Skip to main content

Excitatory Amino Acid Pathways in the Brain

  • Chapter
Excitatory Amino Acids and Epilepsy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 203))

Abstract

The neurochemical techniques used to obtain the results reviewed here take advantage of the fact that chemical neurotransmission requires 1) the presence of the transmitter in the presynaptic element, 2) a synthesizing apparatus for transmitter replenishment, 3) a mechanism for transmitter release, and 4) a mechanism for terminating transmitter action, involving, in the case of excitatory amino acids (EAA), reuptake in the presynaptic element. These techniques alone do not give definitive proof of the transmitter identity, but positive results with any one of them in a neuronal system suggest that the possibility of EAA neurotransmission should be more closely investigated, including also electrophysiological and pharmacological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abarca, J., and Bustos, G., 1985, Release of D-[3Hlaspartic acid from

    Google Scholar 

  • the rat substantia nigra: effect of veratridine-evoked depolarization and cortical ablation, Neurochem. Int., 7:229.

    Google Scholar 

  • Adams, J.C., and Wenthold, R.J., 1979, Distribution of putative amino

    Google Scholar 

  • acid transmitters, choline acetyltransferase and glutamate decarboxylase in the inferior colliculus, Neuroscience, 4:1947.

    Google Scholar 

  • Altschuler, R.A., Neises, G.R., Harmison, G.G., Wenthold, R.J., and Fex, J., 1981, Immunocytochemical localization of aspartate aminotransferase

    Google Scholar 

  • immunoreactivity in cochlear nucleus of the guinea pig, Prot. Natl. Açad. Sci. USA, 78: 6553.

    Google Scholar 

  • Altschuler, R.A., Mosinger, J.L., Harmison, G.G., Parakkal, M.H., and

    Google Scholar 

  • Wenthold, R.J., 1982, Aspartate aminotransferase-like immunoreactivity as a marker for aspartate/glutamate in guinea pig photoreceptors, Nature, 298: 657.

    Article  PubMed  Google Scholar 

  • Altschuler, R.A., Wenthold, R.J., Schwartz, A.M., Haser, W.G., Curthoys

    Google Scholar 

  • N.P., Parakkal, M., and Fex, J., 1984, Immunocytochemical localization of glutaminase-like immunoreactivity in the auditory nerve, Brain Res., 291: 173.

    Google Scholar 

  • Altschuler, R.A., Monaghan, D.T., Baser, W.G., Wenthold, R.J., Curthoys

    Google Scholar 

  • N.P., and Cotman, W., 1985, Immunocytochemical localization of glutaminase-like and aspartate aminotransferase-like immunoreactivities

    Google Scholar 

  • in the rat and guinea pig hippocampus, Brain Res., 330:225.

    Google Scholar 

  • Baughman, R.W., and Gilbert, C.D., 1980, Aspartate and glutamate as possible neurotransmitters of cells in layer 6 of the visual cortex, Nature, 287: 848.

    Article  PubMed  CAS  Google Scholar 

  • Baughman, R.W., and Gilbert, C.D., 1981, Aspartate and glutamate as possible neurotransmitters in the visual cortex, J. Neurosçi., 1: 427.

    PubMed  CAS  Google Scholar 

  • Beart, P.M., 1976, An evaluation of L-glutamate as the transmitter released from optic nerve terminals of the pigeon, Brain Res., 110: 99.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, A., Burkhalter, A., Rehbi, J.-C., and Cuénod, M., 1981, Selective bidirectional transport of [HD-aspartate in the retino-tectal pathway, Neuroscience, 6: 2021.

    Article  PubMed  CAS  Google Scholar 

  • Beckstead, R.M., 1979,. An autoradiographie examination of corticocortical

    Google Scholar 

  • and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat, J, Comp. Neurol., 184: 43.

    Google Scholar 

  • Bernstein, J., Fisher, R.S., Zaczek, R., and Coyle, J., 1985, Dipeptides of glutamate and aspartate may be endogenous neuroexcitants in the rat hippocampal slice, J. Neurosci., 5: 1429.

    PubMed  CAS  Google Scholar 

  • Bolz, J., Thier, P., and Brecha, N., 1985, Localization of aspartate aminotransferase and cytochrome oxidase in the cat retina, Neurosci. Lett., 53: 315.

    Google Scholar 

  • Bondy, S.C., and Purdy, J.L., 1977, Putative neurotransmitters of the avian visual pathways, Brain Res., 119: 417.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, H.F., and Richards, C.D., 1976, Specific release of endogenous glutamate from piriform cortex stimulated in vitro, Brain Res., 105: 168.

    Article  PubMed  CAS  Google Scholar 

  • Bromberg, M.B., Penney, J.B., Jr., Stephenson, B.S., and Young, A.B.,1981, Evidence for glutamate as the neurotransmitter of cortico-thalamic and corticorubral pathways, Brain Res., 215: 369.

    Google Scholar 

  • Cangro, C.B., Sweetnam, P.M., Wrathall, J.R., Haser, W.R., Curthoys, N.P., and Neale, J.H., 1985, Localization of elevated glutaminase immunoreactivity in small DRG neurons, Brain Res., 336: 158.

    Article  PubMed  CAS  Google Scholar 

  • Canzek, V., and Reubi, J.C., 1980, The effect of cochlear nerve lesion on the release of glutamate, aspartate and GABA from cat cochlear nucleus in vitro, Exp. Brain Res., 38: 437.

    Google Scholar 

  • Canzek, V., Wolfensberger, M., Amsler, U., and Cuénod, M., 1981, In vivo release of glutamate and aspartate following optic nerve stimulation, Nature, 293: 572.

    Article  PubMed  CAS  Google Scholar 

  • Carter, C.J., 1982, Topographical distribution of possible glutamatergic pathways from the frontal cortex to the striatum and substantia nigra in rats, Neuropharmacologv, 21: 379.

    Article  CAS  Google Scholar 

  • Christie, M.J., Bridge, S., James, L.B., and Beart, P.M., 1985a, Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area, Brain Res., 333: 169.

    Article  PubMed  CAS  Google Scholar 

  • Christie, M.J., James, L.R., and Beart, P.M., 1985b, An excitant amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat, J. Neurochem., 45: 477.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G.G.S., 1979a, Effect of chronic bulbectomy on the depth distribution of amino acid transmitter candidates in rat olfactory cortex, Brain Res., 171: 552.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G.G.S., 1979b, Evidence of a neurotransmitter role for aspartate and y-aminobutyric acid in the rat olfactory cortex, J. Physiol., 291: 51.

    PubMed  CAS  Google Scholar 

  • Collins, G.G.S., 1980, Release of endogenous amino acid neurotransmitter candidates from rat olfactory cortex slices: possible regulatory mechanisms and the effects of pentobarbitone, Brain Res., 190: 517.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G.G.S., Anson, J., and Probett, G.A., 1981, Patterns of endogenous amino acid release from slices of rat and guinea-pig olfactory cortex, Brain Res., 204: 103.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G.G.S., and Probett, G.A., 1981, Aspartate and not glutamate is the likely transmitter of the rat lateral olfactory tract fibres, Brain Res., 209: 231.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G.G.S., 1984, Amino acid transmitter candidates in various regions of the primary olfactory cortex following bulbectomy, Brain Res., 296: 145.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G.G.S., 1985, Excitatory amino acids as transmitters in the olfactory system, in: Excitatory Amino Acids, P.J. Roberts, J. Storm- Mathisen, and H.F. Bradford, Eds., Macmillan, London, in press.

    Google Scholar 

  • Crawford, I.L., and Connor, J.D., 1973, Localisation and release of glutamic acid in relation to the hippocampal mossy fibre pathway, Nature, 244: 442.

    Article  PubMed  CAS  Google Scholar 

  • Cuénod, M., Beaudet, A., Canzek, V., Streit, P., and Reubi, J.-C., 1981, Glutamatergic pathways in the pigeon and the rat brain, in: Glutamate as a Neurotransmitter, G. Di Chiara, and G.L. Gessa, eds., Raven Press, New York, p. 57.

    Google Scholar 

  • Cuénod, M., Bagnoli, P., Beaudet, A., Rustioni, A., Wiklund, L., and Streit, P., 1982, Transmitter specific retrograde labeling of neurons, in:

    Google Scholar 

  • Cvtoohemical Methods in Neuroanatomy, V. Chan-Palay and S.L. Palay, eds., Alan R. Liss, New York, p. 17.

    Google Scholar 

  • Davidoff, R.A., Graham, L.T., Jr., Shank, R.P., Werman, R., and Aprison, M.H., 1967, Changes in amino acid concentrations associated with loss of spinal interneurons, J. Neurochem., 14: 1025.

    Article  PubMed  CAS  Google Scholar 

  • De Belleroche, J.S., and Bradford, H.F., 1977, On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro, J. Neurochem., 29: 335.

    Article  PubMed  Google Scholar 

  • Demêmes, D., Raymond, J., and Sans, A., 1984, Selective retrograde labeling of neurons of cat vestibular ganglion with [H]D-aspartate, Brain Res., 304: 188.

    Article  PubMed  Google Scholar 

  • Di Lauro, A., Schmid, R.W., and Meek, J.L., 1981, Is aspartic acid the transmitter of the perforant pathway? Brain Res., 207: 476.

    Article  PubMed  Google Scholar 

  • Divac, I., Fonnum, F., and Storm-Mathisen, J., 1977, High affinity uptake of glutamate in terminals of corticostriatal axons, Nature, 266: 377.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, A.C., Errington, M.L., and Bliss, T.V.P., 1982, Long-term potentation of the perforant path in vivo is associated with increased glutamate release, Nature, 297: 496.

    Article  PubMed  CAS  Google Scholar 

  • Druce, D., Peterson, D., De Belleroche, J., and Bradford, H.F., 1982, Differential amino acid neurotransmitter release in rat neostriatum following lesioning of the cortico-striatal pathway, Brain Res., 247: 303.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B., 1981, (3H]-D-Aspartate accumulation in the retina of the pigeon, guinea-pig and rabbit, Exp. Eye Res., 33: 381.

    Google Scholar 

  • Engelsen, B., and Fonnum, F., 1983, Effects of hypoglycemia on the transmitter pool and the metabolic pool of glutamate in rat brain, Neurosci. Lett., 42: 317.

    Google Scholar 

  • Fagg, G.E., Jordan, C.C., and Webster, R.A., 1978, Descending fibre-mediated release of endogenous glutamate from the perfused cat spinal cord, in vivo, Brain Res., 158: 159.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, B.O., Ottersen, 0.P., and Storm-Mathisen, J., 1982a, Labelling of amygdalopetal and amygdalofugal projections after intra-amygdaloid injections of tritiated D-aspartate, Neuroscience, 7 (Suppl.): 569.

    Google Scholar 

  • Fischer, B.O., Ottersen, O.P., and Storm-Mathisen, J., 1982b, Axonal transport of D-[3H]aspartate in the claustro-cortical projection, Neuroscience, 7 (Suppl.): 569.

    Google Scholar 

  • Fischer, B.O., Ottersen, O.P., and Storm-Mathisen, J., 1982e, Anterograde and retrograde axonal transport of D-[3H]-aspartate (D-Asp) in hippocampal excitatory neurones, Neuroscience, 7 (Suppl.): S68.

    Google Scholar 

  • Fischer, B.O., Storm-Mathisen, J., and Ottersen, 0.P., 1985, Hippocampal excitatory neurons. Anterograde and retrograde axonal transport of D-[H]aspartate, in: Excitatory Amino Acids, P.J. Roberts, J. StormMathisen, and H.F. Bradford, eds., Macmillan, London, in press.

    Google Scholar 

  • Fischer, B.O., Ottersen, O.P., and Storm-Mathisen, J., 1986, Implantation of D-[3H]aspartate loaded gel particles permits restricted uptake sites for transmitter selective axonal transport, submitted.

    Google Scholar 

  • Fletcher, A., James, T.A., Kilpatrick, I.C., MacLeod, N.K., and Starr

    Google Scholar 

  • M.S., 1979, Neurochemical and electrophysiological evidence for GABAergic and glutamatergic nigro-thalamic neurones, Neurosci. Lett., Suppl. 3: 222.

    Google Scholar 

  • Fonnum, F., and Walaas, I., 1978, The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in hippocampus and septum, J. Neurochem., 31: 1173.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., Lund Karlsen, R., Malthe-SOrenssen, D., Skrede, K.K., and Walaas, I., 1979, Localization of neurotransmitters, particularly glutamate, in hippocampus, septum, nucleus accumbens and superior colliculus, Prog. Brain Res., 51: 167.

    Google Scholar 

  • Fonnum, F., Storm-Mathisen, J., and Divac, I., 1981a, Biochemical evidence for glutamate as neurotransmitter in the corticostriatal and corticothalamic fibres in rat brain, Neuroscience, 6: 863.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., Ureide, A. Kvale, I., Walker, J., and Walaas, I., 1981b, Glutamate in cortical fibers, in: Glutamate as a Neurotransmitter, G. Di Chiara, and G.L. Cessa, eds., Raven Press, New York, p. 29.

    Google Scholar 

  • Fonnum, F., and Henke, H., 1982, The topographical distribution of alanine, aspartate, y-aminobutyric acid, glutamate, glutamine, and glycine in the pigeon optic tectum and the effect of retinal ablation, J. Neuroçhem „ 38: 1130.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., 1984, Glutamate: a neurotranmitter in mammalian brain, J. Neuro- çhem., 42: 1.

    CAS  Google Scholar 

  • Fonnum, F., Fosse, V.M., and Allen, C.N., 1984, Identification of excitatory amino acid pathways in the mammalian nervous system, in: Excitotoxins, K. Fuxe, P. Roberts, and R. Schwartz, eds., Plenum Press, New York, p. 3

    Google Scholar 

  • Fosse, V.M., Heggelund, P., Iversen, E., and Fonnum, F., 1984, Effects of area 17 ablation on neurotransmitter parameters in efferents to area 18, the lateral geniculate body, pulvinar and superior colliculus in the cat, Neurosci. Lett., 52: 323.

    Google Scholar 

  • Freeman, M.E., Lane, J.D., and Smith, J.E., 1983, Turnover rates of amino acid neurotransmitters in regions of rat cerebellum, J. Neurochem., 40: 1441.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, D.A., Ross, C.D., Carter, J.A., Lowry, O.H., and Matschinsky, F.M., 1980, Effect of intervening lesions on amino acid distributions in rat olfactory cortex and olfactory bulb, J, Histochem, Cytochem., 28: 1157.

    Google Scholar 

  • Godukhin, O.V., Zharikova, A.D., and Novoselov, V.I., 1980, The release of labeled L-glutamic acid from rat neostriatum in vivo following stimulation of frontal cortex, Neuroscience, 5. 2151.

    Article  PubMed  CAS  Google Scholar 

  • Granata, A.R., avid Reis, D.J., 1983, Release of [3H]L-glutamine acid (L-Glu) and (H]D-aspartic acid ( D-Asp) in the area of nucleus tractus solitarius in vivo produced by stimulation of the vagus nerve, Brain Res., 259: 77.

    Google Scholar 

  • Halâsz, N., and Shepherd, G.M., 1983, Neurochemistry of the vertebrate olfactory bulb, Neuroscience, 10: 579.

    Article  PubMed  Google Scholar 

  • Hamberger, A., Chiang, G., Nylén, E.S., Scheff, S.W., and Cotman, C.W., 1978, Stimulus evoked increase in the biosynthesis of the putative neurotransmitter glutamate in the hippocampus, Brain Res., 143: 549.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger, A.C., Chiang, G.H., Nylén, E.S., Scheff, S.W., and Cotman, C.W., 1979, Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate, Brain Res., 168: 513.

    Google Scholar 

  • Hansson, E., Jarlstedt, J., and Sellström, A., 1980, Sound-stimulated 4C-glutamate release from the nucleus cochlearis, Experientia, 36: 576.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, J.A., Scholfield, C.N., Graham, L.T., Jr., and Aprison, M.H.,1975, Putative transmitters in denervated olfactory cortex, J. Neurochem., 24: 445.

    Google Scholar 

  • Hassler, R., Haug, P., Nitsch, C., Kim, J.S., and Paik, K., 1982, Effect of motor and premotor cortex ablation on concentrations of amino acids, monoamines, and acetylcholine and on the ultrastructure in rat striatum. A confirmation of glutamate as the specific cortico-striatal transmitter, J. Neurochem., 38: 1087.

    Google Scholar 

  • Heggli, P.E., Aamodt, A., and Malthe-SOrenssen, D., 1981, Kainic acid neurotoxicity: effect of systemic injection on neurotransmitter markers in different brain regions, Brain Res., 230: 253.

    Article  PubMed  CAS  Google Scholar 

  • Henke, H., Schenker, T.M., and Cuénod, M., 1976, Effects of retinal ablation on uptake of glutamate, glycine, GAGA, proline, and choline in pigeon tectum, J. Neurochem., 26: 131.

    Google Scholar 

  • Hertz, L., Kvamme, E., McGeer, E.G., and Schousboe, A., 1983, Glutamine, Glutamate and GABA in the Central Nervous System, Alan R. Liss, New York.

    Google Scholar 

  • Hicks, T.P., Ruwe, W.D., Veale, W.L., and Veenhuizen, J., 1985,. Aspartate and glutamate as synaptic transmitters of parallel visual cortical pathways, Exo. Brain Res., 58: 421.

    Google Scholar 

  • Homma, S., Suzuki, T., Murayama, S., and Otsuka, M., 1979, Amino acid and substance P contents in spinal cord of cats with experimental hindlimb rigidity produced by occlusion of spinal cord blood supply, J. Neurochem., 32: 691.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, D.B., Valcana, T., Bean, G., and Timiras, P.S., 1976, Glutamic acid: a strong candidate as the neurotransmitter of the cerebellar granule cell, Neurochem. Res., 1: 73.

    Google Scholar 

  • Hunt, S.P., 1983, Cytochemistry of the spinal cord, in: Chemical Neuro-anatomy, P.C. Emson, ed., Raven Press, New York, p. 53.

    Google Scholar 

  • Johnston, G.A.R., 1976, Glutamate and aspartate as transmitters in the spinal cord, Adv. Biochem, Psychopharmacol., 15: 175.

    Google Scholar 

  • Jones, I.M., Jordan, C.C., Morton, I.K.M, Stagg, C.J., and Webster, R.A.,1974, The effect of chronic dorsal root section on the concentration of free amino acids in the rabbit spinal cord, J. Neurochem., 23: 1239.

    Google Scholar 

  • Kan, K.-S.K., Chao, L.-P., and Eng, L.F., 1978, Immunohistochemical localiza-tion of choline acetyltransferase in rabbit spinal cord and cerebellum, Brain Res., 146: 221.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E.S., 1979,. Central transport and distribution of labelled glutamic and aspartic acids to the cochlear nucleus in cats: an autoradiographie study, Neuroscience, 4: 729.

    Google Scholar 

  • Kerkerian, L., Nieoullon, A., and Dusticier, N., 1983, Topographic changes in high-affinity glutamate uptake in the cat red nucleus, substantia nigra, thalamus and caudate nucleus after lesions of sensorimotor cortical areas, Exp, Neurol., 81: 598.

    CAS  Google Scholar 

  • Kim, J.S., Hassler, R., Haug, P., and Paik, K., 1977,. Effect of frontal cortex ablation on striatal glutamic acid level in rat, Brain Res., 132: 370.

    Google Scholar 

  • Korf, J., and Venema, K., 1983, Amino acids in the substantia nigra of rats with striatal lesions produced by kainic acid, J. Neurochem., 40: 1171.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber, J., Kim, J.S., Kornhuber, M.E., and Kornhuber, H.H., 1984, The cortico-nigral projection: reduced glutamate content in the substantia nigra following frontal cortex ablation in the rat, Brain Res., 322: 124.

    Article  PubMed  CAS  Google Scholar 

  • Künzle, H., and Wiklund, L., 1.982, Identification and distribution of neurons presumed to give rise to cerebellar climbing fibers in turtle. A retrograde axonal flow study using radioactive D-aspartate as a marker, Brain Res., 252: 146.

    Google Scholar 

  • Kvale, I., and Fonnum, F., 1983, The effects of unilateral removal of visual cortex on transmitter parameters in the adult superior colliculus and lateral geniculate body, Develop. Brain Res., 11: 261.

    Google Scholar 

  • Luini, A., Tal, N., Goldberg, 0., and Teichberg, V.I., 1984, An evaluation of selected brain constituents as putative excitatory neurotransmitters, Brain Res., 324: 271.

    CAS  Google Scholar 

  • Lund Karlsen, R., and Fonnum, F., 1978, Evidence for glutamate as a neurotransmitter in the corticofugal fibres to the dorsal lateral geniculate body and the superior colliculus in rats, Brain Res., 151: 457.

    Article  Google Scholar 

  • Malthe-S6renssen, D., Skrede, K.K., and Fonnum, F., 1979, Calcium-dependent release of D-(3H]aspartate evoked by selective electrical stimulation of excitatory afferent fibers to hippocampal pyramidal cells in vitro, Neuroscience, 4: 1255.

    Article  Google Scholar 

  • Malthe-S6renssen, D., Skrede, K.K., and Fonnum, F., 1980, Release of D-[3H]aspartate from the dorsolateral septum after electrical stimulation of the fimbria in vitro, Neuroscience, 5: 127.

    Article  Google Scholar 

  • Marc, R.E., and Lam, D.M.K., 1981, Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina, Proc. Natl. Acad. Sci. USA, 78: 7185.

    Google Scholar 

  • Matute, C., Waldvogel, H.J., Streit, P., and Cuénod, Mt’ 1984, Selective retrograde labeling following D-[3H]aspartate and [H]GABA injections in the albino rat superior colliculus, Neurosci. Lett., Suppl. 18: S190.

    Google Scholar 

  • McGeer, E.G., and McGeer, P.L., 1979,. Localization of glutaminase in the rat neostriatum, J. Neurochem., 32: 1071.

    Google Scholar 

  • McGeer, P.L., McGeer, E.G., Scherer, U., and Singh, K., 1977, A glutamatergic corticostriatal path?, Brain Res., 128: 369.

    Article  PubMed  CAS  Google Scholar 

  • Minchin, M.C.W., and Fonnum, F., 1979, The metabolism of GABA and other amino acids in rat substantia nigra slices following lesions of the striatonigral pathway, J. Neurochem,, 32: 203.

    Article  PubMed  CAS  Google Scholar 

  • Nadi, N.S., Kanter, D., McBride, W.J., and Aprison, M.H., 1977, Effects of 3-acetylpyridine on several putative neurotransmitter amino acids in the cerebellum and medulla of the rat, J. Neurochem., 28: 661.

    Article  PubMed  CAS  Google Scholar 

  • Nadler, J.V., Vaca, K.W., White, W.F., Lynch, G.S., and Cotman, C.W., 1976, Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents, Nature, 260: 538.

    Article  PubMed  CAS  Google Scholar 

  • Nadler, J.V., White, W.F., Vaca, K.W., Perry, B.W., and Cotman, C.W., 1978, Biochemical correlates of transmission mediated by glutamate and aspartate, J. Neurochem., 31: 147.

    Article  PubMed  CAS  Google Scholar 

  • Nadler, J.V., and Smith, E.M., 1981, Perforant path lesion depletes glutamate content of fascia dentata synaptosomes, Neurosci. Lett., 25: 275.

    Google Scholar 

  • Naito, S., and Ueda, T., 1983, Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles, J. Biol. Chem., 258: 696.

    Google Scholar 

  • Naito, S., and Ueda, T., 1985, Characterization of glutamate uptake into synaptic vesicles, J. Neurochem., 44: 99.

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon, A., and Dusticier, N., 1981, Decrease in choline acetyltransferase and in high affinity glutamate uptake in the red nucleus of the cat after cerebellar lesions, Neurosci. Lett., 24: 267.

    Google Scholar 

  • Nieoullon, A., Kerkerian, L., and Dusticier, N., 1984, High affinity glutamate uptake in the red nucleus and ventrolateral thalamus after lesion of the cerebellum in the adult cat: biochemical evidence for functional changes in the deafferented structures, Exp. Brain Res., 55: 409.

    Google Scholar 

  • Nitsch, C., Kim, J.-K., Shimada, C., and Okada, Y., 1979a, Effect of hippo-campus extirpation in the rat on glutamate levels in target structures of hippocampal efferents, Neurosci. Lett., 11: 295.

    Google Scholar 

  • Nitsch, C., Kim, J.-K., and Shimada, C., 1979b, The commissural fibers in rabbit hippocampus: synapses and their transmitter, Progr. Brain Res., 51: 193.

    Google Scholar 

  • Oliver, D.L., Potashner, S.J., Jones, D.R., and Morest, D.K., 1983, Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig, J. Neurosci., 3: 455.

    PubMed  CAS  Google Scholar 

  • Ottersen, O.P., 1982, Connections of the amygdala of the rat. IV: Cortico-amygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase, J. Comp. Neurol., 205: 30.

    Google Scholar 

  • Ottersen, O.P., Fisher, B.O., and Storm-Mathisen, J., 1983, Retrograde transport of D-[H]aspartate in thalamocortical neurones, Neurosci. Lett., 42: 19.

    Google Scholar 

  • Ottersen, O.P., and Storm-Mathisen, J., 1984a, Neurons containing or accumulating transmitter amino acids, in: Handbook of Chemical Neuroanatomv, A. Björklund, T. Hökfelt, and M.J. Kuhar, eds., Elsevier/North-Holland, Amsterdam, p. 141.

    Google Scholar 

  • Ottersen, O.P., and Storm-Mathisen, J., 1984b, Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique, J. Comp, Neurol., 229: 374.

    Google Scholar 

  • Ottersen, O.P., and Storm-Mathisen, J., 1984c, Neurotransmitters in the hippocampal formation and related structures, Neurosci. Lett., Suppl. 18: S147

    Google Scholar 

  • Ottersen, O.P., Fischer, B.O., Rinvik, E., and Storm-Mathisen, J., 1986, Putative amino acid transmitters in the amygdala, in: Excitatory Amino Acids and Epilepsy, R. Schwarcz and Y. Ben-Ari, eds., Plenum Press, London, in press.

    Google Scholar 

  • Ottersen, O.P., and Storm-Mathisen, J., 1985, Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of cat, guinea pig, and Senegalese baboon ( Papio papio), with a note on the distribution of GABA, Neuroscience, 16: 589.

    Google Scholar 

  • Patel, A.J., and Hunt, A., 1985, Concentration of free amino acids in

    Google Scholar 

  • primary cultures of neurones and astrocytes, J. Neurochem., 44: 1816.

    Google Scholar 

  • Perrone, M.H., 1981, Biochemical evidence that L-glutamate is a neurotrans-mitter of primary vagal afferent nerve fibers, Brain Res., 230: 283.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, N.A., and Raghupathy, E., 1974, Selective effects of lithium on synaptosomal amino acid transport systems, Biochem. Pharmacol., 23: 2491.

    CAS  Google Scholar 

  • Potashner, S.J., 1983,. Uptake and release of D-aspartate in the guineapig cochlear nucleus, J, Neurochem., 41: 1094.

    Google Scholar 

  • Potashner, S.J., and Tran, P.L., 1985, Decreased uptake and release of D-aspartate in the guinea pig spinal cord after partial cordotomy, J. Neurochem., 44: 1511.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, J., Nieoullon, A., Demémes, D., and Sans, A., 1984, Evidence for glutamate as a neurotransmitter in the cat vestibular nerve: radio-autographic and biochemical studies, Exp. Brain Res., 56: 523.

    Google Scholar 

  • Rea, M.A., and McBride, W.J., 1978, Effects of X-irradiation on the levels of glutamate, aspartate and GABA in different regions of the cerebellum of the rat, Life Soi., 23: 2355.

    Article  CAS  Google Scholar 

  • Rea, M.A., McBride, W.J., and Rohde, B.H., 1980, Regional and synaptosomal levels of amino acid neurotransmitters in the 3-acetylpyridine deafferentated rat cerebellum, J. Neurochem., 34: 1106.

    Article  PubMed  CAS  Google Scholar 

  • Rea, M.A., McBride, W.J., and Rohde, B.H., 1981, Levels of glutamate, aspartate, GABA, and taurine in different regions of the cerebellum after X-irradiation-induced neuronal loss, Neurochem. Res., 6: 33.

    Google Scholar 

  • Recasens, M., Benzra, R., Basset, P., and Mandel, P., 1980, Cysteine sulfinate aminotransferase and aspartate aminotransferase isoenzymes of rat brain. Purification, characterization, and further evidence for identity, Biochemistry, 19: 4583.

    Google Scholar 

  • Reis, D.J., Granata, A.R., Perrone, M.H., and Talman, W.T., 1981, Evidence that glutamic acid is the neurotransmitter of baroreceptor afferents terminating in the nucleus tractus solitarius ( NTS ), J. Auton. Nerv. Svst., 3: 321.

    Google Scholar 

  • Reubi, J.C., and Cuénod, M., 1979, Glutamate release in vitro from corticostriatal terminals, Brain Res., 176: 185.

    Article  PubMed  CAS  Google Scholar 

  • Reubi, J.C., Toggenburger, C., and Cuénod, M., 1980, Asparagine as a precursor for transmitter aspartate in corticostriatal fibres, J. Neurochem., 35: 1015.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, F., and Hill, R.G., 1978,. The effect of dorsal column lesions on amino acid levels and glutamate uptake in rat dorsal column nuclei, J. Neurochem., 31: 1549.

    Google Scholar 

  • Roberts, P.J., 1974, The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo, Brain Res., 67: 419.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, P.J., and Keen, P., 1974, Effect of dorsal root section on amino acids of rat spinal cord, Brain Res., 74: 333.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, P.J., McBean, G.J., Sharif, N.A., and Thomas, E.M., 1982,. Striatal glutamatergic function: modifications following specific lesions, Brain Res., 235: 83.

    Google Scholar 

  • Roffler-Tarlov, S., and Sidman, R.L., 1978, Concentrations of glutamic acid in cerebellar cortex and deep nuclei of normal mice and weaver, staggerer and nervous mutants, Brain Res., 142: 269.

    Article  PubMed  CAS  Google Scholar 

  • Roffler-Tarlov, S., and Turey, M., 1982, The content of amino acids in the developing cerebellar cortex and deep cerebellar nuclei of granule cell deficient mutant mice, Brain Res., 247: 65.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, B.H., Rea, M.A., Simon, J.R., and McBride, W.J., 1979, Effects of X-irradiation induced loss of cerebellar granule cells on synaptosomal levels and the high affinity uptake of amino acids, J. Neurochem., 32: 1431.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C.D., and Godfrey, D.A., 1985, Distributions of aspartate aminotransferase and malate dehydrogenase activities in rat retinal layers,J. Histochem, Cvtochem., 33: 624.

    Google Scholar 

  • Rowlands, G.J., and Roberts, P.J., 1980, Specific calcium-dependent release of endogenous glutamate from rat striatum is reduced by destruction of the cortico-striatal tract, EXP. Brain Res., 39: 239.

    Google Scholar 

  • Rustioni, A., and Cuénod, M., 1982, Selective retrograde transport of D-aspartate in spinal interneurons and cortical neurons of rats, Brain Res., 236: 143.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg, M., Bradford, H.F., and Richards, C.D., 1984, Effect of lesions of the olfactory bulb on the levels of amino acids and related enzymes in the olfactory cortex of the guinea pig, J. Neurochem., 43: 276.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg, M., Ward, H.K., and Bradford, H.F., 1985, Effect of corticostriate pathway lesion on the activities of enzymes involved in synthesis and metabolism of amino acid neurotransmitters in the striatum, J. Neurochem., 44: 42.

    Article  PubMed  CAS  Google Scholar 

  • Sandoval, M.E., and Cotman, C.W., 1978, Evaluation of glutamate as a neurotransmitter of cerebellar parallel fibers, Neuroscience, 3: 199.

    Article  PubMed  CAS  Google Scholar 

  • Scholfield, C.N., Moroni, F., Corradetti, R., and Pepeu, G., 1983, Levels and synthesis of glutamate and aspartate in the olfactory cortex following bulbectomy, J, Neurochem., 41: 135.

    Article  CAS  Google Scholar 

  • Skrede, K.K., and Malthe-SOrenssen, D., 1981a, Increased resting and evoked release of transmitter following repetitive electrical tetanization in hippocampus: a biochemical correlate to longlasting synaptic potentiation, Brain Res., 208: 436.

    Article  PubMed  CAS  Google Scholar 

  • Skrede R.K., and Malthe-Seirenssen, D., 1981b, Differential release of D-[H]aspartate and [14C]y-aminobutyric acid following activation of commissural fibres in a longitudinal slice preparation of guinea pig hippocampus, Neurosci. Lett., 21: 71.

    Google Scholar 

  • Spencer, H.J., Tominez, G., and Halpern, B., 1981, Mass spectographic analysis of stimulated release of endogenous amino acids from rat hippocampal slices, Brain Res., 212: 194.

    Article  PubMed  CAS  Google Scholar 

  • Sterri, S.H., and Fonnum, F., 1980, Acetyl-CoA synthesizing enzymes in cholinergie nerve terminals, J. Neurochem., 35: 249.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1977, Glutamic acid and excitatory nerve endings: reduction of glutamic acid uptake after axotomy, Brain Res., 120: 379.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1978, Localization of putative transmitters in the hippocampal formation with a note on the connection to septum and hypothalamus, in: Functions of the Seotohippocampal System, Ciba Foundation Symposium, 58 ( New Series), Elsevier/Excerpta Medica/North Holland, Amsterdam, p. 49

    Google Scholar 

  • Storm-Mathisen, J., and Woxen-Opsahl, M., 1.978, Aspartate and/or glutamate may be transmitters in hippocampal efferents to septum and hypothalamus, Neurosci, Lett., 9:65

    Google Scholar 

  • Storm-Mathisen, J., and Iversen, L.L., 1979, Uptake of [3H]glutamic acid in excitatory nerve endings: light and electronmicroscopic observations in the hippocampal formation of the rat, Neuroscience, 4: 1237.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1981, Autoradiographie and microchemical localization of high affinity glutamate uptake, in: Glutamate: Transmitter in the Central Nervous System, P.J. Roberts, J. Storm-Mathisen, and G.A.R. Johnston, eds., John Wiley and Sons, Chichester, p. 89.

    Google Scholar 

  • Storm-Mathisen, J., and Wold, J.E. 1981, In vivo high-affinity uptake and axonal transport of D-[2,3-’Hlaspartate in excitatory neurons, Brain Res., 230: 427.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1982, Amino acid compartments in hippocampus: an autoradiographie approach, in: Neurotransmitter Interaction and Compartmentation, H.F. Bradford, ed., Plenum Press, New York, p. 395.

    Google Scholar 

  • Storm-Mathisen, J., Leknes, A.K., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, F.-M.S., and Ottersen, 0.P., 1983, First visualization of glutamate and GABA in neurones by immunocytochemistry, Nature, 301: 517.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., and Ottersen, 0.P., 1985, Antibodies against amino acid transmitters, in: Neurohistochemistry Today, P. Panula,H. Päivärinta, and S. Soinila, eds., Alan R. Liss, New York, in press.

    Google Scholar 

  • Streit, P., 1980, Selective retrograde labeling indicating the transmitter of neuronal pathways, J. Comp, Neurol., 191: 429.

    Google Scholar 

  • Svenneby, G., and Storm-Mathisen, J., 1983, Immunological studies on phosphate activated glutaminase, in: Glutamine. Glutamate. and GABA in the Central Nervous System, L. Hertz, E. Kvamme, E.G., McGeer, and A. Schousboe, eds., Alan R. Liss, New York, p. 69.

    Google Scholar 

  • Talman, W.T., Perrone, M.H., and Reis, D.J., 1980, Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers, Science, 209: 813.

    Article  PubMed  CAS  Google Scholar 

  • Taniyama, K., Nitsch, C., Wagner, A., and Hassler, R., 1980,. Aspartate, glutamate and GABA levels in pallidum, substantia nigra, center median and dorsal raphe nuclei after cylindric lesion of caudate nucleus in cat, Neurosci. Lett., 16: 155.

    Google Scholar 

  • Taxt, T., and Storm-Mathisen, J., 1984, Uptake of D-aspartate and L-glutamate in excitatory axon terminals in hippocampus: autoradiographie and biochemical comparison with y-aminobutyrate and other amino acids in normal rats and in rats with lesions, Neuroscience, 11: 79.

    Article  PubMed  CAS  Google Scholar 

  • Thangnipon, W., al2d Storm-Mathisen, J., 1981, K+-evoked Ca +-dependent release of D-[H]aspartate from terminals of the cortico-pontine pathway, Neurosci. Lett., 23: 181.

    Google Scholar 

  • Thangnipon, W., Taxt, T., Brodal, P., and Storm-Mathisen, J., 1983, The cortico-pontine projection: axotomy-induced loss of high affinity L-glutamate and D-aspartate uptake, but not of GABA uptake, glutamate decarboxylase or choline acetyltransferase, in the pontine nuclei, Neuroscience, 8: 449.

    Article  PubMed  CAS  Google Scholar 

  • Toggenburger, G., Wiklund, L., Henke, H., and Cuénod, M., 1983, Release of endogenous and accumulated exogenous amino acids from slices of normal and climbing fibre-deprived rat cerebellar slices, J. Neurochem., 41: 1606.

    Article  PubMed  CAS  Google Scholar 

  • Valcana, T., Hudson, D., and Timiras, P.S., 1972, Effects of X-irradiation on the content of amino acids in the developing rat cerebellum, J. Neurochem„ 19: 2229.

    Article  PubMed  CAS  Google Scholar 

  • Walaas, I., and Fonnum, F., 1979, The effect of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat, Neuroscience, 4: 209.

    Article  PubMed  CAS  Google Scholar 

  • Walaas, I., and Fonnum, F., 1980, Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain, Neuroscience, 5: 1691.

    Article  PubMed  CAS  Google Scholar 

  • Walaas, I., 1981, Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain, Neuroscience, 6:399.

    Google Scholar 

  • Walker, J.E., and Fonnum, F., 1983a, Regional cortical glutamergic and aspartergic projections to the amygdala and thalamus of the rat, Brain Res., 267: 371.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.E., and Fonnum, F., 1983b, Effect of regional cortical ablations on high-affinity D-aspartate uptake in striatum, olfactory tubercle and pyriform cortex of the rat, Brain Res., 278: 283.

    Article  PubMed  CAS  Google Scholar 

  • Ward, H.K., Thanki, C.M., Peterson, D.W., and Bradford, H.F., 1987., Brain glutaminase activity in relation to transmitter glutamate biosynthesis, Biochem. Soc. Trans., 10: 369.

    Google Scholar 

  • Watanabe, K., and Kawana, E., 1984, Selective retrograde transport of tritiated D-aspartate from the olfactory bulb to the anterior olfactory nucleus, pyriform cortex and nucleus of the lateral olfactory tract in the rat, Brain Res., 296: 148.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., and Gulley, R.L., 1977, Aspartic acid and glutamic acid levels in the cochlear nucleus after auditory nerve lesion, Brain Res., 138: 111.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., 1978, Glutamic acid and aspartic acid in subdivisions of the cochlear nucleus after auditory nerve lesion, Brain Res., 143: 544.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., and Gulley, R.L., 1978, Glutamie and aspartic acid in the cochlear nucleus of the waltzing guinea pig, Brain Res., 158: 295.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., 1979, Release of endogenous glutamic acid, aspartic acid and GABA from cochlear nucleus slices, Brain Res., 162: 338.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., 1980, Glutaminase and aspartate aminotransferase decrease in the cochlear nucleus after lesion of the auditory nerve, Brain Res., 190: 293.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., and Altschuler, R.A., 1983, Immunocytochemistry of aspartate aminotransferase and glutaminase, in: Glutamine, Glutamate, and GABA in the Central Nervous System, L. Hertz, E. Kvamme, E.G. McGeer and A. Schousboe, eds., Alan R. Liss, New York, p. 33.

    Google Scholar 

  • Wenthold, R.J., and Altschuler, R.A., 1985, Immunocytochemical localization of enzymes involved in the metabolism of excitatory amino acids, in: Excitatory Amino Acids, P.J. Roberts, J. Storm-Mathisen, and H.F. Bradford, eds., Macmillan, London, in press.

    Google Scholar 

  • Wiklund, L., Toggenburger, G., and Cuénod, M., 1982, Aspartate: possible neurotransmitter in cerebellar climbing fibers, Science, 216: 78.

    Article  PubMed  CAS  Google Scholar 

  • Wiklund, L., and Cuénod, M., 1984, Differential labelling of afferents to thalamic centromedian-parafascicular nuclei with [H]choline and D-[H]aspartate: further evidence for transmitter specific retrograde labelling, Neurosci. Lett., 46: 275.

    Google Scholar 

  • Wiklund, L., Toggenburger, G., and Cuénod, M., 1984, Selective retrograde labelling of the rat olivocerebellar climbing fiber system with D-[3H] aspartate, Neuroscience, 13: 441.

    Article  PubMed  CAS  Google Scholar 

  • Wilkin, G.P., Garthwaite, J., and Balfizs, R., 1982, Putative acidic amino acid transmitters in the cerebellum. H. Electron microscopic localization of transport sites, Brain Res., 244: 69.

    Google Scholar 

  • Wroblewski, J.T., Blaker, W.D., and Meek, J.L., 1985, Ornithine as a precursor of neurotransmitter glutamate: effect of canaline on ornithine aminotransferase activity and glutamate content in the septum of rat brain, Brain Res., 329: 161.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, C., and Matsui, S., 1976, Effect of stimulation of excitatory nerve tract on release of glutamic acid from olfactory cortex slices in vitro, J. Neurochem., 26: 487.

    Article  PubMed  CAS  Google Scholar 

  • Yates, R.A., and Roberts, P.J., 1974, Effects of enucleation and intraocular colchicine on the amino acids of frog optic tectum, J. Neurochem., 23: 891.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.B., Oster-Granite, M.L., Herndon, R.M., and Snyder, S.H., 1974, Glutamic acid: selective depletion by viral induced granule cell loss in hamster cerebellum, Brain Res., 73: 1.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.B., Bromberg, M.B., and Penney, J.B., Jr., 1981, Decreased glutamte uptake in subcortical areas deafferented by sensorimotor cortical ablation in the cat, J, Neurosci., 1: 241.

    CAS  Google Scholar 

  • Zaczek, R., Hedreen, J.C.., and Coyle, J.T., 1979, Evidence for a hippocampal-septal glutamatergic pathway in the rat, Exp. Neurol., 65: 145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ottersen, O.P., Storm-Mathisen, J. (1986). Excitatory Amino Acid Pathways in the Brain. In: Schwarcz, R., Ben-Ari, Y. (eds) Excitatory Amino Acids and Epilepsy. Advances in Experimental Medicine and Biology, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7971-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7971-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7973-7

  • Online ISBN: 978-1-4684-7971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics