Skip to main content

The Effect of Agrochemicals on Vector Populations

  • Chapter
Pesticide Resistance in Arthropods

Abstract

Crop losses due to the action of herbivorous arthropods, parasitic fungi, nematodes, molluscs and noxious weeks have been estimated to represent at least one third of production (Cramer 1967). Losses from insects alone were stated to be from as low as 12% of potential production (Anonymous 1974) to several times that much (Pimentel et al. 1978). Since modern plant protection chemicals offer the most practical means of reducing crop losses, they are being used extensively throughout the world, and it is expected that demand for these will continue to rise as developing countries strive to increase their agricultural production and to improve their economic standards. The world market for pesticides in 1985 was estimated at $13,778 million and was expected to increase to $15,759 million by 1990 (Table 7.1) (Anonymous 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. 1974. A Hungry World: The Challenge to Agriculture. Summary Report by University of California Food Task Force. Division of Agric. Sciences, Univ. of Calif., Berkeley 68 pp.

    Google Scholar 

  2. Anonymous. 1980. Report on the WHO Technical Visit on Vector Biology and Control to the People’s Republic of China. WHO mimeo. CHN/VBC/001, 47 pp.

    Google Scholar 

  3. Anonymous. 1985. A look at world pesticide markets. Farm Chemicals 148: 26–34.

    Google Scholar 

  4. Anonymous. 1987. Report of Seventh Meeting, WHO/FAO/UNEP Panel of Experts on Environmental Management for Vector Control (PEEM), World Health Organization, VBC/87.2,72 pp.

    Google Scholar 

  5. Ariaratnam, V. and G. P. Georghiou. 1971. Selection for resistance to carbamate and organophos-phorus insecticides in Anopheles albimanus. Nature 232: 642–644.

    Article  CAS  Google Scholar 

  6. Ariaratnam, V. and G. P. Georghiou. 1974. Carbamate resistance m Anopheles albimanus cross resistance spectrum and stability of resistance. Bull. WHO 51: 655–659.

    PubMed  CAS  Google Scholar 

  7. Ariaratnam, V. and G. P. Georghiou. 1975. Carbamate resistance in Anopheles albimanus penetration and metabolism of carbaryl in propoxur-selected larvae. Bull. WHO 52: 91–96.

    PubMed  CAS  Google Scholar 

  8. Ayad, H. and G. P. Georghiou. 1975. Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinesterase. J. Econ. Entomol 69: 295–297.

    Google Scholar 

  9. Ayad, H. and G. P. Georghiou. 1979. Resistance pattern of Anopheles albimanus Wied. following selection by parathion. Mosquito News 39:121–125.

    CAS  Google Scholar 

  10. Bailey, D. L., P. E. Kaiser, and R. E. Low. 1981. Population densities of Anopheles albimanus adults and larvae inside and outside cotton-growing areas in El Salvador. Mosquito News 41:151–154.

    Google Scholar 

  11. Belios, G. D. 1961. WHO Unpublished Working Paper WHOIMal 307.

    Google Scholar 

  12. Brown, A. W. A. and R. Pal. 1971. Insecticide Resistance in Arthropods. WHO Monograph Ser. 38, 491 pp. Geneva, Switzerland.

    Google Scholar 

  13. Bus vine, J. R. and R. Pal. 1969. The impact of insecticide resistance on control of vectors and vector-borne diseases. Bull. WHO 40:371–444.

    Google Scholar 

  14. Chapin, G. and R. Wasserstrom. 1981. Agricultural production and malaria resurgence in Central America and India. Nature (London) 293: 181–185.

    Article  CAS  Google Scholar 

  15. Cramer, H. H. 1967. Plant protection and world crop production. Pft. Nachr. Bayer 20:1–524.

    Google Scholar 

  16. Elliott, R. 1959. Insecticide resistance in populations of Anopheles gambiae in West Africa. Bull. WHO 20: 777–796.

    PubMed  CAS  Google Scholar 

  17. FAO. 1986. International code of conduct on the distribution and use of pesticides. Food and Agriculture Organization of the United Nations, Rome, 28 pp.

    Google Scholar 

  18. Garcia-Martin, G. and J. A. Najera-Morrondo. 1972. The interrelationships of malaria, agriculture and the use of pesticides in malaria control. Bol. Ofic. Sanit. Pan. Amer 6: 15–23.

    Google Scholar 

  19. Georghiou, G. P. 1970. Considerations on the relationship of larval and adult tolerance to insecticides in mosquitoes. Proc. & Papers, Calif. Mosquito Control Assoc 38: 55–59.

    CAS  Google Scholar 

  20. Georghiou, G. P. 1972. Studies on resistance to carbamate and organophosphorus insecticides in Anopheles albimanus. Am. J. Trop. Med. Hyg 21: 797–806.

    CAS  Google Scholar 

  21. Georghiou, G. P. 1975. Implications of agricultural insecticides in the development of resistance by mosquitoes. World Health Organization VBC/EC/75.3,13 p. (Also in Proc. UC/AID Conference The Agromedical Approach to Pesticide Management” Guatemala City, Jan. 1976. Univ. of Calif., Berkeley, mimeo, pp. 24–41).

    Google Scholar 

  22. Georghiou, G. P. 1982. The implication of agricultural insecticides in the development of resistance by mosquitoes with emphasis on Central America, pp. 95–121. In Resistance to Insecticides Used in Public Health and Agriculture. Proc. Int. Workshop, Colombo, Sri Lanka. Natl. Science Council, Sri Lanka

    Google Scholar 

  23. Georghiou, G. P. 1986. A review of insecticide resistance in malaria vectors in Pakistan and recommendations for future action. Unpubl. Report to U.S. Agency for International Development, Washington, D.C., 44 pp.

    Google Scholar 

  24. Georghiou, G. P., V. Ariaratnam, and S. G. Breeland. 1971. Anopheles albimanus Development of carbamate and organophosphorus resistance in nature. Bull. WHO 46:551–554.

    Google Scholar 

  25. Georghiou, G. P., S. G. Breeland, and V. Ariaratnam. 1973. Seasonal escalation of organophosphorus and carbamate resistance in Anopheles albimanus by agricultural sprays. Environ. Ento-mol 2: 369–374.

    CAS  Google Scholar 

  26. Georghiou, G. P., V. Ariaratnam, H. Ayad, and B. Betzios. 1974a. Present status of research on resistance to carbamate and organophosphorus insecticides in Anopheles albimanus. WHO/ VJJC/74.508, 9 pp.

    Google Scholar 

  27. Georghiou G. P., A. L. Black, R. I. Krieger, and T. R. Fukuto. 1974b. Joint action of diquat and related one-electron transfer agents with propoxur and fenthion against mosquito larvae. J. Econ. Entomol 67: 184–186.

    PubMed  CAS  Google Scholar 

  28. Georghiou, G. P., V. Ariaratnam, M. E. Pasternak, and Chi Lin. 1975. Organophosphorus multiresistance in Culex pipiens fatigans Wied. in California. J. Econ. Entomol 68: 461–467.

    Google Scholar 

  29. Hamon, J. and C. Garrett-Jones. 1963. La résistance aux insecticides chez des vecteurs majeurs du palludisme et son importance opérationnelle. Bull. WHO 281–324.

    Google Scholar 

  30. Hamon, J., and J. Mouchet. 1961. La résistance aux insecticides chez les insectes d’importance médicale. Med Trop 21: 565–596.

    CAS  Google Scholar 

  31. Hamon, J., M. Eyraud, B. Diallo, A. Dyemkouma, H. Bailly-Choumara, and S. Ouanou. 1961. Les moustiques de la République du Mali. Ann. Soc. Ent. France 130: 95–129.

    Google Scholar 

  32. Haridi, A. M. 1966. Report in WHO Inf. Cire. Insect Resist No. 58–59, p. 10.

    Google Scholar 

  33. Hemingway, J., and G. P. Georghiou. 1983. Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides. Pestic. Biochem. Physiol 19: 167–171.

    Article  CAS  Google Scholar 

  34. Hemingway, J., and G. P. Georghiou. 1984. Differential suppression of organophosphorus resistance in Culex quinquefasciatus by the synergists IBP, DEF and TPP. Pestic. Biochem. Physiol. 21: 1–9.

    Google Scholar 

  35. Hobbs, J. H. 1973. Effects of agricultural spraying on Anopheles albimanus densities in a coastal area of El Salvador. Mosquito News 33: 420–423.

    Google Scholar 

  36. Junkert, R., and K. R. Townzen. 1973. Biological and engineering evaluation of an irrigated pasture mosquito problem in Stanislaus County, California, and recommendations for its alleviation. Caltf. Vector News 20: 1–9.

    Google Scholar 

  37. Livingston, J. M., W. C. Yearian, and S. Y. Young. 1978. Effect of insecticides, fungicides, and insecticide-fungicide combinations on development of lepidopterous larval populations in soybeans. Environ. Entomol 7: 823–828.

    CAS  Google Scholar 

  38. Martinez Palacios, A. 1959. Resistencia fisiologica a dieldrin y DDT de Anopheles albimanus en Mexico. Bol. Comm. Nac. Errad. Palud, Mexico, 3: 31–32.

    Google Scholar 

  39. Mathis, W., H. F. Schoof, K. D. Quarterman, and R. W. Fay. 1956. Public Health Rpts 71: 876–878.

    Article  Google Scholar 

  40. Mouchet, J. and J. Laigret. 1967. La résistance aux insecticides chez Aedes aegypti à Tahiti. Med. Trop 27: 685–692.

    CAS  Google Scholar 

  41. Mulhera, T. D. 1972. An approach to comprehensive mosquito control. Calif. Vector Views 19: 61–64.

    Google Scholar 

  42. Mulla, M. S. and L. S. Mian. 1981. Biological and environmental impacts of the insecticides malathion and parathion on non-target biota in aquatic ecosystems. Residue Reviews 78: 101–135.

    CAS  Google Scholar 

  43. Mulla, M. S., G. Majori, and A. A. Arata. 1979. Impact of biological and chemical mosquito control agents on non-target biota in aquatic ecosystems. Residue Reviews 7: 121–173.

    Google Scholar 

  44. O’Connor, C. T., and Arwati. 1974. Insecticide Resistance in Indonesia. Unpubl. Document, WWO/VBC/74.505, 8 pp.

    Google Scholar 

  45. Pimentel, D., J. Krummel, D. Gallahan, J. Hough, A. Merrill, I. Schreiner, P. Vittum, F. Koziol, E. Back, D. Yen, and S. Fiance. 1978. Benefits and costs of pesticide use. BioScience 28: 772, 778–784.

    Google Scholar 

  46. Rachou, R. G., G. Lyons, M. Mount-Lima, and J. A. Kerr. 1965. Synoptic epidemiological studies of malaria in El Salvador. Am. J. Trop. Med. Hyg 14:1–62.

    PubMed  CAS  Google Scholar 

  47. Ramsdale, C. D. 1973. Insecticide resistance in the anophelines of Turkey. Abstract, 9th Intern. Congr. Trop. Med. Malar 1: 260–261.

    Google Scholar 

  48. Ramsdale, C. D. 1975. Insecticide resistance in the Anopheles of Turkey. Trans. Roy Soc. Trop. Med. Hyg 69: 226–235.

    Article  PubMed  CAS  Google Scholar 

  49. Raymond, M., D. Founder, J.-M. Bride, A. Cuany, J. Berge, M. Margnin and N. Pasteur. 1986. Identification of resistance mechanisms in Culex pipiens (Diptera: Culicidae) from southern France: Insensitive acetylcholinesterase and detoxifying oxidases. J. Econ. Entomol 79: 1452–1458.

    PubMed  CAS  Google Scholar 

  50. Sharma, Y. P., and Mehrotra, K. N. 1986. Malaria resurgence in India: A critical study. Soc. Sci. Med. 22:835–845.

    Article  PubMed  CAS  Google Scholar 

  51. Schliessmann, D. J. 1974. Technical and economic justification for the use of comprehensive measures in malaria control and eradication. Unpublished document, W/J0/MAL/74.835,1 pp.

    Google Scholar 

  52. Smith, R. F. 1968. Second Session of FAO Panel of Experts on Integrated Pest Control, Rome, 19–24 Sept. 1968. (mimeo.) pp. 39–42.

    Google Scholar 

  53. Subha Rao, Y. 1979. Susceptibility status of Anopheles culicifacies to DDT, dieldrin and malathion in village Mangapeta, District Warangal, and hra Pradesh. J. Com. Dis. 2 41–43.

    Google Scholar 

  54. Watal, B. L., G. C. Joshi, and M. Das. 1981. Role of agricultural insecticides in precipitating vector resistance. J. Com. Dis 13: 71–74.

    Google Scholar 

  55. WHO. 1973. Review of susceptibility tests of malaria vectors to insecticides from 1 July 1970 to 31 December 1971. Unpublished document, 18 pp.

    Google Scholar 

  56. WHO. 1976. Resistance of Vectors and Reservoirs of Disease to Pesticides WHO Tech. Rpt. Ser 585, 88 pp.

    Google Scholar 

  57. WHO. 1980. Resistance of Vectors of Disease to Pesticides. WHO Tech. Rpt. Ser 655, pp.

    Google Scholar 

  58. WHO. 1986. Resistance of Vectors and Reservoirs of Disease to Pesticides. WHO Tech. Rpt. Ser 737, 87 pp.

    Google Scholar 

  59. Wright, J. W. 1971. The WHO Program for the Evaluation and Testing of New Insecticides. Bull. WHO, 44: 11–22.

    PubMed  CAS  Google Scholar 

  60. Yates, W. E., N. B. Akesson, and D. E. Mayer. 1978. Drift of glyphosate sprays applied with aerial and ground equipment. Weed Science 26: 597–604.

    CAS  Google Scholar 

  61. Zulueta, J. de. 1959. Insecticide resistance in Anopheles sacharovi. Bull. WHO, 20: 797–821.

    Google Scholar 

Download references

Authors

Editor information

Richard T. Roush Bruce E. Tabashnik

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Routledge, Chapman & Hall, Inc.

About this chapter

Cite this chapter

Georghiou, G.P. (1990). The Effect of Agrochemicals on Vector Populations. In: Roush, R.T., Tabashnik, B.E. (eds) Pesticide Resistance in Arthropods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6429-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6429-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6431-3

  • Online ISBN: 978-1-4684-6429-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics