Insecticides (D. H. Hutson, and T. R. Roberts, eds), John Wiley and Sons Ltd, New York, pp. 1–34.

    Google Scholar 

  • Kao, L. R., Motoyama, N., and Dauterman, W. C., 1984, Studies on hydrolases in various house fly strains and their role in malathion resistance, Pestic. Biochem. & Physiol, 22:86–92.

    Article  CAS  Google Scholar 

  • Kasbekar, D. P., and Hall, L. M., 1988, A Drosophila mutation that reduces sodium channel number confers resistance to pyrethroid insecticides, PestiC., Biochem, & Physiol. 32:135–145.

    Article  CAS  Google Scholar 

  • Lund, A. E., 1984, Pyrethroid modification of sodium channel: current concepts, PestiC., Biochem. & Physiol, 22:161–168.

    Article  CAS  Google Scholar 

  • McKenzie, J.A., and Game, A.Y., 1987, Diazinon resistance in Lucilia cuprina; mapping of a fitness modifier, Heredity 59:371–381.

    Article  Google Scholar 

  • McKenzie, J. A., Dearn, J. M., and Whitten, M. J., 1980, Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blow fly, Lucilia cuprina, Aust. J. biol. Sci. 33:85–95.

    PubMed  CAS  Google Scholar 

  • Motoyama, N., and Dauterman, W. C., 1980, Glutathione S — transferases: their role in the metabolism of organophosphorus insecticides, Rev. Biochem, Toxicol, 2: 49–69.

    CAS  Google Scholar 

  • Motoyama, N., Dauterman, W. C., and Plapp, F. W., 1977, Genetic studies on glutathione-dependent reactions in resistant strains of the house fly, Musca domestica L., PestiC., Biochem, & Physiol, 7:443–450.

    Article  CAS  Google Scholar 

  • Motoyama, N., Hayaoka, T., Nomura, K., and Dauterman, W. C., 1980, Multiple factors for organophosphorus resistance in the housefly, Musca domestica L., J. Pesticide Sci. (Noyaku Kagaku Kenkyukai) 5:393–402.

    Article  CAS  Google Scholar 

  • Mouches, C., Pasteur, N., Berge, J. B., Hyrien, O., Raymond, M., De Saint Vincent, B. R., De Silvestri, M., and Georghiou, G. P., 1986, Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito, Science 233:778–780.

    Article  PubMed  CAS  Google Scholar 

  • Mouches, C., Magnin, M., Berge, J. B., De Silvestri, M., Beyssat, V., Pasteur, N., and Georghiou G. P., 1987, Overproduction of detoxifying esterases in organophosphate resistant Culex mosquitoes and their presence in other insects, Proc. natn, Acad. Sci. USA 84:2113–2116.

    Article  CAS  Google Scholar 

  • Mouches, C., Pasteur, N., Lemieux, L., Poplin, Y., Abadon, M., and Georghiou, G. P., 1988, Advances in molecular genetics of organophosphate — detoxifying esterases in insects, Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 460.

    Google Scholar 

  • Myers, M., Richmond, R. C., and Oakeshott, J. G., 1988, On the origin of esterases, Mol. Biol. Evol. 5:113–119.

    PubMed  CAS  Google Scholar 

  • Nakatsugawa, T., and Morelli, M. A., 1976, Microsomal oxidation and insecticide metabolism, in: Insecticide Biochemistry and Physiology (C. F. Wilkinson, ed.), Plenum, New York, pp. 61–114.

    Google Scholar 

  • Narahashi, T., 1983, Resistance to insecticides due to reduced sensitivity of the nervous system, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 333–352.

    Chapter  Google Scholar 

  • Ogita, Z., 1958, The genetical relation between resistance to insecticides in general and that to phenylthiourea (PTU) and phenylurea (PU) in Drosophila melanogaster, Botyu-kagaku 23:188–205.

    Google Scholar 

  • Ogita, Z., and Kasai, T., 1965, Genetic control of multiple esterases in Musca domestica, Jap. J. Genet. 40:1–14.

    Article  Google Scholar 

  • Oppenoorth, F. J., 1985, Biochemistry and genetics of insecticide resistance, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 12, Insect Control (G. A. Kerkut, and L. I. Gilbert, eds), Pergamon, London, pp. 731–770.

    Google Scholar 

  • Oppenoorth, F. J., and Van Asperen, K., 1960, Allelic genes in the house fly producing modified enzymes that cause organophosphate resistance, Science 132:298–299.

    Article  PubMed  CAS  Google Scholar 

  • Ottea, J. A., and Plapp, F. W., 1981, Induction of glutathione S. aryl transferase by phenobarbital in the house fly, Pestic. Biochem. & Physiol. 15:10–13.

    Article  CAS  Google Scholar 

  • Pauron, D., Barhanin, J., Amichot, M., Pralavorio, M., Berge, J. B., and Lazdunski, M., 1989, Pyrethroid receptor in the insect Na+ channel: alteration of its properties in pyrethroid-resistant flies, Biochemistry 28: 1673–1677.

    Article  CAS  Google Scholar 

  • Pickett, C. B., Telakowski-Hopkins, C. A., Ding, G. J.-F., Argenbright, L., and Lu, A. Y. H., 1984, Rat liver glutathione S-transferases. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital, J. biol. Chem. 259:5182–5188.

    PubMed  CAS  Google Scholar 

  • Picollo de Villar, M. I., Van Der Pas, L. J. T., Swissaert, H. R., and Oppenoorth, F. J., 1983, An unusual type of malathion-carboxylesterase in a Japanese strain of house fly, Pestic. Biochem. & Physiol. 19:60–65.

    Article  Google Scholar 

  • Plapp, F. W., 1988, Major role for a regulatory gene in metabolic resistance to insecticides in the house fly Musca domestica L. (Diptera: Muscidae), Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 460.

    Google Scholar 

  • Plapp, F. W., and Wang, T. C., 1983, Genetic origins of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 47–70.

    Chapter  Google Scholar 

  • Raftos, D. A., 1986, The biochemical basis of malathion resistance in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. & Physiol. 26:302–309.

    Article  CAS  Google Scholar 

  • Raftos, D. A., and Hughes, P. B., 1986, Genetic basis of a specific resistance to malathion in the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae), J. econ. Ent. 79:553–557.

    CAS  Google Scholar 

  • Rossignol, D. P., 1988, Reduction in number of nerve membrane sodium channels in pyrethroid resistant house flies, Pestic. Biochem. & Physiol. 32:146–152.

    Article  CAS  Google Scholar 

  • Roush, R. T., and McKenzie, J. A., 1987, Ecological genetics of insecticide and acaricide resistance, A. Rev. Ent. 32:361–380.

    Article  CAS  Google Scholar 

  • Sattelle, D. B., Leech, C. A., Lummis, S. C. R., Harrison, B. J., Robinson, H. P. C., Moores, G. D., and Devonshire, A. L., 1988, Ion channel properties of insects susceptible and resistant to insecticides, in: Neurotox ‘88:Molecular Basis of Drug and Pesticide Action (G. G. Lunt, ed.), Elsevier, Amsterdam, pp. 563–582.

    Google Scholar 

  • Sawicki, R. W., 1985, Resistance to pyrethroid insecticides in arthropods, in: Insecticides (D. H. Hutson, and T. R. Roberts, eds), Wiley, New York, pp. 143–192.

    Google Scholar 

  • Sawicki, R. M., and Farnham, A. W., 1968a, Genetics of resistance to insecticides of the SKA strain of Musca domestica III. Location and isolation of the factors of resistance to dieldrin, Entomol. exp. Appl. 11:133–142.

    Article  CAS  Google Scholar 

  • Sawicki, R. M., and Farnham, A. W., 1968b, Examination of the isolated autosomes of the SKA strain of house flies (Musca domestica L) for resistance to several insecticides with and without pretreatment with sesamex and TBTP, Bull. ent. Res. 59:409–421.

    Article  Google Scholar 

  • Sawicki, R. M., Devonshire, A. L., Farnham, A. W., O’Dell, K. E., Moores, G. D., and Denholm, I., 1984, Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). II. Close linkage on autosome 2 between an esterase and resistance to trichlorphon and pyrethroids, Bull. ent. Res. 74:197–206.

    Article  CAS  Google Scholar 

  • Soderlund, D. M., and Bloomquist, J. R., Molecular mechanisms of insecticide resistance, in: Pesticide Resistance in Arthropods (R. T. Roush, and B. E. Tabashnik, eds), Chapman and Hall, New York, (in press).

    Google Scholar 

  • Telakowski-Hopkins, C. A., Rodkey, J. A., Bennet, C. D., Lu, A. Y. H., and Pickett, C. B., 1985, Rat liver glutathione S-transferases. Construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit, J. biol. Chem. 260:5820–5825.

    Google Scholar 

  • Terras, M. A., Rose, H. A., and Hughes, P. B., 1983, Aldrin epoxidase activity in larvae of a susceptible and a resistant strain of the sheep blowfly, Lucila cuprina (Wiedemann), J. Aust. Entomol. Soc. 22:256.

    Article  Google Scholar 

  • Triantanphyllidis, C. D., and Christodoulou, C., 1973, Studies of a homologous gene-enzyme system, Esterase C., in Drosophila melanogaster and Drosophila simulans, Biochem. Genet. 8:383–390.

    Google Scholar 

  • Tsukamoto, M., 1983, Methods of genetic analysis of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 71–98.

    Chapter  Google Scholar 

  • Van Asperen, K., 1962, A study of house fly esterases by means of a sensitive colorimetric method, J. Insect Physiol. 8:401–416.

    Article  CAS  Google Scholar 

  • Van Asperen, K., and Oppenoorth, F. J., 1959, Organophosphate resistance and esterase activity in house flies, Entomol. exp. Appl., 2:48–57.

    Article  Google Scholar 

  • Waters, L. C., and Nix, C. E., 1988, Regulation of insecticide resistance — related cytochrome P-450 expression in Drosophila melanogaster, Pestic. Biochem. & Physiol. 30:214–227.

    Article  CAS  Google Scholar 

  • Wood, E. J., De Villar, M. I. P., and Zerba, E. N., 1985, Role of a microsomal carboxylesterase in reducing the action of malathion in eggs of Triatoma infestans, Pestic. Biochem. & Physiol. 23:24–32.

    CAS  Google Scholar 

  • Wu, C.-F., Ganetzky, B., Jan, L. Y., Jan, Y.-N., and Benzer, S., 1978, A Drosophila mutant with a temperature-sensitive block in nerve conduction, Proc. natn. Acad. Sci. USA 75:4047–4051.

    Article  CAS  Google Scholar 

  • Yamamoto, D., Quandt, F. N., and Narahashi, T., 1983, Modification of single sodium channels by the insecticide tetramethrin, Brain Res. 274:344–349.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, R., Whyard, S., Downe, A. E. R., Wyatt, G. R., and Walker, V. K., 1987, General esterase, malathion carboxylesterase, and malathion resistance in Culex tarsalis, Pestic. Biochem. & Physiol. 28:279–285.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Russell, R.J., Dumancic, M.M., Foster, G.G., Weller, G.L., Healy, M.J., Oakeshott, J.G. (1990). Insecticide Resistance as a Model System for Studying Molecular Evolution. In: Barker, J.S.F., Starmer, W.T., MacIntyre, R.J. (eds) Ecological and Evolutionary Genetics of Drosophila . Monographs in Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8768-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8768-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8770-1

  • Online ISBN: 978-1-4684-8768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics