Skip to main content

New Approaches for Agricultural Molecular Biology: From Single Cells to Field Analysis

  • Chapter
Gene Manipulation in Plant Improvement II

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

Although the advent of molecular biology and recombinant DNA technologies has caused tremendous excitement and enthusiasm among many scientists and policy-makers whose goal is the improvement of agriculture through research, the realities of the time scale over which these technologies must be applied, and the extent to which they are currently inadequate is now being appreciated. The main reason for these inadequacies is simply our overwhelming ignorance of the biology that underlies agriculture. Traditional crop manipulation, as typified by plant breeding, is an empirical craft that is not generally based on a firm understanding of the processes that govern the characters being manipulated. Although the methodology used in an advanced plant breeding program can be quite sophisticated, it is fundamentally limited by the need to visualize and select for traits from existing variation. The complexity of agriculture and the urgency of its success or failure has generally required this empirical approach to its manipulation, while the power of modern molecular biology lies in the acquisition of an understanding of the processes by experimental manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckwith, J.R., Signer, E.R., and Epstein, W., 1967, Transposition of the lac region of E. coli, Cold Spring Harbor Symp. Quant. Biol., 31: 393.

    Article  Google Scholar 

  • Bevan, M.W., 1984, Binary Agrobacterium vectors for plant transformation, Nucl. Acids Res., 12: 8711–8721.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M.W., Barker, R., Goldsbrough, A., Jarvis, M., Kavanagh, T., and Iturriaga, G., 1986, The structure and transcription start site of a major potato tuber protein gene, Nucl. Acids Res., 14: 4625–4638.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, J.J., Parks, C., Parker-Thornberg, J., Mortin, M.A., and Pelham, H.R.B., 1984, The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response, Cell, 37: 979–991.

    Article  PubMed  CAS  Google Scholar 

  • Bourque, J.E., Miller, J.C. and Park, W.D., 1987, Use of an in vitro tuberisation system to study tuber protein gene expression, In vitro Cell. Devel. Biol., 23: 381–386.

    Article  CAS  Google Scholar 

  • Dean, C., Jones, J., Favreau, M., Dunsmuir, P. and Bedbrook, J., 1988, Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants, Nucl. Acids Res., 16: 9267–9283.

    Article  PubMed  CAS  Google Scholar 

  • Dutton, G.J., ed., 1966, Glucuronic Acid, Free and Combined, Academic Press, New York.

    Google Scholar 

  • Dutton, G.J., 1980, Glucuronidation of Drugs and Other Compounds, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Hinchee, J.A.W, Connor-Ward, D.V., Newell, C.A., McDonnell, R.E., Sato. S.J., Gasser, C.S., Fischhoff, D.A., Re, D.B., Fraley, R.T., and Horsch, R.B.,1988, Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer, Bio/technology, 6: 915–922.

    Article  CAS  Google Scholar 

  • Iturriaga, G., Jefferson, R.A., and Bevan, M.W., 1989, Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco, The Plant Cell, 1: 381–390.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R.A.,1985, DNA Transformation of Caenorhabditis elegans: Development and Application of a New Gene Fusion System, Ph.D. Dissertation, University of Colorado at Boulder.

    Google Scholar 

  • Jefferson, R.A., Burgess, S.M., and Hirsh, D.,1986, A-Glucuronidase from E. coli as a Gene Fusion Marker, Proc. Natl. Acad. Sci. USA, 83: 8447–8451.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R.A., Klass, M., Wolf, N., and Hirsh, D., (1987), Expression of Chimeric Genes in Caenorhabditis elegans, J. Mol. Biol., 193: 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R.A.,1987, Assaying Chimeric Genes in Plants: The GUS Gene Fusion System, Plant Molecular Biology Reporter, 5: 387–405.

    Article  CAS  Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W., 1987, GUS fusions: A-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 6., 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jefferson, R.A., 1988, Plant report genes: the GUS gene fusion system, In: “Genetic Engineering, Vol. 10,” J.K. Setlow, ed., Plenum Press, New York.

    Google Scholar 

  • Kavanagh, T.A., Jefferson, R.A., and Bevan, M.W., 1988, Targeting a Foreign Protein to Chloroplasts Using Fusions to the Transit Peptide of a Chlorophyll a/b Protein, Mol. Gen. Genet., 215: 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T.M., Gradziel, T., Fromm, M.E., and Sanford, J.C., 1988, Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles, Bio/Technology, 6: 559–564.

    Article  CAS  Google Scholar 

  • Levvy, G.A. and Conchie, J. 1966, Å-Glucuronidase and the hydrolysis of glucuronides, In: “Glucuronic Acid, Free and Combined,” G.J. Dutton, ed., Academic Press, New York, 301.

    Google Scholar 

  • Masson, P., and Fedoroff, N.V.,1989, Mobility of the maize Suppressor-mutator element in transgenic tobacco cells, Proc. Natl. Acad. Sci. USA, 86: 2219–2223.

    Google Scholar 

  • McCabe, D.E., Swain, W.F., Martinell, B.J., and Christou, P. 1988, Stable transformation of soybean (Glycine max) by particle accelleration, Bio/Technology, 6: 923–926.

    Article  Google Scholar 

  • Mignery, C.A., Pikaard, C.S. and Park, W.D., 1988, Molecular characterization of the patatin multigene family of potato, Gene, 62: 27–44.

    Article  PubMed  CAS  Google Scholar 

  • Miller J.H., Reznikoff, W.S., Silverstone, A.E., Ippen, K., Signer, E.R., and Beckwith, J.R.,1970, Fusions of the lac and trp regions of the Escherichia coli chromosome, J. Bacteriol., 104: 12–73.

    Google Scholar 

  • Paiva, E., Lister, R.M.,and Park, W.D.,1983, Induction and accumulation of major tuber proteins of potato in stems and petioles., Plant Physiol., 71, 616–618.

    Article  Google Scholar 

  • Park, W.D., 1986, In: “Potato Physiology,” P. Li., ed., Academic Press.

    Google Scholar 

  • Roberts, I.N., Oliver, R.P. Punt, P.J. and van den Hondel, C.A.M.J.J.,1989, Expression of the Escherichia coli A-glucuronidase gene in industrial and phytopathogenic filamentous fungi, Curr. Genet., 15: 169–180.

    Article  Google Scholar 

  • Schmitz, U.K., Jefferson R.A., and Lonsdale, D.M., 1989, GUS as a gene fusion marker in the yeast, Saccharomyces cerevisiae, Curr Genet., In press.

    Google Scholar 

  • Schultz, M., and Weissenbock, G., 1987, Partial purification and characterization of a luteolin-triglucuronidespecific A-glucuronidase from rye primary leaves–Secale cereale, Phytochemistry, 26: 933–938.

    Article  Google Scholar 

  • Sheerman, S., and Bevan, M.W., 1988, A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vecto, Plant Cell Reports, 7: 13–16.

    Article  Google Scholar 

  • Stoeber, F.,1957, Sur la biosynthese induite de la A-glucuronidase chez Escherichia coli, C.R. Acad. Sci., 244: 950.

    CAS  Google Scholar 

  • Stoeber, F., 1961, Etudes des proprietes et de la biosynthese de la glucuronidase et de la glucuronide-permease chez Escherichia coli, These de Docteur es Sciences, Paris.

    Google Scholar 

  • Twell, D. and Ooms, G., 1988, Structural diversity of the patatin multigene family in potato cv. Desiree, Mol.Gen. Genet., 212, 325–336.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Jefferson, R.A. (1990). New Approaches for Agricultural Molecular Biology: From Single Cells to Field Analysis. In: Gustafson, J.P. (eds) Gene Manipulation in Plant Improvement II. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7047-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7047-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7049-9

  • Online ISBN: 978-1-4684-7047-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics