Skip to main content

Laser Irradiation of Tissue

  • Chapter
Heat Transfer in Medicine and Biology

Abstract

The rapid development of laser technology has provided the biomedical community with a variety of intense sources of electromagnetic radiation in the visible and infrared spectrum. When laser radiation strikes tissue, it absorbs a portion of the incident energy. The absorbed energy elevates the temperature of the tissue, and if the temperature increase is sufficiently high, irreversible damage, such as enzyme inactivation or protein denaturation, occurs. Further increases in the amount of energy absorbed may burn or even vaporize the tissue. The high-power densities that can be realized with the focused laser beam provide a unique surgical tool for cutting or destroying tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cain, C. P., and Welch, A. J., Measured and predicted laser-induced temperature rise in the rabbit fundus, Invest. Ophthal. 13, 60–70, 1974.

    Google Scholar 

  2. Siegrnan, A. E., An Introduction to Lasers and Masers ( McGraw-Hill, New York, 1971 ).

    Google Scholar 

  3. Laser Focus Buyer’s Guide 16th ed. (with Fiberoptic Communications) (Laser Focus Advanced Technology Publications, Newton, MA, Jan. 1981).

    Google Scholar 

  4. Fuller, T. A., The physics of surgical lasers, Lasers Surg. Med. 1, 5–14, 1980.

    Google Scholar 

  5. Gibbons, W. D., and Allen, R. G., Retinal damage from long-term exposure to laser radiation, Invest. Ophthal. 16, 521–529, 1977.

    Google Scholar 

  6. Polhamus, G. D., In-vivo measurement of long-term laser-induced retinal temperature rise, IEEE Trans. Biomed. Eng. 21, 617–622, 1980.

    Google Scholar 

  7. Ham, W. T., Jr., Mueller, H. A., and Sliney, D. H., Retinal sensitivity to damage from short wavelength light, Nature 260, 154–155, 1976.

    ADS  Google Scholar 

  8. Lawwill, T., Crockett, S., and Currier, G., Retinal damage secondary to chronic light exposure, Doc. Ophthal. 44, 379–402, 1977.

    Google Scholar 

  9. Marshall, J., Thermal and mechanical mechanisms in laser damage to the retina, Invest. Ophthal. 9, 97–115, 1970.

    Google Scholar 

  10. Cleary, S. F., and Hamrick, P. E., Laser-induced acoustic transients in the mammalian eye, J. Acous. Soc. Am. 46, 1037, 1969.

    ADS  Google Scholar 

  11. Sliney, D. H., and Freasier, B. C., Evaluation of optical radiation hazards, Appl. Optics 12, 1–24, 1973.

    ADS  Google Scholar 

  12. Ham, W. T., Mueller, H. A., Goldman, A. I., Newman, B. E., Holland, L. M., and Kuwabara, T., Ocular hazard from picosecond pulses of Nd: Yag laser radiation, Science 148, 362–363, 1974.

    ADS  Google Scholar 

  13. Sliney, D. H., and Wolbarsht, M. L., Safety with Lasers and Other Optical Sources ( Plenum, New York, 1980 ).

    Google Scholar 

  14. Kaplan, I., Five years experience with the CO2 laser, in Laser Surgery, vol. 2, I. Kaplan, ed. (Jerusalem Academic, Jerusalem, 1978 ) pp. 355–389.

    Google Scholar 

  15. Horch, H. H., McCord, R. C., Schaffer, E., and Rupracht, L., Aspects of laser osteotomy, Proc. Lasers Med. Biol., GSF, Neuherberg, Bericht BPT 5, 40–12, 1977.

    Google Scholar 

  16. Morein, G., Bone growth alterations resulting from application of CO2 laser beam to the epiphyseal growth plates, Acta Orthop. Scand. 49, 244–248, 1978.

    Google Scholar 

  17. Horch, H. H., Histological and long-term results following laser osteotomy, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 319–325.

    Google Scholar 

  18. Farine, I., and Horoshowski, H., The use of the laser scapel in orthopaedic surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 351–354.

    Google Scholar 

  19. Glantz, G., and Korn, A., The use of the carbon dioxide laser in general surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 9–16.

    Google Scholar 

  20. Nimsakul, N., Nishimura, M., Tanino, R., Osada, M., and Hata, J., Our experiences with the Sharplan 791 CO2 laser, in Laser Surgery, vol. 2, I. Kaplan, ed. (Jerusalem Academic, Jerusalem, 1978 ), pp. 59–75.

    Google Scholar 

  21. Kaplan, I., Sharon, U., and Ger, R., The carbon dioxide laser in clinical surgery, in Laser Applications in Medicine and Biology, vol. 2, M. L. Wolbarsht, ed. (Plenum, New York ), pp. 295–308.

    Google Scholar 

  22. Hall, R. R., The carbon dioxide laser in nonendoscopic urological surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 197–202.

    Google Scholar 

  23. Barzilay, B., Perlberg, S., and Caine, M., Use of CO2 laser beam for kidney surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 164–168.

    Google Scholar 

  24. Fidler, J. P., Slutzki, S., Shafir, R., znd Bornstein, L. A., Use of carbon dioxide laser for large excisions with minimal blood loss, Plast. Reconstr. Surg. 60, 250–255, 1977.

    Google Scholar 

  25. Kaplan, I., ed, Laser Surgery, vol. 2 (Jerusalem Academic, 1978 ).

    Google Scholar 

  26. Peled, I., Shohat, B., Gassner, S., and Kaplan, I., Excision of epithelial tumors: CO2 versus conventional methods, Cancer Lett. 2, 41–46, 1976.

    Google Scholar 

  27. Aranoff, B. L., CO2 lasers in surgical oncology, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 133–158.

    Google Scholar 

  28. Stellar, S., Levine, N., Ger, R., and Levenson, S. M., Carbon dioxide laser for excision of burn eschars, Lancet 1, 945, 1971.

    Google Scholar 

  29. Friedman, E. W., The CO2 laser in head and neck surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. (Jerusalem Academic, 1978 ).

    Google Scholar 

  30. Karlin, D. B., Patel, C. K., Wood, O. R., and Rovere, J., CO2 laser in vitreoretinal surgery, Ophth. (Rochester) 86 (2), 290–298, 1979.

    Google Scholar 

  31. Peyman, G., and Sanders, D., Full-thickness eye wall resection, in Advances in Uveal Surgery, Vitreous Surgery, and the Treatment of Endophthalmitis, edited by Peyman and Sanders ( Appleton-Century-Crofts, New York, 1975 ).

    Google Scholar 

  32. DiBartolomeo, J. R., and Ellis, M., The argon laser in otology, Laryngoscope 90, 1786–1796, 1980.

    Google Scholar 

  33. Perkins, C., Laser stapedotomy for otosclerosis, Laryngoscope 90, 228–241, 1980.

    Google Scholar 

  34. Escudero, L. H., Castro, A. O., Drumond, M., Porto, S. P., Bozinis, D. G., Penna, A. F., and Gallego-Lleusma, E., Argon laser in hyman tympanoplasty, Arch. Otol. 105, 252–253, 1979.

    Google Scholar 

  35. Bellina, J. H., and Polanyi, T. G., Management of vaginal adenosis and related cervicovaginal disorders in DES-exposed progeny by means of carbon dioxide laser surgery, J. Repro. Med. 16, 295–296, 1976.

    Google Scholar 

  36. Bellina, J. H., and Seto, Y. J., Pathological and physical investigations into CO2 laser tissue with specific emphasis on cervical intraepithelial neoplasm, Lasers Surg. Med. 1, 47–69, 1980.

    Google Scholar 

  37. Burke, L., Covell, L., and Antonioli, D., Carbon dioxide laser therapy of cervical intraepithelial neoplasia: Factors determining success rate, Lasers Surg. Med. 1, 113–122, 1980.

    Google Scholar 

  38. Dorsey, J. H., Diggs, E. S., Microsurgical conization of the cervix by carbon dioxide laser, Obstet. Gyn. 54, 565–570, 1979.

    Google Scholar 

  39. Baggish, M. S., Carbon dioxide laser treatment for condylomata acuminata venereal infections, Obstet. Gyn. 55, 1980.

    Google Scholar 

  40. McCord, R. C., Medical applications of CO2 laser fiber optics, Proc. SPIE 266, 1981.

    Google Scholar 

  41. Miller, J. B., and Smith, M. R., Transvitreal carbon dioxide photocautery—vitrectomy: A new instrument presentation, Ophthalmology 85, 1195–1200, 1978.

    Google Scholar 

  42. Beckman, H., and Fuller, T. A., Carbon dioxide laser scleral dissection and filtering procedure for glaucoma, Am. J. Ophthal. 88, 73–77, 1979.

    Google Scholar 

  43. Miller, J. B., Smith, M. R., and Boyer, D. S., Intraocular carbon dioxide laser photosurgery, Lasers Surg. Med. 1, 165–176, 1980.

    Google Scholar 

  44. Jako, G. J., Vaughan, C. W., Strong, M. S., and Polanyi, T. G., Surgical management of malignant tumors of the aerodigestive tract with carbon dioxide laser microsurgery, Int. Adv. Surg. Oncol. 1, 265–284, 1978.

    Google Scholar 

  45. Strong, M. S., The use of the CO2 laser in otolaryngology: a progress report, Trans. Am. Acad. Ophthal. and Otol. 82, 595–602, 1976.

    Google Scholar 

  46. Stern, L. S., et al,Qualitative and morphometric evaluation of vocal cord lesions produced by the carbon dioxide laser, Laryngoscope 90, 792–808, 1980.

    Google Scholar 

  47. Mihashi, S., et al,Laser surgery in otolaryngology: interaction of CO2 laser and soft tissue, Ann. N. Y. Acad. Sci. 267, 263–294, 1976.

    Google Scholar 

  48. Carruth, J. A. S., et al,The carbon dioxide laser: Safety aspects, J. Laryngol. Otol. 94, 411–417, 1980.

    Google Scholar 

  49. Pratt, L. W., The CO2 laser in otolaryngology, J. Maine Med. Assoc. 71, 39–45, 1980.

    Google Scholar 

  50. Putney, F. J., Carbon dioxide laser in otolaryngology, Southern Med. J. 72, 1385–1386, 1979.

    Google Scholar 

  51. Lejeune, F. E., Jr., Intralaryngeal surgery, Laryngoscope 84, 1815–1820, 1977.

    Google Scholar 

  52. Andrews, A. H., and Moss, H. W., Experiences with carbon dioxide laser in the larynx, Ann. Otol. 83, 462–470, 1974.

    Google Scholar 

  53. Snow, J. C., Norton, M. L., Saluja, T. S., and Estanislao, A. F., Fire hazard during CO2 laser microsurgery on the larynx and trachea, Anesth. Analg. 55, 146–147, 1976.

    Google Scholar 

  54. Burgess, G. E., and Lejeune, F. E., Endotracheal tube ignition during laser surgery of the larynx, Arch. Otol. 105, 561–562, 1979.

    Google Scholar 

  55. Vourc’h, G., Tannieres, M., and Freche, G., Ignition of a tracheal tube during laryngeal surgery, Anesthesia 34, 685, 1979.

    Google Scholar 

  56. Vourc’h, G., Tannieres, M., and Freche, G., Anesthesia from microsurgery of the larynx using a carbon dioxide laser, Anesthesia 34, 53–57, 1979.

    Google Scholar 

  57. Norton, M. L., et al,Endotracheal intubation and Venturi (JET) ventilation for laser microsurgery of the larynx, Ann. Otol. 85, 656–663, 1976.

    Google Scholar 

  58. Snow, J. C., Anesthesia for carbon dioxide laser microsurgery on the larynx and trachea, Anesth. Analg. 53, 507–512, 1974.

    Google Scholar 

  59. Patil, V., et al,A modified endotracheal tube for laser microsurgery, Anesthesiology 51, 571, 1979.

    Google Scholar 

  60. Kalhan, S. et al,A further modification of endotracheal tubes for laser microsurgery, Anesthesiology 53, 81, 1980.

    Google Scholar 

  61. Cosman, B., Clinical experience in the laser therapy of port wine stains, Lasers Surg. Med. 1, 133–152, 1980.

    Google Scholar 

  62. Apfelberg, D. B., Kosek, J., Maser, M. R., and Lash, H., Histology of port wine stains, Br. J. Plastic Surg. 32, 232–237, 1979.

    Google Scholar 

  63. Apfelberg, D. B., Progress report on extended clinical use of the argon laser for cutaneous lesions, Lasers Surg. Med. 1, 71–83, 1980.

    Google Scholar 

  64. Apfelberg, D. B., Maser, M. R., Lash, H., and Rivers, S. L., Extended clinical use of the argon laser for cutaneous lesions, Arch. Dermatol. 115, 719–721, 1979.

    Google Scholar 

  65. Ohshiro, T., Maruyama, Y., Nakajima, H., and Mima, M., Treatment of pigmentation of the lips and oral mucosa in Peutz-Jeghers syndrome using ruby and argon lasers, Br. J. Plastic Surg. 33, 346–349, 1980.

    Google Scholar 

  66. Staehler, G., and Hofstetter, A., Transurethral laser irradiation of urinary bladder tumors, Eur. Urol. 5, 64–69, 1979.

    Google Scholar 

  67. Staehler, G., Dosimetry for Nd:YAG laser applications in urology, Lasers Surg. Med. 1, 191–197, 1980.

    Google Scholar 

  68. Goodale, R. L., Okada, A., Gonzales, R., Borner, J. W., Edlich, R. F., and Wangensteen, O. H., Rapid endoscopie control of bleeding gastric erosions by laser radiation, Arch. Surg. 101, 211–214, 1970.

    Google Scholar 

  69. Yellin, A. E., Dwyer, R. M., Craig, J. R., Bass, M., and Cherlow, J., Endoscopie argon ion laser phototherapy of bleeding gastric lesions, Arch. Surg. 111, 750–755, 1976.

    Google Scholar 

  70. Kiefhaber, P., Nath, G., and Moritz, K., Endoscopical control of massive gastrointestinal hemorrhage by irradiation with a high-power Nd-Yag laser, Prog. Surg. 15, 140–155, 1977.

    Google Scholar 

  71. Meyer, H. J., Vonnahme, F. J., Haverkampf, K., and Huchzermeyer, H., Laser coagulation in the upper GI tract: A preliminary light and scanning electron-microscopic study, Lasers Surg. Med. 1, 103–112 1980.

    Google Scholar 

  72. Wirthlin, L. S., Van Urk, H., and Malt, R. A., Predictors of surgical mortality in patients with cirrhosis and nonvariceal gastroduodenal bleeding, Surg. Gyn. Obst. 139, 65–68, 1974.

    Google Scholar 

  73. Waitman, A. M., Spira, I., Chryssanthou, C. P., and Stenger, R. J., Fiberoptic-coupled argon laser in the control of experimentally produced gastric bleeding, Gastrointest. Endosc. 22, 78–81, 1975.

    Google Scholar 

  74. Dotter, C. T., Goldman, M. L., and Rosch, J., Instant selective arterial occlusion with isobutyl 2-cyanoacrylate, Radiology 114, 227–230, 1975.

    Google Scholar 

  75. Protell, R. L., Silverstein, F. E., Gulacsik, C., Martin, T. R., Dennis, M. B., Auth, D. C., and Rubin, C. E., Cyanoacrylate glue (flucrylate) fails to stop bleeding from experimental gastric ulcers, Gastroenterology (abstr.) 72, 11–14, 1977.

    Google Scholar 

  76. Katon, R. M., Experimental control of gastrointestinal hemorrhage via the endoscope: A new era dawns, Gastroenterology 70, 272–277, 1976.

    Google Scholar 

  77. Sugawa, C., Shier, M., Lucas, C. E., and Walt, A. J., Electrocoagulation of bleeding in the upper part of the gastrointestinal tract: A preliminary experimental clinical report, Arch. Surg. 110, 975–979, 1975.

    Google Scholar 

  78. Blackwood, W. D., and Silvas, S. E., Electrocoagulation of hemorrhage gastritis, Gastrointest. Endosc. 18, 53–55, 1971.

    Google Scholar 

  79. Blackwood, W. D., and Silvas, S. E., Gastroscopie electrosurgery, Gastroenterology 61, 305–314, 1971.

    Google Scholar 

  80. Papp, J. P., Endoscopie electrocoagulation of upper gastrointestinal hemorrhage, J. Am. Med. Assoc. 236, 2076–2079, 1976.

    Google Scholar 

  81. Papp, J. P., Fox, J. M., and Wilks, H. S., Experimental electrocoagulation of dog gastric mucosa, Gastr. Intest. Endosc. 22, 27–28, 1975.

    Google Scholar 

  82. Volpicelli, N. A., McCarthy, J. D., Bartlett, J. D., and Badger, W. E., Endoscopie electrocoagulation: An alternative to operative therapy in bleeding peptic ulcer disease, Arch. Surg. 113, 483, 1978.

    Google Scholar 

  83. Laurence, B. H., Vallon, A. G., Cotton, P. B., Miro, J. R., Oses, J. C., LeBodic, L., Sudry, P., Fruhmorgen, P., and Bodem, F., Endoscopic laser photocoagulation for bleeding peptic ulcers, Lancet 23 124–125, 1980.

    Google Scholar 

  84. Brown, S. G., Salmon, P. R., Kelly, B. M., Calder, H., Pearson, H., Weaver, B. M. Q., and Read, A. E., Argon laser photocoagulation in the dog stomach, Gut 20, 680–687, 1979.

    Google Scholar 

  85. Dwyer, R. M., Yellin, A. E., Craig, J., Cherlow, J., and Bass, M., Gastric hemostasis by laser phototherapy in man: A preliminary report, J. Am. Med. Assoc. 236, 1383–1384, 1976.

    Google Scholar 

  86. Fruhmorgen, P., Bodem, F., Reidenbach, H. D., and Kaudk, B., Endoscopic laser coagulation of bleeding gastrointestinal lesions with report of the first therapeutic application in man, Gastrointest. Endosc. 23, 73–75, 1976.

    Google Scholar 

  87. Silverstein, F. E., Protell, R. L., Piercey, J., Rubin, C. E., Auth, D. C., and Dennis, M., Endoscopic laser treatment, II. Comparison of the efficacy of high-and low-power photo-coagulation in control of severely bleeding experimental ulcers in dogs, Gastroenterology 73, 481–486, 1977.

    Google Scholar 

  88. Silverstein, F. E., Protell, R. L., Gulacsik, C., Auth, D. C., Deltenre, M., Dennis, M., Piercey, J., and Rubin, C., Endoscopic laser treatment, III. The development and testing of a gas-jet-assisted argon laser wave guide in control of bleeding experimental ulcers, Gastroenterology 74, 232–239, 1978.

    Google Scholar 

  89. Staehler, G., Hoffstetter, A., Gorisch, W., Kieditsch, E., and Mussiggang, M., Endoscopy in experimental urology using an argon laser beam, Endoscopy 8, 1–4, 1976.

    Google Scholar 

  90. Silverstein, F. E., Protell, R. L., Gilbert, D. A., Gulacsik, C., Auth, D. C., Dennis, M. E., and Rubin, C. E., Argon versus Neodymium—YAG laser photocoagulation of experimental canine ulcers, Gastroenterology 77, 491–496, 1979.

    Google Scholar 

  91. Mainster, M. A., White, T. J., Tips, J. H., and Wilson, P. W., Refined temperature increases produced by intense light sources, J. Opt. Soc. Am. 60, 264–270, 1970.

    Google Scholar 

  92. Mainster, M. A., White, T. J., Tips, J. H., and Wilson, P. W., Transient thermal behavior in biological systems, Bull. Math. Biophys. 32, 303–314, 1970.

    MATH  Google Scholar 

  93. Mainster, M. A., White, T. J., and Allen, R. G., Spectral dependence of retinal damage produced by intense light sources, J. Opt. Soc. Am. 60, 848–855, 1970.

    Google Scholar 

  94. Wissler, E. H., An analysis of chorioretinal thermal response to intense light exposure, IEEE Trans. Biomed. Engr. 23, 207–214, 1976.

    Google Scholar 

  95. Takata, A., Laser-induced thermal damage of skin, SAM-TR-77–38, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1977 ).

    Google Scholar 

  96. Welsch, H., Birngruber, R., Boergen, K.-P., Gabel, V. P., and Hillenkamp, F., The influence of scattering on the wavelength-dependent light absorption in blood, Proc. Lasers Med. Biol. (GSF Neuherberg), vol. 6SF-Bericht BPT5 14 14–8, 1977.

    Google Scholar 

  97. Takata, A. N., Thermal model of laser-induced skin damage: computer program operator’s manual, SAM-TR-77–37, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1977 ).

    Google Scholar 

  98. White, T. J., Mainster, M. A., Wilson, P. W., and Tips, J. H., Chorioretinal temperature increases from solar observations, Bull. Math. Biophys. 33, 1–17, 1971.

    Google Scholar 

  99. Takata, A. N., Goldfinch, L., Hinds, J. K., Kuan, L. P., Thomopoulis, N., and Weigandt, A., Thermal model of laser-induced eye damage, Report F-41609–74-C-0005, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1974 ).

    Google Scholar 

  100. Welch, A. J., Cain, C. P., and Priebe, L. A., Temperature rise in fundus exposed to laser radiation, SAM-TR-75–32, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1975 ).

    Google Scholar 

  101. Douglas, J., and Gunn, J., A general formulation of alternating direction methods, Numer. Math. 6, 428–453, 1964.

    MathSciNet  MATH  Google Scholar 

  102. Priebe, L. A., and Welch, A. J., A dimensionless model for the calculation of temperature increase in biologic tissues exposed to nonionizing radiation, IEEE Trans. Biomed. Eng. 26, 244–250, 1979.

    Google Scholar 

  103. Boergen, K. P., Birngruber, R., Gabel, V. P., and Hillenkamp, F., Experimental studies on controlled closure of small vessels by laser irradiation, Proc. Lasers Med. Biol. (GSF Neuherberg 1977 ).

    Google Scholar 

  104. Beibie, H. F., Frankhauser, F., Lotmar, W., and Roulier, A., Theoretical estimate of the temperature within irradiated retinal vessels, Acta Ophthal. 52, 13–36, 1974.

    Google Scholar 

  105. Gorisch, W., and Boergen, K. P., Thermal shrinkage of collagen fibers during vessel occlusion, Laser Surg. 3rd International Congress for Laser Surgery, Graz, Austria, 1979.

    Google Scholar 

  106. Wissler, E. H., and Gorisch, W., A mathematical model for predicting thermal responses in the neighborhood of arteries and veins during laser irradiation, Advances in Biomedical Engineering, V. Mow, ed., (ASME, New York, 1980 ).

    Google Scholar 

  107. Welch, A. J., Wissler, E. H., and Priebe, L. A., Significance of blood flow in calculations of temperature in laser-irradiated tissue, IEEE Trans. Biomed. Eng. BME-27, 164–166, 1980.

    Google Scholar 

  108. Kelle, C. A., and Neil, E., Samson Wright’s Applied Physiology (Oxford University Press, Oxford, Eng. 1971 ).

    Google Scholar 

  109. Welch, A. J., Priebe, L. A., Forster, L. D., Gilbert, R., Lee, C., and Drake, P., Experimental validation of thermal retinal models of damage from laser radiation, SAM-TR-79–9, USAF School of Aerospace Medicine, 1979 ( IIT Research Institute, Chicago, 1979 ).

    Google Scholar 

  110. Priebe, L. A., Cain, C. P., and Welch, A. J., Temperature rises required for production of minimal lesions in the macula mulatta retina, Am. J. Ophthal. 79, 405–413, 1975.

    Google Scholar 

  111. Lee, C. F., Experimental validation of retinal temperature distribution model for laser irradiation (Masters thesis, University of Texas, Austin, 1977 ).

    Google Scholar 

  112. Cain, C. P., and Welch, A. J., Thin film temperature sensors for biological measurements, IEEE Trans. Biomed. Eng BME-21, 421–423, 1974.

    Google Scholar 

  113. Routh, J. I., Introduction to Biochemistry, (W. B. Saunders Col, Philadelphia, 1971 ).

    Google Scholar 

  114. Henriques, F. C., and Moritz, A. R., Studies of thermal injury, I. Conduction of heat to and through the skin, Am. J. Path. 23, 531–549, 1947.

    Google Scholar 

  115. Stoll, A. M., and Green, L. C., Relationship between pain and tissue damage due to thermal radiation, J. Appl. Physiol. 14, 373–382, 1959.

    Google Scholar 

  116. Hu, C. L., and Barnes, F. S., Thermal-chemical damage in biological material under laser irradiation, IEEE Trans. Biomed. Eng., 17, 220, 1970.

    Google Scholar 

  117. Kach, E. A., and Incropera, F. P., Induction thermocoagulation: Thermal response and lesion size, IEEE Trans. Biomed. Eng. 21, 8, 1974.

    Google Scholar 

  118. Takata, A., Development of criterion for skin burns, Aersospace Med. 45, 634–637, 1974.

    Google Scholar 

  119. Vassiliadis, A., Ocular damage from laser radiation, Laser Applications in Medicine and Biology, vol. 1, M. L. Wolbarsht, ed. (Plenum, New York, 1971 ), pp. 125–162.

    Google Scholar 

  120. Mertz, A. R., Anderson, B. R., Bell, E. L., and Egbert, D. E., Retinal thermal model of laser induced eye damage: computer program operator’s manual, SAM-TR-76–33, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1976 ).

    Google Scholar 

  121. Welch, A. J., Cain, C. P., and Priebe, L. A., Temperature rise in fundus exposed to laser radiation, SAM-TR-75–32, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1975 ).

    Google Scholar 

  122. Beatrice, E. S., and Frisch, G. D., Retinal laser damage thresholds as a function of image diameter, Arch. Environ. Health 27, 322–326, 1973.

    Google Scholar 

  123. Ham, W. T., Geeraets, W. J., Mueller, H. A., Williams, R. C., Clarke, A. M., and Cleary, S. F., Retinal burns threshold for the helium—neon laser in the rhesus monkey, Arch. Ophthal. 84, 797–808, 1970.

    Google Scholar 

  124. Schorner, J. Untersuchungen von Wechselwirkungs mechanismus an Biologischen Proben mit einem extrem schmälbandigen Farbstofflaser, GSF-Bericht AO 280, Gesellschaft fur Strahelen und Unwelfforschung GmbH, München, 1980.

    Google Scholar 

  125. Welch, A. J., Priebe, L. A., Polhamus, G. D., Mistry, G. D., and Drake, P., Limits of applicability of thermal models of thermal injury, final report for contract F41609–76-C0005, USAF School of Aerospace Medicine, Brooks Air Force Base, Texas, 1976.

    Google Scholar 

  126. Bergquist, T., Kleman, B., and Tengroth, B., Laser irradiance levels for retinal lesions, Acta Ophthal. 43, 331–349, 1965.

    Google Scholar 

  127. Ham, W. T., Williams, R. C., Mueller, H. A., Guerry, D., Clarke, A. M., and Geeraets, W. J., Effects of laser radiation on mammalian eye, Ann. N. Y. Acad. Sci. 28, 4, 517, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Welch, A.J. (1985). Laser Irradiation of Tissue. In: Shitzer, A., Eberhart, R.C. (eds) Heat Transfer in Medicine and Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8285-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8285-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8287-4

  • Online ISBN: 978-1-4684-8285-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics