Skip to main content

Investigating Mechanisms of Insecticide Resistance: Methods, Strategies, and Pitfalls

  • Chapter
Pesticide Resistance in Arthropods

Abstract

Pesticide resistance is a severe and important problem in situations where chemicals are used to kill pests. However, apart from the economic, social, and environmental costs associated with this problem, resistant insects are a physiological marvel. Some strains have become so resistant to a given insecticide that they can survive exposure to virtually any dose. Pesticide resistance is truly one of the most amazing cases of evolutionary adaptation to environmental change, especially when we consider that it has occurred relatively quickly in terms of evolutionary time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, Y.-J., T. Shono, and J. Fukami. 1986. Inheritance of pyrethroid resistance in a housefly strain from Denmark. J. Pestic. Sci. 11: 591–596.

    Article  CAS  Google Scholar 

  • Beeman, R. W. 1983. Inheritance and linkage of malathion resistance in the red flour beetle. J. Econ. Entomol. 76: 737–740.

    CAS  Google Scholar 

  • Beeman, R. W., and B. A. Schmidt. 1982. Biochemical and genetic aspects of malathion-specific resistance in the Indianmeal moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 75: 945–949.

    CAS  Google Scholar 

  • Bigley, WS., and F. W. Plapp, Jr. 1962. Metabolism of malathion and malaoxon by the mosquito Culex tarsalis. J. Insect Physiol. 8:545–557.

    Article  CAS  Google Scholar 

  • Brindley, W. A., and A. A. Selim. 1984. Synergism and antagonism in the analysis of insecticide resistance. Environ. Entomol. 13: 348–353.

    CAS  Google Scholar 

  • Casida, J. E. 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. Agric. Food Chem. 18: 753–772.

    Article  CAS  Google Scholar 

  • Cochran, D. G. 1989. Monitoring for insecticide resistance in field-collected strains of the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 82: 336–341.

    PubMed  CAS  Google Scholar 

  • Dennehy, T. J., J. Grannett, and T. F. Leigh. 1983. Relevance of slide dip and residual bioassay comparisons to detection of resistance in spider mites. J. Econ. Entomol. 76: 1225–1230.

    CAS  Google Scholar 

  • Devonshire, A. L. 1987. Biochemical studies of organophosphorus and carbamate resistance in houseflies and aphids, pp. 239–255. In M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. M. Sawicki (eds.), Combating Resistance to Xenobiotics. Ellis Horwood Ltd., London.

    Google Scholar 

  • Devonshire, A. L. and G. D. Moores. 1982. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic. Biochem. Physiol. 18: 235–246.

    Article  CAS  Google Scholar 

  • Devonshire, A. L., and G. D. Moores. 1984. Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica). Pestic. Biochem. Physiol. 21: 336–340.

    Article  CAS  Google Scholar 

  • DeVries, D. H., and G. P. Georghiou. 1981. Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (1 R)-trans-permethrin-selected strain of the house fly. Pestic. Biochem. Physiol. 15: 234–241.

    Article  CAS  Google Scholar 

  • Dowd, P. F., and T. C. Sparks. 1984. Developmental changes in trans-pennethrin an α-Napthyl acetate ester hydrolysis during the last larval instar of Pseudoplusia includens. Pestic. Biochem. Physiol. 21: 275–282.

    Article  CAS  Google Scholar 

  • Dyte, C. E., and D. G. Rowlands. 1968. The metabolism and synergism of malathion in resistant and susceptible strains of Trifolium castaneum. J. Stored Prod. Res. 4: 157–173.

    Article  CAS  Google Scholar 

  • Ellman, G. L., K. D. Courtney, and R. M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Eto, M. 1974. Organophosphorus Pesticides: Organic and Biological Chemistry. CRC Press, Cleveland. 387 pp.

    Google Scholar 

  • Farnham, A. W. 1973. Genetics of resistance of pyrethroid-selected houseflies, Musca domestica L. Pestic. Sci. 4: 513–520.

    Article  CAS  Google Scholar 

  • Farnham, A. W., A. W. A. Murray, R. M. Sawicki, I. Denholm, and J. C. White. 1987. Characterization of the structure-activity relationship of kdr and two variants of super-Mr to pyrethroids in the house fly (Musca domestica L.). Pestic. Sci. 19: 209–220.

    Article  CAS  Google Scholar 

  • Feyereisen, R., J. F. Koener, D. E. Farns worth, and D. W. Nebert. 1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of house fly, Musca domestica. Proc. Natl. Acad. Sci. USA 86: 1465–1469.

    Article  PubMed  CAS  Google Scholar 

  • Ffrench-Constant, R. H., and A. L. Devonshire. 1988. Monitoring frequencies of insecticide resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) in England during 1985–86 by immunoassay. Bull. Entomol. Res. 78: 163–171.

    Article  CAS  Google Scholar 

  • Ffrench-Constant, R. H., and B.C. Bonning. 1989. Rapid microtitre plate test distinguishes insecticide resistant acetylcholinesterase genotypes in the mosquitoes Anopheles albimanus, An. nigerrimus and Culex pipiens. Med. Vet. Entomol. 3: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Fine, B. C., P. J. Godin, and E. M. Thain. 1963. Penetration of Pyrethrin I labelled with carbon-14 into susceptible and pyrethroid resistant houseflies. Nature 199: 927–928.

    Article  CAS  Google Scholar 

  • Finney, D. J. 1971. Probit Analysis, 3rd ed. Cambridge Univ., London. 333 pp.

    Google Scholar 

  • Forrester, N. W. 1988. Field selection for pyrethroid resistance genes, Australian Cottongr. 9: 48–51.

    Google Scholar 

  • Forgash, A. J., B. J. Cook, and R. C. Riley. 1962. Mechanisms of resistance in diazinon-selected multi-resistant Musca domestica. J. Econ. Entomol. 55: 544–551.

    CAS  Google Scholar 

  • Gammon, D. W., M. A. Brown, and J. E. Casida. 1981. Two classes of pyrethroid action in the cockroach. Pestic. Biochem. Physiol. 15:181–191.

    Article  CAS  Google Scholar 

  • Georghiou, G. P. 1965. Genetic studies on insecticide resistance, pp. 171–230. In R. L. Metcalf (ed.), Advances in Pest Control Research, Vol. VI. John Wiley and Sons, New York.

    Google Scholar 

  • Georghiou, G. P. 1983. Management of resistance in arthropods, pp. 769–792. In G. P. Georghiou and T. Saito (eds.), Pest Resistance to Pesticides. Plenum Press, New York.

    Google Scholar 

  • Georghiou, G. P., and N. Pasteur. 1978. Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes. J. Econ. Entomol. 71: 201–205.

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P., N. Pasteur, and M. K. Hawley. 1980. Linkage relationships between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California. J. Econ. Entomol. 73: 301–305.

    PubMed  CAS  Google Scholar 

  • Ghiasuddin, S. M., and F. Matsumura. 1982. Inhibition of gamma-aminobutyric acid (GABA)-induced chloride uptake by gamma-BHC and heptachlor epoxide. Comp. Biochem. Physiol. 73C, 141–144.

    CAS  Google Scholar 

  • Hedin, P. A., W. L. Parrott, J. N. Jenkins, J. E. Mulrooney, and J. J. Mean. 1988. Eludicating mechanisms of tobacco budworm resistance to allelochemicals by dietary tests with insecticide synergists. Pestic. Biochem. Physiol. 32: 55–61.

    Article  CAS  Google Scholar 

  • Hemingway, J. 1982. The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pestic. Biochem. Physiol. 17:149–155.

    Article  CAS  Google Scholar 

  • Hodgson, E. 1985. Microsomal mono-oxygenases, pp. 225–321. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 11. Pergamon, Oxford.

    Google Scholar 

  • Huges, P. B., P. E. Green, and K. G. Reichmann. 1984. Specific resistance to malathion in laboratory and field populations of the Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Entomol. 77: 1400–1404.

    Google Scholar 

  • Kadous, A. A., S. M. Ghiasuddin, F. Matsumura, J. G. Scott, and K. Tanaka. 1983. Difference in the picrotoxinin receptor between the cylodiene-resistant and susceptible strains of the German cockroach. Pestic. Biochem. Physiol. 19: 157–166.

    Article  CAS  Google Scholar 

  • Konno, T., E. Hodgson, and W. C. Dauterman, 1989. Studies on methyl parathion resistance in Heliothis virescens. Pestic. Biochem. Physiol. 33: 189–199.

    Article  CAS  Google Scholar 

  • Lawrence, L. J., and J. E. Casida. 1984. Interactions of lindane, toxaphene and cyclodienes with brain-specific r-butylbicyclophosphorothionate receptor. Life Sci. 35: 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. S. T., and J. G. Scott. 1989. An improved method for the preparation, stabilization and storage of house fly (Diptera: Muscidae) microsomes. J. Econ. Entomol. 82: 1559–1563.

    PubMed  CAS  Google Scholar 

  • Lipke, H., and C. W. Kearns. 1960. DDT-dehydrochlorinase, pp. 253–287. In R. L. Metcalf (ed.), Advances in Pest Control Research, Vol. m. Interscience, New York.

    Google Scholar 

  • Lockwood, J. A., T. C. Sparks, and R. N. Story. 1984. Evolution of insect resistance to insecticides: a reevaluation of the roles of physiology and behavior. Bull. ESA 30(4): 41–51.

    Google Scholar 

  • Lund, A. E. 1985. Insecticides: effects on the nervous system, pp. 9–56. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon, Oxford.

    Google Scholar 

  • Lund, A. E., and T. Narahashi. 1983. Kinetics of sodium channel modification as the basis for variation in the nerve membrane effects of pyrethroids and DDT analogs. Pestic. Biochem. Physiol. 20: 203–216.

    Article  CAS  Google Scholar 

  • Matsumura, F. 1985a. Involvement of picrotoxinin receptor in the action of cyclodiene insecticides. Neurotoxicol. 6: 139–164.

    CAS  Google Scholar 

  • Matsumura, F. 1985b. Toxicology of Insecticides, 2nd ed. Plenum Press, New York 598 pp.

    Book  Google Scholar 

  • Matsumura, F., and A. W. A. Brown. 1963a. Studies on organophosphorus tolerance in Aedes aegypti. Mosq. News 23: 26–31.

    CAS  Google Scholar 

  • Matsumura, F., and A. W. A. Brown. 1963b. Studies on the carboxylesterase in malathion-resistant Culex tar salis. J. Econ. Entomol. 56: 381–388.

    CAS  Google Scholar 

  • Matsumura, F., and C. J. Hogendijk. 1964. The enzymatic degradation of malathion in organophosphate resistant and susceptible strains of Musca domestica. Entomol. exp. Appl. 7: 179–193.

    Article  CAS  Google Scholar 

  • Milani, R. 1956. Mendellian inheritance of knock-down resistance to DDT and correlation between knockdown and mortality in Musca domestica L. Selected Sci. Papers Instit. Super. Sanita. I, Part 1: 176–182.

    Google Scholar 

  • Miller, T. A. 1979. Insect Neurophysiological Techniques. Springer-Verlag. 308 pp.

    Book  Google Scholar 

  • Oakley, B., and R. Schafer. 1978. Experimental Neurobiology. Univ. of Michigan Press, Ann Arbor, Michigan. 367 pp.

    Google Scholar 

  • Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon, Oxford.

    Google Scholar 

  • Oppenoorth, F. J., and W. Welling. 1979. Biochemistry and physiology of resistance, pp. 507–551. In C. F. Wilkinson (ed.), Insecticide Biochemistry and Physiology. Plenum Press, New York.

    Google Scholar 

  • Pap, L., E. R. Hegedus, K. Bauer, I. Ujvary, and G. Matolesy. 1986. A rapid method for evaluation of nerve conduction blocking compounds. Comp. Biochem. Physiol. 85C: 347–352.

    CAS  Google Scholar 

  • Pimprikar, G. D., and G. P. Georghiou. 1979. Mechanisms of resistance to diflubenzuron in the house fly Musca domestica (L.). Pestic. Biochem. Physiol. 12: 10–22.

    Article  CAS  Google Scholar 

  • Plapp, F. W., Jr., and R. F. Hoyer. 1968. Insecticide resistance in the house fly: decreased rate of absorption as the mechanism of action of a gene that acts as an intensifier of resistance. J. Econ. Entomol. 61: 1298–1303.

    PubMed  CAS  Google Scholar 

  • Raffa, K. F., and T. M. Priester. 1985. Synergists as research tools and control agents in agriculture. J. Agric. Entomol. 2: 27–45.

    CAS  Google Scholar 

  • Salgado, V. L., S. N. Irving, and T. A. Miller. 1983. Depolarization of motor nerve terminals by pyrethroids in susceptible and kdr-resistant house flies. Pestic. Biochem. Physiol. 20: 100–114.

    Article  CAS  Google Scholar 

  • Sawicki, R. M. 1962. Insecticidal activity of pyrethrum extract and its four insecticidal constituents against house flies, HI.—knock-down and recovery of flies treated with Pyrethrin extract with and without piperonyl butoxide. J. Sci. Food Agric. 13: 283–292.

    Article  CAS  Google Scholar 

  • Scott, J. G. 1988. Pyrethroid insecticides. ISI Atlas Sci. Pharmacol. 2: 125–128.

    CAS  Google Scholar 

  • Scott, J. G., and G. P. Georghiou. 1985. Rapid development of high-level permethrin resistance in a field-collected strain of the house fly (Diptera: Muscidae) under laboratory selection. J. Econ. Entomol. 78: 316–319.

    PubMed  CAS  Google Scholar 

  • Scott, J. G., and G. P. Georghiou. 1986a. Mechanisms responsible for high levels of permethrin resistance in the house fly. Pestic. Sci. 17: 195–206.

    Article  CAS  Google Scholar 

  • Scott, J. G., and G. P. Georghiou. 1986b. Malathion-specific resistance in Anopheles stephensi from Pakistan. J. Am. Mosq. Cont. Assoc. 2: 29–32.

    CAS  Google Scholar 

  • Scott, J. G., and G. P. Georghhiou. 1986c. The biochemical genetics of permethrin resistance in the Learn-PyR strain of house fly. Biochem. Genet. 24: 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J. G., and F. Matsumura. 1981. Characteristics of a DDT-induced case of cross-resistance to permethrin in Blattella germanica. Pestic. Biochem. Physiol. 16: 21–27.

    Article  CAS  Google Scholar 

  • Scott, J. G., and F. Matsumura. 1983. Evidence for two types of toxic actions of pyrethroids on susceptible and DDT-resistant German cockroaches. Pestic. Biochem. Physiol. 19: 141–150.

    Article  Google Scholar 

  • Scott, J. G., C. J. Palmer, and J. E. Casida. 1987. Oxidative metabolism of the GABAA receptor antagonist t-butylbicycloorthof benzoate. Xenobiotica 17: 1085–1093.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J. G., R. B. Mellon, O. Kirino, and G. P. Georghiou. 1986a. Insecticidal activity of substituted benzyl dichlorovinylcyclopropanecarboxylates on susceptible and fair-resistant strains of the southern house mosquito, Culex quinquefasciatus. J. Pestic. Sci. 11: 475–477.

    Article  CAS  Google Scholar 

  • Scott, J. G., S. B. Ramaswamy, F. Matsumura, and K. Tanaka. 1986b. Effect of method of application on resistance to pyrethroid insecticides in Blattella germanica (Orthoptera: Blattellidae). J. Econ. Entomol. 79: 571–575.

    PubMed  CAS  Google Scholar 

  • Shankland, D. L. 1979. Action of dieldrin and related compounds on synaptic transmission, pp. 139–153. In T. Narahashi (ed.), Neurotoxicology of Insecticides and Pheromones. Plenum, New York.

    Chapter  Google Scholar 

  • Sparks, T. C., J. A. Lockwood, R. L. Byford, J. B. Graves, and B. R. Leonard. 1989. The role of behavior in insecticide resistance. Pestic. Sci. (in press).

    Google Scholar 

  • Sun, Y.-P., and E. R. Johnson. 1960. Synergistic and antagonistic actions of insecticide-synergist combinations and their mode of action. J. Agric. Food Chem. 8: 261–266.

    Article  CAS  Google Scholar 

  • Sun, Y.-P., and Johnson, E. R. 1972. Quasi-synergism and penetration of insecticides. J. Econ. Entomol. 65: 349–353.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., J. G. Scott, and F. Matsumura. 1984. Picrotoxinin receptor in the central nervous system of the American cockroach: its role in the action of cyclodiene insecticides. Pestic. Biochem. Physiol. 22: 117–124.

    Article  CAS  Google Scholar 

  • Terriere, L. C. 1979. The use of in vitro techniques to study the comparative metabolism of xenobiotics, pp. 285–320. In G. D. Paulson, D. S. Frear, and E. P. Marks (eds.), Xenobiotic Metabolism: In Vitro Methods. American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  • Welling, W., and G. D. Paterson. 1985. Toxicodynamics of insecticides, pp. 603–645. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon, Oxford.

    Google Scholar 

  • Welsh, J. H., and H. T. Gordon. 1947. The mode of action of certain insecticides on the arthropod nerve axon. J. Cell. Comp. Physiol. 30: 147–171.

    Article  CAS  Google Scholar 

  • Wheelock, G. D., and J. G. Scott. 1989. Simultaneous purification of a cytochrome P-450 and cytochrome b5 from the house fly, Musca domestica L. Insect Biochem. 19: 481–488.

    Article  CAS  Google Scholar 

  • Wilkinson, C. F. 1979. The use of insect subcellular components for studying the metabolism of xenobiotics, pp. 249–284. In G. D. Paulson, D. S. Frear, and E. P. Marks (eds.), Xenobiotic Metabolism: In Vitro Methods. American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  • Wilkinson, C. F. 1983. Role of mixed-function oxidases in insecticide resistance, pp. 175–205. In G. P. Georghiou and T. Saito (eds.), Pest Resistance to Pesticides. Plenum, New York.

    Google Scholar 

  • Yamamoto, I., Y. Takahashi, and N. Kyomura. 1983. Suppression of altered acetylcholinesterase of the green rice leafhopperpropyl and W-methyl carbamate combinations, pp. 579–594. In G. P. Georghiou and T. Saito (eds.), Pest Resistance to Pesticides. Plenum Press, New York.

    Google Scholar 

  • Yamasaki, T., and T. Narahashi. 1958. Resistance of house flies to insecticides and susceptibility of nerve to insecticides: studies on the mechanism of action of insecticides (XVII). Botyu Kagaku 23: 146–157.

    Google Scholar 

Download references

Authors

Editor information

Richard T. Roush Bruce E. Tabashnik

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Routledge, Chapman & Hall, Inc.

About this chapter

Cite this chapter

Scott, J.G. (1990). Investigating Mechanisms of Insecticide Resistance: Methods, Strategies, and Pitfalls. In: Roush, R.T., Tabashnik, B.E. (eds) Pesticide Resistance in Arthropods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6429-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6429-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6431-3

  • Online ISBN: 978-1-4684-6429-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics