Skip to main content

Activity of Chemolithotrophic Nitrifying Bacteria under Stress in Natural Soils

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 14))

Abstract

Nitrification is an important process in the biogeochemical cycle of nitrogen, linking its reduced and oxidized parts. Since the conversion of ammonium to nitrate has a great impact on the environment, such as weathering of soils, production of greenhouse gases, and eutrophication of surface and ground waters (Van Breemen and Van Dijk, 1988), it is important to know the characteristics of the responsible organisms. Although many organotrophic microorganisms are able to produce oxidized nitrogenous compounds such as nitrite and nitrate (Focht and Verstraete, 1977; Killham, 1987; Kuenen and Robertson, 1987), chemolithotrophic nitrifying bacteria are considered to be the most important group producing these compounds from ammonia. A contribution to nitrate production by organotrophic microorganisms has only been observed in some acid coniferous forest soils (Schimel et al., 1984; Killham, 1986, 1990). According to Bergey’s Manual of Systematic Bacteriology (Watson et al., 1989), the family of nitrifying bacteria is a diverse group of rods, vibrios, cocci, and spirilla, all having the ability to utilize ammonia or nitrite as a major source of energy and carbon dioxide as the chief source of carbon. With the exception of Nitrobacter species, all others are obligate chemolithotrophs, but some can grow mixotrophically on a mixture of CO2 and small organic compounds. All strains are aerobic, but some may proliferate at low oxygen concentrations. Some Nitrobacter species might even grow at the expense of nitrate reduction in the absence of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeliovich, A., 1987, Nitrifying bacteria in wastewater reservoirs, Appl. Environ. Microbiol. 53:754–760.

    PubMed  CAS  Google Scholar 

  • Abeliovich, A., and Vonshak, A., 1992, Anaerobic growth of Nitrosomonas europaea, Arch. Microbiol. 158:267–270.

    CAS  Google Scholar 

  • Ahlers, B., König, W., and Bock, E., 1990, Nitrite reductase activity in Nitrobacter vulgaris, FEMS Microbiol. Lett. 67:121–126.

    CAS  Google Scholar 

  • Allison, S. M., and Prosser, J.I., 1991, Urease activity in neutrophilic autotrophic ammonia-oxidizing bacteria isolated from acid soils, Soil Biol. Biochem. 23:45–51.

    CAS  Google Scholar 

  • Allison, S. M., and Prosser, J. I., 1993, Ammonia oxidation at low pH by attached populations of nitrifying bacteria, Soil Biol. Biochem. 25:935–941.

    CAS  Google Scholar 

  • Anderson, I. C., and Joel, J. S., 1986, Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers and nitrate respirers, Appl. Environ. Microbiol. 51:938–945.

    PubMed  CAS  Google Scholar 

  • Anderson, I. C., Poth, M., Homstead, J., and Burdige, D., 1993, A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis, Appl. Environ. Microbiol. 59:3525–3533.

    PubMed  CAS  Google Scholar 

  • Armstrong, W., 1964, Oxygen diffusion from the roots of some British bog plants, Nature 204:511–519.

    Google Scholar 

  • Baumgärtner, M., Sameluck, F., Bock, E., and Conrad, R., 1991, Production of nitric oxide by amonium-oxidizing bacteria colonizing building stones, FEMS Microbiol. Ecol. 85:95–100.

    Google Scholar 

  • Berg, P., 1986, Nitrifier Populations and Nitrification Rates in Agricultural Soil, Swedish University of Agricultural Sciences, Uppsala, thesis.

    Google Scholar 

  • Berg, P., and Rosswall, T., 1986, Seasonal variation in abundance and activity of nitrifiers in four arable cropping systems, Microb. Ecol. 13:75–87.

    Google Scholar 

  • Blacquière, T., 1986, Nitrate reduction in the leaves and numbers of nitrifiers in the rhizosphere of Plantago lanceolata growing in two contrasting sites, Plant Soil 91:377–380.

    Google Scholar 

  • Bock, E., and Heinrich, G., 1969, Morphologische und physiologische Untersuchungen an Zellen von Nitrobacter winogradskyi Buch, Arch. Microbiol. 69:149–159.

    CAS  Google Scholar 

  • Bock, E., and Koops, H.-P., 1992, The genus Nitrobacter and related genera, in: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. III (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), Springer-Verlag, New York, pp. 2302–2309.

    Google Scholar 

  • Bock, E., Wolderer, P. A., and Freitag, A., 1988, Growth of Nitrobacter in the absence of dissolved oxygen, Water Res. 22:245–250.

    CAS  Google Scholar 

  • Bock, E., Koops, H.-P., Ahlers, B., and Harms, H., 1992, Oxidation of inorganic nitrogen compounds as energy source, in: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. I (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), Springer-Verlag, New York, pp. 414–430.

    Google Scholar 

  • Bohlool, B. B., and Schmidt, E. L., 1973, A fluorescent antibody approach to determination of growth rates in soil, Bull. Ecol. Res. Comm. 17:336–338.

    Google Scholar 

  • Bohlool, B. B., and Schmidt, E. L., 1980, The immunofluorescence approach in microbial ecology, Adv. Microb. Ecol. 4:203–241.

    Google Scholar 

  • Bohlool, B. B., Schmidt, E. L., and Beasly, C., 1977, Nitrification in the intertidal zone: Influence of effluent type and effect of tannin on nitrifiers, Appl. Environ. Microbiol. 34:523–528.

    PubMed  CAS  Google Scholar 

  • Both, G. J., 1990, The Ecology of Nitrite-Oxidizing Bacteria in Grassland Soils, State University of Groningen, the Netherlands, PhD thesis.

    Google Scholar 

  • Both, G. J., and Laanbroek, H. J., 1991, The effect of the incubation period on the result of MPN enumerations of nitrite-oxidizing bacteria: Theoretical considerations, FEMS Microbiol. Ecol. 85:355–344.

    Google Scholar 

  • Both, G. J., Gerards, S., and Laanbroek, H. J., 1990, Enumeration of nitrite-oxidizing bacteria in grassland soils using a most probable number technique: Effect of nitrite concentration and sampling procedure, FEMS Microbiol. Ecol. 74:277–286.

    Google Scholar 

  • Both, G. J., Gerards, S., and Laanbroek, H. J., 1992a, The occurrence of chemolitho-autotrophic nitrifiers in water-saturated grassland soils, Microb. Ecol. 23:15–26.

    Google Scholar 

  • Both, G. J., Gerards, S., and Laanbroek, H. J., 1992b, Temporal and spatial variation in the nitrite-oxidizing bacterial community of a grassland soil, FEMS Microbiol. Ecol. 101:99–112.

    Google Scholar 

  • Both, G. J., Gerards, S., and Laanbroek, H.J., 1992c, Kinetics of nitrite oxidation in two Nitrobacter species grown in nitrite-limited chemostats, Arch. Microbiol. 157:436–441.

    CAS  Google Scholar 

  • Bramley, R. G. V., and White, R. E., 1989, The effect of pH, liming, moisture and temperature on the activity of nitrifiers in a soil under pasture, Aust. J. Soil Res. 27:711–724.

    Google Scholar 

  • Button, D. K., 1985, Kinetics of nutrient-limited transport and microbial growth, Microbiol. Rev. 49:270–297.

    PubMed  CAS  Google Scholar 

  • Castignetti, D., and Gunner, H. B., 1982, Differential tolerance of hydroxylamine by an Alcaligenes sp., a heterotrophic nitrifier, and by Nitrobacter agilis, Can. J. Microbiol. 28:148–150.

    CAS  Google Scholar 

  • Christensen, P. B., and Sørensen, J., 1986, Temporal variation of denitrification activity in plant-covered, littoral sediment from Lake Hampen, Denmark, Appl. Environ. Microbiol. 51:1171–1179.

    Google Scholar 

  • Cooper, A. B., 1983, Population ecology of nitrifiers in a stream receiving geothermal inputs of ammonium, Appl. Environ. Microbiol. 45:1170–1177.

    PubMed  CAS  Google Scholar 

  • De Boer, W., and Laanbroek, H. J., 1989, Ureolytic nitrification at low pH by Nitrosospira species, Arch. Microbiol. 152:178–181.

    Google Scholar 

  • De Boer, W., Duyts, H., and Laanbroek, H. J., 1988, Autotrophic nitrification in a fertilized acid heath soil, Soil Biol. Bioichem. 20:845–850.

    Google Scholar 

  • De Boer, W., Duyts, H., and Laanbroek, H. J., 1989a, Urea stimulated autotrophic nitrification in suspensions of fertilized, acid heath soil, Soil Biol. Biochem. 21:349–354.

    Google Scholar 

  • De Boer, W., Klein Gunnewiek, P. J. A., Troelstra, S. R., and Laanbroek, H. J., 1989b, Two types of chemolithotrophic nitrification in acid heathland humus, Plant Soil 119:229–235.

    Google Scholar 

  • De Boer, W., Klein Gunnewiek, P. J. A., and Troelstra, S. R., 1990, Nitrification in Dutch heathland soils. II. Characteristics of nitrate production, Plant Soil 127:193–200.

    Google Scholar 

  • De Boer, W., Klein Gunnewiek, P. J. A., Veenhuis, M., Bock, E., and Laanbroek, H. J., 1991, Nitrification at low pH by aggregated chemolithotrophic bacteria, Appl. Environ. Microbiol. 57:3600–3604.

    PubMed  Google Scholar 

  • De Boer, W., Tietema, A., Klein Gunnewiek, P. J. A., and Laanbroek, H. J., 1992, The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity, Soil Biol. Biochem. 24:229–234.

    Google Scholar 

  • De Boer, W., Hunscheid, M. P. J., Schotman, J. M. T., Troelstra, S. R., and Laanbroek, H. J., 1993, In situ net N transformations in pine, fir and oak stands of different ages on acid sandy soil, 3 years after liming, Biol. Fertil. Soils 15:120–126.

    Google Scholar 

  • De Boer, W., Klein Gunnewiek, P. J. A., and Laanbroek, H. J., 1995, Nitrification at low pH by a bacterium belonging to the genus Nitrosospira, Soil Biol. Biochem. 27:127–132.

    Google Scholar 

  • Diab, S., Kochba, M., and Avnimelech, Y., 1993, Nitrification pattern in a fluctuating anaerobic-aerobic pond environment, Water Res. 27:1469–1475.

    CAS  Google Scholar 

  • Eigener, U., 1975, Adenine nucleotide pool variations in intact Nitrobacter winogradskyi cells, Arch. Microbiol. 102:233–240.

    PubMed  CAS  Google Scholar 

  • Eigener, U., and Bock, E., 1975, Study on the regulation of oxidation and CO2 assimilation in intact Nitrobacter winogradskyi cells, Arch. Microbiol. 102:241–246.

    PubMed  CAS  Google Scholar 

  • Engelaar, W. M. H. G., Bodelier, P. L. E., Laanbroek, H. J., and Blom, C. W. P. M., 1991, Nitrification in the rhizosphere of a flooding-resistant and a flooding-non-resistant Rumex species under drained and waterlogged conditions, FEMS Microbiol. Ecol. 86:33–42.

    CAS  Google Scholar 

  • Engelaar, W. M. H. G., Symens, J. C., Laanbroek, H. J., and Blom, C. W. P. M., Preservation of nitrifying capacity and nitrate availability in waterlogged soils by radial oxygen loss from roots of wetland plants, Biol. Fertil. Soils, in press.

    Google Scholar 

  • Focht, D. D., and Verstraete, W., 1977, Biochemical ecology of nitrification and denitrification, Adv. Microb. Ecol. 1:135–214.

    CAS  Google Scholar 

  • Freitag, A., and Bock, E., 1990, Energy conservation in Nitrobacter, FEMS Microbiol. Lett. 66:157–162.

    CAS  Google Scholar 

  • Freitag, A., Rudert, M., and Bock, E., 1987, Growth of Nitrobacter by dissimilatory nitrate reduction, FEMS Microbiol. Lett. 48:105–109.

    CAS  Google Scholar 

  • Frijlink, M. J., Abee, T., Laanbroek, H. J., de Boer, W., and Konings, W. N., 1992a, The bio-energetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH, Arch. Microbiol. 157:194–199.

    CAS  Google Scholar 

  • Frijlink, M. J., Abee, T., Laanbroek, H. J., de Boer, W., and Konings, W. N., 1992b, Secondary transport of amino acids in Nitrosomonas europaea, Arch. Microbiol. 157:389–393.

    CAS  Google Scholar 

  • Gay, G., Josserand, A., and Bardin, R., 1983, Growth of two serotypes of Nitrobacter in mixotrophic and chemoorganotrophic conditions, Can. J. Microbiol. 29:394–397.

    CAS  Google Scholar 

  • Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S. W., 1980, Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol. 40:526–532.

    PubMed  CAS  Google Scholar 

  • Griffiths, B. S., 1989, Enhanced nitrification in the presence of bacteriophagous protozoa, Soil Biol. Biochem. 21:1045–1051.

    CAS  Google Scholar 

  • Hankinson, T. R., and Schmidt, E. L., 1984, Examination of an acid forest soil for ammonia-and nitrite-oxidizing bacteria, Can. J. Microbiol. 30:1125–1132.

    CAS  Google Scholar 

  • Hankinson, T. R., and Schmidt, E. L., 1988, An acidophilic and a neutrophilic Nitrobacter strain isolated from the numerical predominant nitrite-oxidizing population of an acid forest soil, Appl. Environ. Microbiol. 54:1536–1540.

    PubMed  CAS  Google Scholar 

  • Head, I. M., Hiorns, W. D., Embley, T. M., McCarthy, A. J., and Saunders, J. R., 1993, The phytogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences, J. Gen. Microbiol. 139:1147–1153.

    PubMed  CAS  Google Scholar 

  • Hooper, A. B., and Terry, K. R., 1979, Hydroxylamine oxidoreductase of Nitrosomonas europaea production of nitric oxide from hydroxylamine, Biochim. Biophys. Acta 571:12–20.

    PubMed  CAS  Google Scholar 

  • Jansson, S. L., 1958, Tracer studies on nitrogen transformations in soil with special attention to mineralization-immobilization relationships, Kungl. Lantbr. Ann. 24:101–361.

    CAS  Google Scholar 

  • Josserand, A., Gay, G., and Faurie, G., 1981, Ecological study of two Nitrobacter serotypes coexisting in the same soil, Microb. Ecol. 7:275–280.

    Google Scholar 

  • Killham, K., 1986, Heterotrophic nitrification, in: Nitrification (J. I. Prosser, ed.), IRL Press, Oxford, England, pp. 117–126.

    Google Scholar 

  • Killham, K., 1987, A new perfusion system for measurement and characterization of potential rates of soil nitrification, Plant Soil 97:267–272.

    CAS  Google Scholar 

  • Killham, K., 1990, Nitrification in coniferous forest soils, Plant Soil 128:31–44.

    CAS  Google Scholar 

  • Kleiner, D., 1985, Bacterial ammonium transport, FEMS Microbiol. Rev. 32:87–100.

    CAS  Google Scholar 

  • Koops, H.-P., and Möller, U. C., 1992, The lithotrophic ammonia-oxidizing bacteria, in: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. III (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), Springer-Verlag, New York, pp. 2625–2637.

    Google Scholar 

  • Kuenen, J. G., and Robertson, L. A., 1987, Ecology of nitrification and denitrification, in: The Nitrogen and Sulphur Cycles (J. A. Cole and S. Ferguson, eds.), Cambridge University Press, Cambridge, England, pp. 162–218.

    Google Scholar 

  • Laan, P., Smolders, A., Blom, C. W. P. M., and Armstrong, W., 1989a, The relative roles of internal aeration, radial oxygen losses, iron exclusion and nutrient balances in flood-tolerance of Rumex species, Acta Bot. Neerl. 38:131–145.

    Google Scholar 

  • Laan, P., Beerevoets, M. J., Lythe, S., Armstrong, W., and Blom, C. W. P. M., 1989b, Root morphology and aerenchyma formation as indicators of flood-tolerance of Rumex species, J. Ecol. 77:693–703.

    Google Scholar 

  • Laanbroek, H. J., and Gerards, S., 1991, Effects of organic manure on nitrification in arable soils, Biol. Fert. Soils 12:147–153.

    CAS  Google Scholar 

  • Laanbroek, H. J., and Gerards, S., 1993, Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures, Arch. Microbiol. 159:453–459.

    CAS  Google Scholar 

  • Laanbroek, H. J., and Schotman, J. M. T, 1991, Effect of nitrite concentration and pH on most probable number enumerations of non-growing Nitrobacter species, FEMS Microbiol. Ecol. 85:269–278.

    CAS  Google Scholar 

  • Laanbroek, H. J., Bodelier, P. L. E., and Gerards, S., 1994, Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations, Arch. Microbiol. 161:156–162.

    CAS  Google Scholar 

  • Lang, K., Lehtonen, M., and Martikainen, P. J., 1993, Nitrification potentials at different pH values in peat samples from various layers of a drained mire, Geomicrobiol. J. 11:141–147.

    CAS  Google Scholar 

  • Langelaan, J. G., and Troelstra, S. R., 1992, Growth, chemical composition and nitrate reductase activity of Rumex species in relation to form and level of N supply, Plant Soil 145:215–229.

    CAS  Google Scholar 

  • Macdonald, R. M., 1986, Nitrification in soil: An introductory history, in: Nitrification (J. I. Prosser, ed.), IRL Press, Oxford, England, pp. 1–16.

    Google Scholar 

  • Martikainen, P. J., and de Boer, W., 1993, Nitrous oxide production and nitrification in acidic soil from a Dutch coniferous forest, Soil Biol. Biochem. 25:343–347.

    CAS  Google Scholar 

  • Martikainen, P. J., and Nurmiaho-Lassila, E. L., 1985, Nitrosospira, an important ammonium-oxidizing bacterium in fertilized coniferous forest soil, Can. J. Microbiol. 31:190–197.

    CAS  Google Scholar 

  • Martikainen, P. J., Lehtonen, M., Lang, K., De Boer, W., Ferm, A., 1993, Nitrification and nitrous oxide production potentials in aerbic soil samples from the soil profile of a finnish coniferous site receiving high ammonium deposition, FEMS Microbiol. Ecol. 13:113–121.

    CAS  Google Scholar 

  • McCaig, A. E., Embley, T. M., and Prosser, J. I., 1994, Molecular analysis of enrichment cultures of marine ammonia oxidizers, FEMS Microbiol. Ecol. 120:363–368.

    CAS  Google Scholar 

  • Meiklejohn, J., 1968, Numbers of nitrifying bacteria in some Rhodesian soils under natural grass and improved pastures, J. Appl. Ecol. 5:291–300.

    Google Scholar 

  • Meincke, M., Krieg, E., and Bock, E., 1989, Nitrosovibrio spp., the dominant ammonia-oxidizing bacteria in building sandstone, Appl. Environ. Microbiol. 55:2108–2110.

    PubMed  CAS  Google Scholar 

  • Moore, D. R. E., and Waid, J. S., 1971, The influence of washings of living plant roots on nitrification, Soil Biol. Biochem. 3:69–83.

    CAS  Google Scholar 

  • Munro, P. E., 1966, Inhibition of nitrifiers by grass root extracts, J. Appl. Ecol. 3:231–238.

    Google Scholar 

  • Olff, H., 1992, On the Mechanisms of Vegetation Succession, State University of Groningen, The Netherlands, Ph.D. thesis.

    Google Scholar 

  • Ponnamperuma, F. N., 1984, Effects of flooding on soils, in: Flooding and Plant Growth (T. T. Kozlowaki, ed.), Academic Press, New York, pp. 10–45.

    Google Scholar 

  • Poth, M., 1986, Dinitrogen production from nitrite by a Nitrosomonas isolate, Appl. Environ. Microbiol. 52:957–959.

    PubMed  CAS  Google Scholar 

  • Poth, M., and Focht, D. D., 1985, 15N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification, Appl. Environ. Microbiol. 49:1134–1141.

    PubMed  CAS  Google Scholar 

  • Prosser, J. I., 1989, Autotrophic nitrification in bacteria, Adv. Microb. Physiol. 30:125–181.

    PubMed  CAS  Google Scholar 

  • Purchase, B. S., 1974, Evaluation of the claim that grass root exudates inhibit nitrification, Plant Soil 41:527–539.

    Google Scholar 

  • Rice, E. L., and Pancholy, S. K., 1972, Inhibition of nitrification by climax ecosystems, Am. J. Bot. 59:1033–1040.

    Google Scholar 

  • Rice, E. L., and Pancholy, S. K., 1973, Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins, Am. J. Bot. 60:691–702.

    CAS  Google Scholar 

  • Riha, S. J., Campbell, G. S., and Wolfe, J., 1986, A model of competition for ammonium among heterotrophs, nitrifiers and roots, Soil Sci. Soc. Am. J. 50:1463–1466.

    CAS  Google Scholar 

  • Robinson, J. B., 1963, Nitrification in a New Zealand grassland soil, Plant Soil 19:173–182.

    Google Scholar 

  • Rosswall, T., 1982, Microbiological regulation of the biogeochemical nitrogen cycle, Plant Soil 67:15–34.

    CAS  Google Scholar 

  • Sand-Jensen, K., Prahl, S., and Stockholm, H., 1982, Oxygen release from submerged aquatic macrophytes, Oikos 38:349–354.

    Google Scholar 

  • Sarathchandra, S. U., 1978, Nitrification activities of some New Zealand soils and the effect of some clay types on nitrification, N. Z. J. Agr. Res. 21:615–621.

    CAS  Google Scholar 

  • Schimel, J. P., Firestone, M. K., and Killham, K. S., 1984, Identification of heterotrophic nitrification in a Sierran forest soil, Appl. Environ. Microbiol. 48:802–806.

    PubMed  CAS  Google Scholar 

  • Schmidt, E. L., 1973, Fluorescent antibody technique for the study of microbial ecology, Bull. Ecol. Res. Comm. 17:67–76.

    Google Scholar 

  • Schmidt, E. L., and Belser, L. W., 1982, Nitrifying bacteria, in: Methods of Soil Analysis, 2nd ed. (R. H. Miller and D. R. Keeney, eds.), American Society of Agronomy, Madison, Wis., pp. 1027–1042.

    Google Scholar 

  • Smit, A. J., and Woldendorp, J. W., 1981, Nitrate production in the rhizosphere of Plantago species, Plant Soil 61:43–52.

    CAS  Google Scholar 

  • Smith, A. J., and Hoare, D. S., 1968, Acetate assimilation by Nitrobacter agilis in relation to its “obligate autotrophy,” J. Bacteriol. 95:844–855.

    PubMed  CAS  Google Scholar 

  • Spieck, E., Meincke, M., and Bock, E., 1992, Taxonomic diversity of Nitrosovibrio strains isolated from building sandstones, FEMS Microbiol. Ecol. 102:21–26.

    Google Scholar 

  • Stams, A. J. M., Flameling, E. M., and Marnette, E. C. L., 1990, The importance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soils, FEMS Microbiol. Ecol. 74:337–344.

    CAS  Google Scholar 

  • Stienstra, A. W., Both, G. J., Gerards, S., and Laanbroek, H. J., 1993, Numbers of nitrite-oxidizing bacteria in the root zone of grassland plants, FEMS Microbiol. Ecol. 12:207–214.

    Google Scholar 

  • Stienstra, A. W., Klein Gunnewiek, P. J. A., and Laanbroek, H. J., 1994, Repression of nitrification in soils under a climax grassland vegetation, FEMS Microbiol. Ecol. 12:207–214.

    Google Scholar 

  • Stüven, R., Vollmer, M., and Bock, E., 1992, The impact of organic matter on nitric oxide formation by Nitrosomonas europaea, Arch. Microbiol. 158:439–443.

    Google Scholar 

  • Suzuki, I., Dular, U., and Kwok, S. C., 1974, Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts, J. Bacteriol. 120:556–558.

    PubMed  CAS  Google Scholar 

  • Terry, K. R., and Hooper, A. B., 1970, Polyphosphate and orthophosphate content of Nitrosomonas europaea as a function of growth, J. Bacteriol. 103:199–206.

    PubMed  CAS  Google Scholar 

  • Theron, J. J., 1951, The influence of plants on the mineralization of nitrogen and the maintenance of organic matter in the soil, J. Agr. Sci. 41:289–296.

    Google Scholar 

  • Tietema, A., de Boer, W., Riemer, L., and Verstraten, J. M., 1992, Nitrate production in nitrogen-saturated acid forest soils: Vertical distribution and characteristics, Soil Biol. Biochem. 24:235–240.

    CAS  Google Scholar 

  • Troelstra, S. R., Wagenaar, R., and de Boer, W., 1990, Nitrification in Dutch heathland soils. I. General soil characteristics and nitrification in undisturbed soil cores, Plant Soil 127:179–192.

    CAS  Google Scholar 

  • Troelstra, S. R., Wagenaar, R., and Smant, W., 1992, Growth of actinorhizal plants as influenced by the form of N with special reference to Myrica gale and Alnus incarta, J. Exp. Botany 43:1349–1359.

    CAS  Google Scholar 

  • Uhel, C., Roumet, C., and Salsac, L., 1989, Inducible nitrate reductase of rice plants as a possible indicator for nitrification in water-logged paddy soils, Plant Soil 116:197–206.

    CAS  Google Scholar 

  • Van Breemen, N., and Van Dijk, H. F. G., 1988, Ecosystems effects of atmospheric deposition of nitrogen in the Netherlands, Environ. Poll. 54:249–274.

    Google Scholar 

  • Van Cleemput, O., and Baert, L., 1984, Nitrite: A key compound in N loss processes under acid conditions? Plant Soil 76:233–241.

    Google Scholar 

  • Van Gool, A. P., Tobback, P. P., and Fischer, I., 1971, Autotrophic growth and synthesis of reserve polymers in Nitrobacter winogradskyi, Arch. Microbiol. 76:252–264.

    Google Scholar 

  • Verhagen, F. J. M., and Laanbroek, H. J., 1991, Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats, Appl. Environ. Microbiol. 57:3255–3263.

    PubMed  CAS  Google Scholar 

  • Verhagen, F. J. M., and Laanbroek, H. J., 1992, Effects of grazing by flagellates on competition for ammonium between nitrifying and heterotrophic bacteria in chemostats, Appl. Environ. Microbiol. 58:1962–1969.

    PubMed  CAS  Google Scholar 

  • Verhagen, F. J. M., Duyts, H., and Laanbroek, H. J., 1992, Competition for ammonium between nitrifying and heterotrophic bacteria in continuously percolated soil columns, Appl. Environ. Microbiol. 58:3303–3311.

    PubMed  CAS  Google Scholar 

  • Verhagen, F. J. M., Duyts, H., and Laanbroek, H. J., 1993, Effects of grazing by flagellates on competition for ammonium between nitrifying and heterotrophic bacteria in soil columns, Appl. Environ. Microbiol. 59:2099–2106.

    PubMed  CAS  Google Scholar 

  • Verhagen, F. J. M., Hageman, P. E. J., Woldendorp, J. W., and Laanbroek, H. J., 1994a, Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization, Soil Biol. Biochem. 26:89–96.

    CAS  Google Scholar 

  • Verhagen, F. J. M., Zölffel, M., Bruggerolle, G., and Patterson, D. J., 1994b, Adriamonas peritocrescens gen. no., sp. nov., a new free-living soil flagellate (Protista incertae sedis), Eur. J. Protozool. 30:295–308.

    Google Scholar 

  • Walker, N., and Wickramasinghe, K. N., 1979, Nitrification and autotrophic nitrifying bacteria in acid tea soils, Soil Biol. Biochem. 11:231–236.

    CAS  Google Scholar 

  • Ward, B. B., 1986, Nitrification in marine environments, in: Nitrification (J. I. Prosser, ed.), IRL Press, Oxford, England, pp. 157–184.

    Google Scholar 

  • Watson, S. W., Bock, E., Harms, H., Koops, H.-P., and Hooper, A. B., 1989, Nitrifying bacteria, in: Bergey’s Manual of Systematic Bacteriology, Vol. 3 (J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds.), Williams & Wilkins, Baltimore, pp. 1808–1834.

    Google Scholar 

  • Woese, C. R., Weisburg, W. G., Hahn, C. M., Paster, B. J., Zahlen, L. B., Lewis, B. J., Macke, T. J., Ludwig, W., and Stackebrand, E., 1985, The phylogeny of purple bacteria: The gamma subdivision, Syst. Appl. Microbiol. 6:25–33.

    CAS  Google Scholar 

  • Woese, C. R., Weisburg, W. G., Paster, B. J., Hahn, C. M., Tanner, R. S., Krieg, N. R., Koops, H.-P., Harms, H., and Stackebrand, E., 1986, The phylogeny of purple bacteria: The beta subdivision, Syst. Appl. Microbiol. 5:327–336.

    Google Scholar 

  • Woldendorp, J. W., and Laanbroek, H. J., 1989, Activity of nitrifiers in relation to nitrogen nutrition of plants in natural ecosystems, Plant Soil 115:217–228.

    Google Scholar 

  • Wood, P. M., 1987, Monooxygenase and free radical mechanism for biological ammonia oxidation, in: The Nitrogen and Sulphur Cycles (J. A. Cole and S. Ferguson, eds.), Cambridge University Press, Cambridge, England, pp. 219–243.

    Google Scholar 

  • Zak, D. R., Groffman, P. M., Pregitzer, K. S., Christensen, S., and Tiedje, J. M., 1990, The vernal dam: Plant-microbe competition for nitrogen in northern hardwood forests, Ecology 71:651–656.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Plenum Press, New York

About this chapter

Cite this chapter

Laanbroek, H.J., Woldendorp, J.W. (1995). Activity of Chemolithotrophic Nitrifying Bacteria under Stress in Natural Soils. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7724-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7724-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7726-9

  • Online ISBN: 978-1-4684-7724-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics