Skip to main content

A General Ocean Circulation Model Determined in a Simultaneous Solution with the Earth’s Gravity Field

  • Conference paper
Sea Surface Topography and the Geoid

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 104))

Abstract

Over the past several years, determination of the sea surface topography using satellite altimetry has been greatly improved due to the implementation of a technique which simultaneously solves for the sea surface topography, the gravity field of the Earth, and the satellite orbit [Tapley et al.,1988; Marsh et al., 1989; Nerem,1989; Engelis and Knudsen; 1989]. The sea surface topography, ζ, is defined as the deviation of the ocean surface from the geoid due to the geostrophic component of the ocean currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Coleman, R. (1980) On the Recovery of Ocean Dynamic Information from Satellite Altimetry, Marine Geodesy, Vol. 4, No. 4, pp 351–386.

    Article  Google Scholar 

  • Douglas, B. C., R. W. Agreen, and D. T. Sandwell (1984) Observing Global Ocean Circulation with Seasat Altimeter Data, Marine Geodesy, Vol. 8, No. 1–4, pp. 67–83.

    Article  Google Scholar 

  • Engelis, T., and R. H. Rapp (1984) Global Ocean Circulation Patterns Based on Seasat Altimeter Data and the GEM-L2 Gravity Field, Marine Geophysical Research, Vol. 7, pp. 55–67.

    Article  Google Scholar 

  • Engelis, T., and P. Knudsen (1989) Orbit Improvement and Determination of the Ocean Geoid and Topography from 17 Days of Seasat Data, Manuscripta Geodetica, Vol. 14, pp. 193–201.

    Google Scholar 

  • Kaula, W. M. (1966) Theory of Satellite Geodesy, Blaisdell, Waltham, Mass.

    Google Scholar 

  • Levitus, S. (1982) Climatological Atlas of the World Ocean, NOAA Professional Paper 13, Geophysical Fluid Dynamics Laboratory, Rockville, Maryland.

    Google Scholar 

  • Marsh, J. G., F. J. Lerch, C. J. Koblinsky, S. M. Klosko, J. W. Robbins, R. G. Williamson, and G. B. Patel (1989a) Dynamic Sea Surface Topography, Gravity, and Improved Orbit Accuracies from the Direct Evaluation of SEASAT Altimetry Data, NASA Technical Memorandum 100735, Goddard Space Flight Center.

    Google Scholar 

  • McConathy, D. R., and C. C. Kilgus (1987) The Navy Geosat Mission: An Overview, Johns Hopkins APL Technical Digest, 8 (2).

    Google Scholar 

  • Nerem, R. S. (1989) Determination of the General Ocean Circulation Using Satellite Altimetry From a Simultaneous Solution for the Earth’s Gravity Field, Ph.D. Dissertation, The University of Texas at Austin.

    Google Scholar 

  • Nowlin, W. D. (1987) World Ocean Circulation Experiment (WOCE), Status of US Planning for WOCE, Bulletin of the American Meteorological Society, Vol. 68, No. 12, pp. 1559–1565.

    Google Scholar 

  • Pavlis, N. K. (1988) Modeling and Estimation of a Low Degree Geopotential Model From Terrestrial Gravity Data, Department of Geodetic Science and Surveying, The Ohio State University, Report No. 386.

    Google Scholar 

  • Shum, C.-K. (1983) Altimeter Methods in Satellite Geodesy, Center for Space Research Report, CSR-83–2, The University of Texas at Austin.

    Google Scholar 

  • Smith, J. C., J. C. Ries, C. K. Shum, B. E. Schutz, and B. D. Tapley (1988) Precision Orbit Determination for the Geosat Exact Repeat Mission, AIAA/AAS Astrodynamics Conference, Technical Papers, pp. 35–45.

    Google Scholar 

  • Tai, C. -K., and C. Wunsch (1984) An Estimate of Global Absolute Dynamic Topography, Journal of Physical Oceanography, Vol. 14, pp. 457–463.

    Article  Google Scholar 

  • Tapley, B. D., R. S. Nerem, C. K. Shum, J. C. Ries, and D. N. Yuan (1988) Determination of the General Ocean Circulation From a Joint Gravity Field Solution, Geophysical Research Letters, Vol. 15, No. 10, pp. 1109–1112.

    Article  Google Scholar 

  • TOPEX (1981) Satellite Altimetric Measurements of the Ocean, Report of the TOPEX Science Working Group, NASA, JPL Doc. 400–111.

    Google Scholar 

  • Wagner, C. A., and O. Colombo (1979) Gravitational Spectra from Direct Measurements, Journal of Geophysical Research, Vol. 84, pp. 4699–4712.

    Article  Google Scholar 

  • Wunsch, C. and E. M. Gaposchkin (1980) On using satellite altimetry to determine the general circulation of the ocean with application to geoid improvement, Review of Geophysics and Space Physics, Vol. 18, pp. 725–745

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Nerem, R.S., Tapley, B.D., Shum, C.K. (1990). A General Ocean Circulation Model Determined in a Simultaneous Solution with the Earth’s Gravity Field. In: Sünkel, H., Baker, T. (eds) Sea Surface Topography and the Geoid. International Association of Geodesy Symposia, vol 104. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7098-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7098-7_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97268-8

  • Online ISBN: 978-1-4684-7098-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics