Skip to main content

Part of the book series: NATO Conference Series ((E,volume 6))

Abstract

It has long been known that aquatic organisms can release organic compounds to their environment. While there are organics present from the decomposition of animals and, through excretion, as waste products from animals (Ferrante, 1976), most of the organics released to the aquatic environment are from plants (Fogg, 1951; Fogg, 1963; Gessner, 1965; Hellebust, 1965; Fogg, 1966; Forsberg and Taube, 1967; Khailov and Burlakova, 1969; Sieburth, 1969; Anderson and Zeutschel, 1970; Khailov and Finenko, 1970; Zajic, 1970; Berman, 1976). The compounds released by phytoplankton which form complexes with metals include amino acids, polypeptides, proteins, porphyrins, pterins, and purines (Khailov, 1964). The littoral marine alga, Fucus vesiculosus releases as much as 40% of the carbon which it fixes. Khailov and Burlakova (1969) found as much as 39% of brown algal (and 38% of red algal) production was released as soluble extracellular products. Phytoplankton can release as much as 50% of their carbon which has been photosynthetically fixed (Fogg, 1951; Berman, 1976). Fogg and Westlake (1955) speculated that the polypeptides extensively released by blue-green algae may form complexes with metals and have important effects on ecology. Most of the organic complexing capacity of sea water is due to autochthonous production of organic compounds (Davey et al., 1973) by phytoplankton (Duursma, 1963; Anderson and Zeutschel, 1970; Thomas, 1971; Daumas, 1976). In a study of copper release from the thalli of benthic red algae, Seeliger and Edwards (1979) found that 22% of the copper released from living thalli was bound to dissolved organic matter, and 80–90% of the copper released from decomposing thalli was associated with dissolved organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, A., 1950, Quantitative studies of the avidity of naturally-occurring substances for metals. I. Amino-acids having only two ionizing groups, Biochem. J., 47: 531.

    CAS  Google Scholar 

  • Anderegg, G., L’Eplattenier, F., and Schwarzenbach, G., 1963, Hydroxa¬mate complexes. 3. Iron III exchange between sideramines and complexones. A discussion of the formation constants of the hydroxamate complexes, Helv. Chim. Acta, 46: 1409.

    Article  CAS  Google Scholar 

  • Anderson, G.C., and Zeutschel, R.P., 1970, Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the northeast Pacific Ocean, Limnol. Oceanogr., 15: 402.

    Article  Google Scholar 

  • Avakyan, Z.A., and Rabotnova, I.L., 1971, Comparative toxicity of free ions and complexes of copper with organic acids for Candida utilis, Mikrobiologiya, 49: 305.

    Google Scholar 

  • Barber, R.T., 1973, Organic ligands and phytoplankton growth in nu trient-rich seawater, in: “Trace Metals and Metal-Organic Interactions in Natural Waters”, P.C. Singer,ed., Ann Arbor Science Publ., Ann Arbor, Michigan.

    Google Scholar 

  • Barber, R.T., and Ryther, J.H., 1969, Organic chelators: factors affecting primary production in the Cromwell Current upwelling, J. Exp. Mar. Biol. & Ecol., 3: 191.

    Article  CAS  Google Scholar 

  • Berman, T., 1976, Release of dissolved organic matter by photosynthe sizing algae in Lake Kinneret, Israel, Freshwater Biol., 6:13.

    Article  CAS  Google Scholar 

  • Briand, F., Trucco, R., and Ramamoorthy, S., 1978, Correlations be tween specific algae and heavy metal binding in lakes, J. Fish. Res. Board Can., 35: 1482.

    Article  Google Scholar 

  • Burton, J.D., 1966, Some problems concerning the marine geochemistry of vanadium, Nature, Lond., 212: 976.

    Article  CAS  Google Scholar 

  • Corcoran, E.G., and Alexander, J.E., 1964, The distribution of certain trace elements in tropical sea water and their biological signi¬ficance, Bull. Mar. Sci. Gulf Caribb., 14: 594.

    CAS  Google Scholar 

  • Davey, E.W., Morgan, M.J., and Erickson, S.J., 1973, A biological measurement of the copper complexation capacity of seawater, Limnol. Oceanogr., 18: 993.

    Article  CAS  Google Scholar 

  • Davies, A.G., and Sleep, J.A., 1980, Copper inhibition of carbon fixation in coastal phytoplankton assemblages, J. Mar. Biol. Ass. U.K., 60: 841.

    Article  CAS  Google Scholar 

  • Daumas, R.A., 1976, Variations of particulate proteins and dissolved amino acids in coastal sea water, Mar. Chem., 4: 225.

    Article  CAS  Google Scholar 

  • Duursma, E.K., 1963, The production of dissolved organic matter in the sea as related to the primary gross production of organic matter, Neth. J. Sea Res., 2: 85.

    Article  Google Scholar 

  • Emery, T., 1971, Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena, Biochemistry, 10: 1483.

    Article  CAS  Google Scholar 

  • Estep, M., Armstrong, J.E., and Van Baalen, C., 1975, Evidence for the occurrence of specific iron (III)-binding compounds in near-shore marine ecosystems, Appl. Microbiol., 30: 186.

    CAS  Google Scholar 

  • Ferrante, J.G., 1976, The characterization of phosphorus excretion products of a natural population of limnetic zooplankton, Hydrobiologia, 50: 11.

    Article  Google Scholar 

  • Fogg, G.E., 1951, The production of extracellular nitrogenous sub stances by a blue-green alga, Proc. R. Soc. Lond. B., 139:372.

    Article  Google Scholar 

  • Fogg, G.E., 1963, The role of algae in organic production in aquatic environments, Br. Phycol. Bull., 2: 195.

    Article  Google Scholar 

  • Fogg, G.E., 1966, The extracellular products of algae, Oceanogr. & Mar. Biol. Ann. Rev., 4: 195.

    CAS  Google Scholar 

  • Fogg, G.E., and Westlake, D.F., 1955, The importance of extracellular products of algae in freshwater, Verh. Int. Verein. Theor. Angew. Limnol., 12: 219.

    Google Scholar 

  • Forsberg, C., and Taube, 0., 1967, Extracellular organic carbon from some green algae, Physiología P1., 20: 200.

    Article  CAS  Google Scholar 

  • Foster, P., and Morris, A.W., 1971, The seasonal variation of dis solved ionic and organically associated copper in the Menat Straits, Deep-Sea Res., 18: 231.

    CAS  Google Scholar 

  • Fukai, R., and Huynh, N.L., 1975, Chemical forms of zinc in sea water. Problems and experimental methods, J. Oceanogr. Soc. Japan, 31: 179.

    Article  CAS  Google Scholar 

  • Gächter, R., Davis, J.S., and Mares, A., 1978, Regulation of copper availability to phytoplankton by macromolecules in lake water, Environ. Sci. Technol., 12: 1416.

    Article  Google Scholar 

  • Gächter, R., Lum-Shue-Chan, K., and Chau, Y.K., 1973, Complexing capacity of the nutrient medium and its relation to inhibition of algal photosynthesis by copper, Schweiz. Z. Hydrol., 35:252.

    Article  Google Scholar 

  • Gächter, R., Lum-Shue-Chan, K., and Chau, Y.K., 1973, Complexing capacity of the nutrient medium and its relation to inhibition of algal photosynthesis by copper, Schweiz. Z. Hydrol., 35:252. Gächter, R., and Mares, A., 1979, Effects of increased heavy metal loads on phytoplankton communities, Swiss J. Hydrobiol., 41: 228.

    Article  Google Scholar 

  • Gast, J.A., and Thompson, T.G., 1958, Determination of the boron concentration of sea water, Anal. Chem., 30: 1549.

    Article  CAS  Google Scholar 

  • Gessner, F., 1955, The importance of extracellular products of algae in freshwater, Discussion on page 232 of G.E. Fogg and D.F. West-Jake (above), Verh. Int. Verein. Theor. Angew. Limnol., 12: 219.

    Google Scholar 

  • Giesy, J.P., 1976, Stimulation of growth in Scenedesmus obliquus (Chlorophyceae) by humic acids under iron limited conditions, J. Phycol., 12: 172.

    CAS  Google Scholar 

  • Giesy, J.P., 1980, Cadmium interactions with naturally occurring organic ligands, in: “Cadmium in the Environment. Part One: Ecological Cycling”, J.O. Nriagu, ed., John Wiley and Sons, New York.

    Google Scholar 

  • Giesy, J.P., and Alberts, J.J., 1981, Trace metal speciation: the interaction of metals with organic constituents of surface waters, in preparation.

    Google Scholar 

  • Gillespie, P.A., and Vaccaro, R.F., 1978, A bacterial bioassay for measuring the copper-chelation capacity of water, Limnol. Oceanogr., 23: 543.

    CAS  Google Scholar 

  • Gnassia-Barelli, M., Romeo, M., Laumond, F., and Pesando, D., 1978, Experimental studies on the relationship between natural copper complexes and their toxicity to phytoplankton, Mar. Biol., 47: 15.

    Article  CAS  Google Scholar 

  • Goldberg, E.D., 1965, Minor elements in sea water. Chapter 5, in: “Chemical Oceanography Volume 1”, J.P. Riley and G. Skirrow, eds., Academic Press, London.

    Google Scholar 

  • Guy, R.D., and Kean, A.R., 1980, Algae as a chemical speciation monitor. I. A comparison of algal growth and computer calculated speciation, Water Res., 14: 891.

    Article  CAS  Google Scholar 

  • Hardstedt-Romeo, M., and Gnassia-Barelli, M., 1980, Effect of complex¬ation by natural phytoplankton exudates on the accumulation of cadmium and copper by the haptophyceae Cricosphaera elongata, Mar. Biol., 59: 79.

    Article  Google Scholar 

  • Harvey, H.W., 1939, Substances controlling the growth of a diatom, J. Mar. Biol. Ass. U.K., 23: 499.

    Article  CAS  Google Scholar 

  • Hellebust, J.A., 1965, Excretion of some organic compounds by marine phytoplankton, Limnol. Oceanogr., 10: 192.

    Article  Google Scholar 

  • Huntsman, S.A., and Barber, R.T., 1975, Modification of phytoplankton growth by excreted compounds in low-density populations, J. Phycol., 11: 10.

    Google Scholar 

  • Hunter, S.H., 1972, Inorganic nutrition, Ann. Rev. Microbiol., 26: 313.

    Article  Google Scholar 

  • Jackson, G.A., and Morgan, J.J., 1978, Trace metal chelator interac¬tions and phytoplankton growth in sea water media: theoretical analysis and comparison with reported observations, Limnol. Oceanogr., 23: 268.

    Article  CAS  Google Scholar 

  • Johnson, R., 1955, Biologically active compounds in the sea, J. Mar. Biol. Ass. U.K., 34: 185.

    Article  Google Scholar 

  • Johnson, R., 1964, Sea water, the natural medium of phytoplankton.Trace metals and chelation, J. Mar. Biol. Ass. U.K., 44: 87.

    Article  Google Scholar 

  • Khailov, K.M., 1964, The formation of organometallic complexes with the participation of extracellular metabolites of marine algae,Dokl. Akad. Nauk SSSR., Biol. Sci., 155: 237.

    Google Scholar 

  • Khailov, K.M., and Burlakova, Z.P., 1969, Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities, Limnol. Oceanogr., 14: 521.

    Article  Google Scholar 

  • Khailov, K.M., and Finenko, Z.Z., 1970, Organic macromolecular com pounds dissolved in sea-water and their inclusion into food chains, in: “Marine Food Chains”, J. H. Steele, ed., University, of California Press, Berkeley.

    Google Scholar 

  • Koshy, E., Desai, M.V., and Ganguly, A.K., 1969, Studies on organo-metallic interactions in the marine environment. I. Interaction of some metallic ions with dissolved organic substances in sea water, Curr. Sci., 38: 555.

    CAS  Google Scholar 

  • Kroes, H.W., 1972, Growth interactions between Chlamydomonas globosa Snow and Chlorococcum ellipsoideum Deason and Bold: The role of extracellular products, Limnol. Oceanogr., 17: 423.

    Article  CAS  Google Scholar 

  • Laevestu, T., and Thompson, T.G., 1958, Soluble iron in coastal waters, J. Mar. Res., 16: 192.

    Google Scholar 

  • Lange, W., 1974, Chelatíng agents and blue-green algae, Can. J. Micro¬biol., 20: 1311.

    CAS  Google Scholar 

  • Lucas, C.E., 1958, External metabolites and productivity, Rapp. P.-v. Réun. Cons. Perm. Int. Explor. Mer, 144: 155.

    Google Scholar 

  • McKnight, D.M., and Morel, F.M.M., 1979, Release of weak and strong copper-complexing agents by algae, Limnol. Oceanogr., 25: 62.

    Article  Google Scholar 

  • McKnight, D.M., and Morel, F.M.M., 1980, Copper complexation by sider¬ophores from filamentous blue-green algae, Limnol. Oceanogr., 25: 62.

    Article  CAS  Google Scholar 

  • Murphy, T.P., Lean, D.R.S., and Nalewajko, C., 1976, Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae, Science, 192: 900.

    Article  CAS  Google Scholar 

  • Neilands, J.B., 1967, Hydroxamic acids in nature, Science, 156:1443. Noakes, J.E., and Hood, D.W., 1961, Boron-boric acid complexes in sea water,Deep-Sea Res., 8: 121.

    Google Scholar 

  • Ragan, M.A., Ragan, C.M., and Jensen, A., 1980, Natural chelations in sea water: detoxification of Zn+2 by brown algal polyphenols,J. Expl. Mar. Biol. Ecol., 49: 261.

    Article  Google Scholar 

  • Rona, E., Hood, D.W., Muse, L., and Buglio, B., 1962, Activation an alysis of manganese and zinc in sea water, Limnol. Oceanogr., 7: 201.

    Article  CAS  Google Scholar 

  • Seeliger, V., and Edwards, P., 1979, Fate of biologically accumulated copper in growing and decomposing thallí of two benthic red marine algae, J. Mar. Biol. Ass. U.K., 59: 227.

    Article  CAS  Google Scholar 

  • Sieburth, J.M., 1969, Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae, J. Expl. Mar. Biol. Ecol., 49: 261.

    Google Scholar 

  • Sillén, L.G., 1961, The physical chemistry of sea water, in: “Oceano¬graphy”, M. Sears, ed., Publ. No. 67 of the American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Slowey, J.F., Jeffrey, L.M., and Hood, D.W., 1967, Evidence for organic complexed copper in sea water, Nature, 214: 377.

    Article  CAS  Google Scholar 

  • Spencer, L.J., Barber, R.T., and Palmer, R.A., 1972, The detection of ferric specific organic chelators in marine phytoplankton cultures, Mar. Technol. Soc. Proc., p. 203.

    Google Scholar 

  • Sposíto, G., 1981, Trace metals in contaminated waters, Environ. Sci. Technol., 15: 396.

    Article  Google Scholar 

  • Steemann-Nielsen, E., and Wium-Andersen, S., 1970, Copper ions as poison in the sea and in freshwater, Mar. Biol., 6: 93.

    Article  CAS  Google Scholar 

  • Stolzberg, R.J., and Rosin, D., 1977, Chromatographic measurement of submicromolar strong complexing capacity in phytoplankton media,Anal. Chem., 49: 226.

    CAS  Google Scholar 

  • Sunda, W.G., Engel, D.W., and Thuotte, R.M., 1978, Effects of chemical speciation on toxicity of cadmium to grass shrimp Palaemonetes pugio: importance of free cadmium ion, Environ. Sci. Technol., 12: 409.

    Article  CAS  Google Scholar 

  • Sunda, W.G., and Gillespie, P.A., 1979, The response of a marine bacterium to cupric ion and its use to estimate cupric ion acti¬vity in sea water, J. Mar. Res., 37: 761.

    CAS  Google Scholar 

  • Sunda, W.G., and Guillard, R.R.L., 1976, The relationship between cupric ion and the toxicity of copper to phytoplankton, J. Mar. Res., 34: 511.

    CAS  Google Scholar 

  • Swallow, K.C., Westall, J.C., McKnight, D.M., Morel, N.M., and Morel, F.M.M., 1978, Potentiometric determination of copper complexation by phytoplankton exudates,Limnol. Oceanogr., 23: 538.

    Article  CAS  Google Scholar 

  • Thomas, J.P., 1971, Release of dissolved organic matter from natural populations of marine phytoplankton, Mar. Biol., 11: 311.

    Article  Google Scholar 

  • Tuschall, J.R., and Brezonik, P.L., 1980, Characterization of organic nitrogen in natural waters: its molecular size, protein content, and interactions with heavy metals, Limnol. Oceanogr., 25: 495.

    Article  CAS  Google Scholar 

  • Van den Berg, C.M.G., Wong, P.T.S., and Chau, Y.K., 1979, Measurement of complexing materials excreted from algae and their ability to ameliorate copper toxicity, J. Fish. Res. Board Can., 36: 901.

    Article  Google Scholar 

  • Williams, P.M., 1969, The association of copper with dissolved organic matter in sea water, Limnol. Oceanogr., 14: 156.

    Article  CAS  Google Scholar 

  • Williams, P.M., and Strack, P.M., 1966, Complexes of boric acid with organic cis-diols in sea water, Limnol. Oceanogr., 11: 401.

    Article  CAS  Google Scholar 

  • Zajic, J.E., ed., 1970, “Properties and products of algae”, Proceedings of the Symposium on the culture of algae, New York, 1969, spon sored by the Division of Microbial Chemistry and Technology of the American Chemical Society, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Giesy, J.P. (1983). Biological Control of Trace Metal Equilibria in Surface Waters. In: Leppard, G.G. (eds) Trace Element Speciation in Surface Waters and Its Ecological Implications. NATO Conference Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8234-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8234-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8236-2

  • Online ISBN: 978-1-4684-8234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics