Skip to main content

Pharmacological, Biochemical, and Behavioral Analyses of Depression: Animal Models

  • Chapter
Animal Models of Depression

Abstract

It has been posited that stressful events may precipitate depression in humans (Abramson et al, 1978; Akiskal and McKinney, 1973; Anisman and Zacharko, 1982a). Alternatively, it is not unlikely that such events may simply exacerbate symptoms in already depressed individuals (Slater and Roth, 1969), or that the response to stressors may be symptomatic of an already existant depression (Hudgens et al. 1967; Morrison et al., 1968). Although it is clear that stressful events may profoundly influence the behavior of animals in various testing paradigms, the mechanisms subserving these behavioral alterations remain to be fully elucidated. Furthermore, there is still some question as to whether these behavioral changes can legitimately be considered as valid models of human depression (Willner, 1985). Among other things, several forms of depression exist, and even in one type of depression the symptoms presented may vary considerably across individuals. Indeed, the view has been expressed that depression may be a biochemically heterogeneous illness, wherein the symptoms may be a consequence of serotonin (5-HT) or norepinephrine (NE) neuronal dysfunction and possibly dopamine (DA) variations as well (Jimerson and Post, 1984; Schildkraut, 1978; van Praag, 1978, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson LY, Seligman MEP, Teasdale JD (1978): Learned helplessness in humans: Critique and reformulation. J Abnorm Psychol 87:49–74

    PubMed  CAS  Google Scholar 

  • Ahluwalia P, Zacharko RM, Anisman H (1985): Dopamine variations associated with acute and chronic stressors. Soc Neurosci Abst 11:49

    Google Scholar 

  • Akiskal HS, McKinney WT (1973): Depressive disorders: Toward a unified hypothesis. Science 182:20–29

    PubMed  CAS  Google Scholar 

  • Anisman H (1984): Vulnerability to depression: Contribution of stress. In: Neurobiology of Mood Disorders, Post RM, Ballenger JC, eds. Baltimore: Williams & Wilkins

    Google Scholar 

  • Anisman H, Zacharko RM (1982a): Depression: The predisposing influence of stress. Behav Brain Sci 5:89–137

    Google Scholar 

  • Anisman H, Zacharko RM (1982b); Stimulus change influences escape performance: Deficits induced by uncontrollable stress and by haloperidol. Pharmacol Biochem Behav 17:263–269

    PubMed  CAS  Google Scholar 

  • Anisman H, Zacharko RM (1986): Behavioral and neurochemical consequences associated with stressors. In: Stress-induced Analgesia, Kelley DD, ed. Ann New York Acad Sci 467:205–225

    Google Scholar 

  • Anisman H, deCantanzaro D, Remington G (1978): Escape performance following exposure to inescapable shock: Deficits in motor response maintenance. J Exp Psychol [Anim Behav] 4:197–218

    Google Scholar 

  • Anisman H, Glazier SJ, Sklar LS (1981a): Cholinergic influences on escape deficits produced by uncontrollable stress. Psychopharmacology 74:81–87

    PubMed  CAS  Google Scholar 

  • Anisman H, et al., (1985): Stressor invoked exacerbation of amphetamine-elicited perseveration. Pharmacol Biochem Behav 23:173–183

    PubMed  CAS  Google Scholar 

  • Anisman H, et al., (1987): Variations of norepinephrine concentrations following chronic stressor application. Pharmacol Biochem Behav 26:653–659

    PubMed  CAS  Google Scholar 

  • Anisman H, Hamilton M, Zacharko RM (1984): Cue and response choice acquisition and reversal after exposure to uncontrollable shock: Induction of response perseveration. J Exper Psychol 10:229–243

    Google Scholar 

  • Anisman H, Irwin J, Sklar LS (1979a): Deficits of escape performance following catecholamine depletion: Implications for behavioral deficits induced by uncontrollable stress. Psychopharmacology 64:163–170

    PubMed  CAS  Google Scholar 

  • Anisman H, Kokkinidis L, Sklar LS (1981b): Contribution of neurochemical change to stress-induced behavioral deficits. In: Theory in Psychopharmacology Cooper SJ, ed. London: Academic Press

    Google Scholar 

  • Anisman H, Pizzino A, Sklar LS (1980b): Coping with stress, norepinephrine depletion and escape performance. Brain Research 191:583–588

    PubMed  CAS  Google Scholar 

  • Anisman H, Remington G, Sklar LS (1979b): Effects of inescapable shock on subsequent escape performance: Catecholaminergic and cholinergic mediation of response initiation and maintenance. Psychopharmacology 61:107–124

    PubMed  CAS  Google Scholar 

  • Anisman H, Ritch M, Sklar LS (1981c): Noradrenergic and dopaminergic interactions in escape behavior: Analysis of uncontrollable stress effects. Psychopharmacology 74:263–268

    PubMed  CAS  Google Scholar 

  • Anisman H, Suissa A, Sklar LS (1980a): Escape deficits induced by uncontrollable stress; Antagonism by dopamine and norepinephrine agonists. Behav Neur Biol 28:34–47

    CAS  Google Scholar 

  • Antelman SM, Chiodo LA (1983): Amphetamine as a stressor. In: Stimulants: Neurochemical Behavwral and Clinical Perspectives, Creese I, ed. New York: Raven Press.

    Google Scholar 

  • Aston-Jones G, Bloom FE (1981): Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Foote SL, Bloom FE (1984): Anatomy and physiology of locus coeruleus neurons: Functional implications. In: Norepinephrine: Clinical Aspects, Ziegler MG, Lake CR, eds. Baltimore: Williams & Wilkins

    Google Scholar 

  • Beley A, et al, (1976): Time dependent changes in the rate of noradrenaline synthesis in various rat brain areas during cold exposure. Pflugers Arch 368:225–229

    Google Scholar 

  • Blanc G, et al., (1980): Response to stress of mesocortical-frontal dopaminergic neurons in rats after long term isolation. Nature 284:265–276

    PubMed  CAS  Google Scholar 

  • Bolles RC (1970): Species-specific defense reactions and avoidance learning. Psychol Rev 77:32–48

    Google Scholar 

  • Bowers WJ, Zacharko RM, Anisman H (1985): Repeated stressor or desmethylimipramine effects on footshock induced depression of self-stimulation. Soc Neurosci Abst 11:51

    Google Scholar 

  • Bowers WJ, Zacharko RM, Anisman H (1987): Evaluation of stressor effects on intracranial self-stimulation from the nucleus accumbens and the substantia nigra in a current intensity paradigm. Behav Brain Res 23:85–93

    PubMed  CAS  Google Scholar 

  • Brown L, Rosellini RA, Samuels OB, Riley EP (1982): Evidence for a serotonergic mechanism of the learned helplessness phenomenon. Pharmacol Bwchem Behav 17:877–883

    CAS  Google Scholar 

  • Bruto V, Anisman H (1983): Alterations of exploratory patterns induced by uncontrollable shock. Behav Neural Bwl 37:302–316

    CAS  Google Scholar 

  • Cassens G, et al., (1980): Alterations in brain norepinephrine metabolism induced by environmental stimuli previously paired with inescapable shock. Science 209:1138–1140

    PubMed  CAS  Google Scholar 

  • Deutch AY, Tam S-Y, Roth RH (1985): Footshock and conditioned stress increase 3,4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Research 333:143–146

    PubMed  CAS  Google Scholar 

  • Drugan RC, et al., (1984): Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacol Bwchem Behav 21:749–754

    CAS  Google Scholar 

  • Dunn AJ, File SA (1983): Cold restraint alters dopamine metabolism in frontal cortex, nucleus accumbens and neostriatum. Physiol Behav 31:511–513

    PubMed  CAS  Google Scholar 

  • Dunn AJ, Kramarcy NR (1984): Neurochemical responses in stress: Relationships between the hypothalamic-pituitary adrenal and catecholamine systems. In: Handbook of Psychopharmacology, Iversen LL, Iversen SD, Snyder SH, eds. New York: Plenum Press

    Google Scholar 

  • Fadda F, et al., (1978): Stress induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in nucleus accumbens: Reversal by diazepam. Life Sci 23:2219–2224

    PubMed  CAS  Google Scholar 

  • Fekete MIK, et al, (1981): Effects of anxiolytic drugs on the catecholamine and DOP AC (3,4-dihydroxyphenylacetic acid) levels in brain cortical areas and on corticosterone and prolactin secretion in rats subjected to stress. Psychoneuroendo 6:113–120

    CAS  Google Scholar 

  • Glazer HI, Weiss JM (1976a): Long-term and transitory interference effects. J Exper Psychot Anim Behav Proc 2:191–201

    Google Scholar 

  • Glazer HI, Weiss JM (1976b): Long term interference effect: An alternative to “Learned Helplessness”. J Exp Psychol [Anim Behav] 2:202–213

    Google Scholar 

  • Hamilton ME, Zacharko RM, Anisman H (1986): Influence of p-chloroamphetamine and methysergide on the escape deficits provoked by inescapable shock Psychopharmacology 90:203–206

    PubMed  CAS  Google Scholar 

  • Heninger GR, Charney DS (1987): Mechanism of action of antidepressant treatments: Implications for the etiology and treatment of depressive disorders. In: Psychopharmacology: The Third Generation of Progress, Meltzer HY, ed. New York: Raven Press

    Google Scholar 

  • Herman JP, et al., (1982): Differential effects of inescapable footshock and stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci 30:2207–2214

    PubMed  CAS  Google Scholar 

  • Herman JP, Stinus L, Le Moal M (1984): Repeated stress increases locomotor response to amphetamine. Psychopharmacology 84:431–435

    PubMed  CAS  Google Scholar 

  • Herve D, et al., (1979): Differences in the reactivity of the mesocortical dopaminergic neurons to stress in the Balb/C and C57/BL6 mice. Life Sci 25:1659–1664

    PubMed  CAS  Google Scholar 

  • Hudgens R, Morrison J, Barchha R (1967): Life events and onset of primary affective disorders. Arch Gen Psychiatry 16:134–145

    PubMed  CAS  Google Scholar 

  • Irwin J, et al., (1986): Central norepinephrine and plasma corticosterone following acute and chronic stressors: Influence of social isolation and handling. Pharmacol Biochem Behav 24:1151–1154

    PubMed  CAS  Google Scholar 

  • Irwin J, Ahluwalia P, Anisman H (1986): Sensitization of norepinephrine activity following acute and chronic footshock. Brain Res 376:98–103

    Google Scholar 

  • Irwin J, Suissa A, Anisman H (1980): Differential effects of inescapable shock on escape performance and discrimination learning in a water escape task. J Exp Psychol [Anim Behav] 6:21–40

    CAS  Google Scholar 

  • Jackson RL, Alexander RH & Maier SF (1980): Learned helplessness, inactivity and associative deficits: Effects of inescapable shock on response choice escape learning. J Exp Psychol [Anim Behav] 6:1–20

    CAS  Google Scholar 

  • Jimerson DC, Post RM (1984): Psychomotor stimulants and dopamine agonists in depression. In Neurobiology of Mood Disorders, Post RM, Ballenger JC, eds. Baltimore: Williams & Wilkins

    Google Scholar 

  • Katz RJ (1982): Animal model of depression: Pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav 16:965–968

    PubMed  CAS  Google Scholar 

  • Katz RJ (1981a): Animal models and human depressive disorders. Neurosci Biobehav Rev, 5:231–246

    PubMed  CAS  Google Scholar 

  • Katz RJ (1981b): Animal models of depression: Effects of electroconvulsive shock therapy. Neurosci Biobehav Rev 5:273–277

    PubMed  CAS  Google Scholar 

  • Katz RJ, Sibel M (1982): Further analysis of the specificity of a novel animal model of depression: Effects of an antihistaminic, antipsychotic and anxiolytic compound. Pharmacol Biochem Behav 16:979–982

    PubMed  CAS  Google Scholar 

  • Kobayashi RM, et al., (1976): Selective alterations of catecholamines and tyrosine hydroxylase activity in the hypothalamus following acute and chronic stress. In: Catecholamines and Stress. Usdin E, Kvetnansky R, Kopin IJ, eds. Oxford: Pergamon Press

    Google Scholar 

  • Kvetnansky R, et al., (1976): Catecholamines in individual hypothalamic nuclei in stressed rats. In: Catecholamines and Stress Usdin E, Kvetnansky R, Kopin IJ, eds. Oxford: Pergamon Press

    Google Scholar 

  • MacLennan AJ, Maier SF (1983): Coping and stress-induced potentiation of stimulant stereotypy in the rat. Science 219:1091–1093

    PubMed  CAS  Google Scholar 

  • Maier SF, Seligman MEP (1976): Learned helplessness: Theory and evidence. J Exp Psychol [Gen] 105:3–46

    Google Scholar 

  • Minor TR, Jackson RL, Maier SF (1984): Effects of task-irrelevant cues and reinforcement delay on choice escape learning following inescapable shock: Evidence for a deficit in selective attention. J Exp Psychol [Anim Behav] 10:543–556

    CAS  Google Scholar 

  • Morrison J, Hudgens R, Barchha R (1968): Life events and psychiatric illness. B J Psychiatry 114:423–432

    CAS  Google Scholar 

  • Noll KM, Davis JM, DeLeon-Jones, F (1985): Medication and somatic therapies in the treatment of depression. In: Handbook of Depression, Beckham EE, Leber WR, eds. New York: Dorsey Press

    Google Scholar 

  • Nomura S, et al., (1981): Stress and β-adrenergic receptor binding in the rat’s brain. Brain Res 224:199–203

    PubMed  CAS  Google Scholar 

  • Palkovits M, et al., (1976): Effects of stress on serotonin and tryptophan hydroxylase activity of brain nucleis. In: Catecholamines and Stress, Usdin E, Kvetnansky R, Kopin IJ, eds. Oxford: Pergamon Press

    Google Scholar 

  • Petty F, Sherman AD (1982): A neurochemical differentiation between exposure to stress and the development of learned helplessness. Drug Devel Res 2:43–45

    Google Scholar 

  • Platt JE, Stone EA (1982): Chronic restraint stress elicits a positive antidepressant response on the forced swim test. Eur J Pharmacol 82:179–181

    PubMed  CAS  Google Scholar 

  • Prince CR, Ahluwalia P, Anisman H (1986a): Catecholamine and corticoid variations associated with prepared and contraprepared defensive responses. Soc Neurosci Abs, 12:1060

    Google Scholar 

  • Prince CR, Anisman H (1984): Acute and chronic stress effects on performance in a forced-swim task. Behav Neur Biol 84:99–119

    Google Scholar 

  • Prince CR, Collins C, Anisman H (1986b): Stressor-provoked response patterns in a swim task: Modification by diazepam. Pharmacol Biochem Behav 24:323–328

    PubMed  CAS  Google Scholar 

  • Richardson JS (1984): Brain part monoamines and the neuroendocrine mechanisms activated by immobilization stress in the rat. Int J Neurosci 23:57–68

    PubMed  CAS  Google Scholar 

  • Rosellini RA (1978): Inescapable shock interferes with the acquisition of a free appetitive operant. Anim Learn Behav 6:155–159

    Google Scholar 

  • Rosellini RA, et al., (1984): Uncontrollable shock proactively increases sensitivity to response-reinforcer independence in rats. J Exp Psychol [Anim Behav] 10:346–359

    CAS  Google Scholar 

  • Rosellini RA, DeCola JP, Shapiro NR (1982): Cross-motivational effects of inescapable shock are associative in nature. J Exp Psychol [Anim Behav] 8:376–388

    CAS  Google Scholar 

  • Roth KA, Mefford IM, Barchas JD (1982): Epinephrine, norepinephrine, dopamine and serotonin: Differential effects of acute and chronic stress on regional brain amines. Brain Res 239:417–424

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1978): Current status of the catecholamine hypothesis of affective disorders. In: Psychopharmacology: A Generation of Progress, Lipton MA, DiMascio A, Killam KF, eds. New York: Raven Press

    Google Scholar 

  • Shanks N, Anisman H (1987): Strain specific behavioral effects of inescapable shock and desmethylimipramine. Soc Neurosci Abstr 13:660

    Google Scholar 

  • Shanks N, Anisman H (1988): Stressor provoked disturbances in six strains of mice. Behav Neurosci, in press

    Google Scholar 

  • Sherman AD, et al., (1979): A neuropharmacologically relevant animal model of depression. Neuropharmacology 18:891–893

    PubMed  CAS  Google Scholar 

  • Sherman AD, Petty F (1980): Neurochemical basis of the action of anti-depressants on learned helplessness. Behav Neur Biol 30:119–134

    CAS  Google Scholar 

  • Sherman AD, Sacquitne JL, Petty F (1982): Pharmacologic specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 16:449–454

    PubMed  CAS  Google Scholar 

  • Slater S, Roth M (1969): Mayer Gross Clinical Psychiatry. Baltimore: Williams & Wilkins

    Google Scholar 

  • Stone EA (1979): Subsensitivity to norepinephrine as a link between adaptation to stress and antidepressant therapy: An hypothesis. Research Comm Psychol Psychiat Behav 4:241–255

    CAS  Google Scholar 

  • Stone EA (1983): Problems with current catecholamine hypotheses of antidepressant agents. Behav Brain Sci 6:535–577

    Google Scholar 

  • Stone EA, et al., (1984): Reduction of the cAMP response to norepinephrine in rat cerebral cortex following repeated restraint stress. Psychopharmacology 82:403–405

    PubMed  CAS  Google Scholar 

  • Stone EA, Platt JE (1982): Brain noradrenergic receptors and resistance to stress. Brain Res 237:405–414

    PubMed  CAS  Google Scholar 

  • Sulser F (1978): Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: Molecular approaches to an understanding of affective disorders. Pharmako Neuropsycho 11:43–52

    CAS  Google Scholar 

  • Sulser F (1982): Antidepressant drug research: Its impact on neurobiology and psychobiology. In: Typical and Atypical Antidepressants: Molecular Mechanisms, Costa E, Racagni, G, eds. New York: Raven Press

    Google Scholar 

  • Szostak C, Anisman H (1985): Stimulus perseveration in a water maze following exposure to uncontrollable shock. Behav Neur Biol 43:178–198

    CAS  Google Scholar 

  • Tanaka M, et al., (1982): Time-related differences in noradrenaline turnover in rat brain regions by stress. Pharmacol Biochem Behav 16:315–319

    PubMed  CAS  Google Scholar 

  • Telegdy G, Vermes M (1976): Changes induced by stress in the activity of the serotonergic system in limbic brain structures. In: Catecholamines and Stress. Usdin E, Kvetnansky R, Kopin IJ, eds. Oxford: Pergamon Press

    Google Scholar 

  • Telner J, Singhai RL (1981): Effects of nortriptyline treatment on learned helplessness in the rat. Pharmacol Biochem Behav 14:823–826

    PubMed  CAS  Google Scholar 

  • Thierry AM, et al., (1968): Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. J Pharmacol Exper Therap 163:163–171

    CAS  Google Scholar 

  • Thierry AM, et al., (1976): Selective activation of the mesocortical DA system by stress. Nature 263:242–244

    PubMed  CAS  Google Scholar 

  • Tissari AH, et al., (1979): Footshock stress accelerates non-striatal dopamine synthesis without activating tyrosine hydroxylase. Arch Pharmacol 308:155–158

    CAS  Google Scholar 

  • Tsuda A, Tanaka M (1985): Differential changes in noradrenaline turnover in specific region of rat brain produced by controllable and uncontrollable shocks. Behav Neurosci 99:802–817

    PubMed  CAS  Google Scholar 

  • U’Pritchard DC, Kvetnansky R (1980): Central and peripheral adrenergic receptors in acute and repeated immobilization stress. In: Second International Symposium in Catecholamines and Stress, Usdin E, Kvetnansky R, Kopin IJ, eds. New York: Elsevier-Dutton

    Google Scholar 

  • van Praag HM (1978): Amine hypotheses of affective disorders. In: Handbook of Psychopharmacology, Iversen LL, Iversen SD, Snyder SH, eds. New York: Plenum Press

    Google Scholar 

  • van Praag HM (1984): Depression, suicide, and serotonin metabolism in the brain. In: Neurobiology of Mood Disorders, Post RM, Ballenger JM, eds. Baltimore: Williams & Wilkins

    Google Scholar 

  • Vetulani J (1983): Alpha-1 up, beta down: A counterproposal to Stone. Behav Brain Sci 4:560–561

    Google Scholar 

  • Vetulani J (1984): Studies on the neurochemical basis of action of antidepressant drugs and electroconvulsive treatment. Pol J Pharmacol Pharm 36:101–116

    PubMed  CAS  Google Scholar 

  • Vetulani J, et al., (1984): Alpha-up beta-down adrenergic regulation—a possible mechanism of action of antidepressant treatments. Pol J Pharmacol Pharm 36:321–328

    Google Scholar 

  • Watanabe H (1984): Activation of dopamine synthesis in mesolimbic dopamine neurons by immobilization stress in the rat. Neuropharmacology 23:1335–1338

    PubMed  CAS  Google Scholar 

  • Weiss JM, et al., (1975): Effects of chronic exposure to stressors on avoidance-escape behavior and on brain norepinephrine. Psychosom Med 37:522–534

    PubMed  CAS  Google Scholar 

  • Weiss JM, et al., (1979): Coping behavior and stress-induced behavioral depression: Studies of the role of brain catecholamines. In: The Psychobiology of Depressive Disorders, Depue RA, ed. New York: Academic Press

    Google Scholar 

  • Weiss JM, Glazer HI (1975): Effects of acute exposure to stressors on subsequent avoidance-escape behavior. Psychol Med 37:499–521

    CAS  Google Scholar 

  • Weiss JM, et al., (1981): Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine and serotonin levels in various regions of rat brain. Brain Res Rev 3:167–205

    CAS  Google Scholar 

  • Weiss JM, Goodman PA (1985): Neurochemical mechanisms underlying stress-induced depression. In: Stress and Coping, Field T, McCabe P, Schneiderman N, eds. New Jersey: Lawrence Erlbaum

    Google Scholar 

  • Weiss JM, Glazer HI & Pohorecky LA (1976): Coping behavior and neurochemical changes: An alternative explanation for the original “learned helplessness” experiments. In: Animal Models in Human Psychobiology, Serban G, Kling A, eds. New York: Plenum Press

    Google Scholar 

  • Willner P (1984): The validity of animal models of depression. Psychopharmacology 83:1–16

    PubMed  CAS  Google Scholar 

  • Willner P (1985): Depression: A Psychobiological Synthesis. New York: John Wiley & Sons

    Google Scholar 

  • Zacharko RM, et al., (1983): Region-specific reductions of intracranial self-stimulation after uncontrollable stress: Possible effects on reward processes. Behav Brain Res 9:129–141

    PubMed  CAS  Google Scholar 

  • Zacharko RM, et al., (1984b): Prevention of stressor-induced disturbances of self-stimulation by desmethylimipramine. Brain Res 321:175–179

    PubMed  CAS  Google Scholar 

  • Zacharko RM, et al., (1987): Strain-specific effects of inescapable shock on intracranial self-stimulation from the nucleus accumbens. Brain Res 426:164–168

    PubMed  CAS  Google Scholar 

  • Zacharko RM, Bowers WJ, Anisman H (1984a): Responding for brain stimulation: Stress and desmethylimipramine. Prog Neurol Psychopharmacol Biol Psychiatry 8:601–606

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston

About this chapter

Cite this chapter

Zacharko, R.M., Anisman, H. (1989). Pharmacological, Biochemical, and Behavioral Analyses of Depression: Animal Models. In: Koob, G.F., Ehlers, C.L., Kupfer, D.J. (eds) Animal Models of Depression. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6762-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6762-8_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6764-2

  • Online ISBN: 978-1-4684-6762-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics