Skip to main content

Additive Hazards Regression Models for Survival Data

  • Conference paper
Proceedings of the First Seattle Symposium in Biostatistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 123))

Abstract

The additive hazards regression model relates the conditional hazard function of the failure time linearly to the covariates. This formulation complements the familiar proportional hazards model in that it describes the association between the covariates and failure time in terms of the risk difference rather than the risk ratio. In this paper, we provide a closed-form semiparametric estimator for the (vector-valued) regression parameter of the additive hazards model with right-censored data, which is consistent and asymptotically normal with a simple variance estimator. We also demonstrate how the additive hazards framework can be used effectively to incorporate frailty and to handle interval-censored data, the resulting semiparametric inference procedures being much simpler than their counterparts under the proportional hazards framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalen, O.O. (1980). A model for nonparametric regression analysis of counting processes. In Lecture Notes in Statistics, Vol. 2, pp. 1–25. New York: Springer.

    Google Scholar 

  • Aalen, O. O. (1989). A linear regression model for the analysis of life times. Statist. Med., 8, 907–925.

    Article  Google Scholar 

  • Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a large sample study. Ann. Statist., 10, 1100–1120.

    Article  MathSciNet  MATH  Google Scholar 

  • Aranda-Ordaz, F. J. (1983). An extension of the proportional-hazards model for grouped data. Biometrics, 39, 109–117.

    Article  MathSciNet  MATH  Google Scholar 

  • Breslow, N. E. (1985). Cohort analysis in epidemiology. In A Celebration of Statistics, Eds. A. C. Atkinson and S. E. Fienberg. pp. 109–143. New York: Springer.

    Chapter  Google Scholar 

  • Breslow, N. E. and Day, N. E. (1980). Statistical Methods in Cancer Research, Vol. I, The Design and Analysis of Case-Control Studies. Lyon: IARC.

    Google Scholar 

  • Breslow, N. E. and Day, N. E. (1987). Statistical Methods in Cancer Research, Vol. II, The Design and Analysis of Cohort Studies. Lyon: IARC.

    Google Scholar 

  • Clayton, D. and Cuzick J. (1985). Multivariate generalizations of the proportional hazards model (with discussion). J. Roy. Statist. Soc. A, 148, 82–117.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R. (1972). Regression models and life-tables (with discussion). J. R. Statist. Soc. B, 34, 187–220.

    MATH  Google Scholar 

  • Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. London: Chapman and Hall.

    Google Scholar 

  • Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. New York: Wiley.

    MATH  Google Scholar 

  • Groeneboom, P. and Wellner, J.A. (1992). Information Bounds and Nonparametric Maximum Likelihood estimation. Basel: Birkhäuser Verlag.

    Book  MATH  Google Scholar 

  • Heckman, J.J. and Singer, B. (1982). Population heterogeneity in demographic models. In Multidimensional Mathematical Demography, Ch. 12, pp. 567–599, Eds. K. C. Land and A. Rogers. New York: Academic Press.

    Google Scholar 

  • Hougaard, P. (1987). Modelling multivariate survival. Scand. J. Statist., 14, 291–304.

    MathSciNet  MATH  Google Scholar 

  • Huang, J. (1996). Efficient estimation for the Cox model with interval censoring. Ann. Statist., 24, 540–568.

    Article  MathSciNet  MATH  Google Scholar 

  • Huffer, F. W. and McKeague, I. W. (1991). Weighted least squares estimation for Aalen’s additive risk model. J. Amer. Statist. Assoc, 86, 114–129.

    Article  Google Scholar 

  • Klein, R.W. and Spady, R.H. (1993). An efficient semiparametric estimator for binary response models. Econometrica, 61, 387–421.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, E.W., Wei, L.J. and Amato, D. (1992). Cox-type regression analysis for large number of small groups of correlated failure time observations. In Survival Analysis, State of the Art, Eds. J. P. Klein and P. K. Goel, pp. 237–247. Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lin, D. Y. and Ying, Z. (1994). Semiparametric analysis of the additive risk model. Biometrika, 81, 61–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, D.Y. and Ying, Z. (1995). Semiparametric analysis of general additive-multiplicative intensity models for counting processes. Ann. Statist., 23, 1712–1734.

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy, S. (1995). Asymptotic theory for the frailty model. Ann. Statist., 23, 182–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Nielsen, G.G., Gill, R.D., Andersen, P.K. and Sorensen, T.I.A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Statist., 19, 25–43.

    MathSciNet  MATH  Google Scholar 

  • Oakes, D. (1989). Bivariate survival models induced by frailties. J. Amer. Statist. Assoc, 84, 487–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Prentice, R. L. and Self, S. G. (1983). Asymptotic distribution theory for Cox-type regression models with general risk form. Ann. Statist., 11, 804–813.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabinowitz, D., Tsiatis, A. and Aragon, J. (1995). Regression with interval censored data. Biometrika, 82, 501–513.

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas, D. C. (1986). Use of auxiliary information in fitting nonproportional hazards models. In Modern Statistical Methods in Chronic Disease Epidemiology, Ed. S. H. Moolgavkar and R. L. Prentice, pp. 197–210. New York: Wiley.

    Google Scholar 

  • Turnbull, B.W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. J. Roy. Statist. Soc. Ser. B, 38, 290–295.

    MathSciNet  MATH  Google Scholar 

  • Wei, L. J., Lin, D. Y. and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Amer. Statist. Assoc, 84, 1065–1073.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Lin, D.Y., Ying, Z. (1997). Additive Hazards Regression Models for Survival Data. In: Lin, D.Y., Fleming, T.R. (eds) Proceedings of the First Seattle Symposium in Biostatistics. Lecture Notes in Statistics, vol 123. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-6316-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6316-3_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94992-5

  • Online ISBN: 978-1-4684-6316-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics