Skip to main content

Cell Movements in the Epiblast During Gastrulation and Neurulation in Avian Embryos

  • Chapter
Gastrulation

Part of the book series: Bodega Marine Laboratory Marine Science Series ((BMSS))

Abstract

In this essay, I will focus on both gastrulation and neurulation in avian embryos. The two processes are driven by similar cell behaviors: cell shape changes, cell division, and cell rearrangements. Since we have made considerable progress in understanding how these cell behaviors function in avian neurulation, perhaps more so than in gastrulation, I will draw heavily on this material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, I.S. and G.C. Schoenwolf. 1991. Patterns of neuroepithelial cell rearrangement during avian neurulation are established independently of notochordal inductive interactions. Dev. Biol. 143:78–92.

    PubMed  CAS  Google Scholar 

  • Bellairs, R. 1964. Biological aspects of the yolk of the hen’s egg. Adv. Morphog. 4:217–272.

    PubMed  CAS  Google Scholar 

  • Bellairs, R. 1986. The primitive streak. Anat. Embryol. 174:1–14.

    PubMed  CAS  Google Scholar 

  • Bellairs, R., F.W. Lorenz, and T. Dunlap. 1978. Cleavage in the chick embryo. J. Embryol. Exp. Morphol. 43:55–69.

    PubMed  CAS  Google Scholar 

  • Burnside, B. 1973. Microtubules and microfilaments in amphibian neurulation. Am. Zool. 13:989–1006.

    Google Scholar 

  • Callebaut, M. 1974. La formation de l’oocyte d’oiseau. Etude autoradiographique chez la caille japonaise pondeuse à l’aide de la leucine tritiée. Arch. Biol. 85:201–233.

    CAS  Google Scholar 

  • Callebaut, M. 1983. The constituent oocytal layers of the avian germ and the origin of the primordial germ cell yolk. Arch. Anat. Microsc. Morphol. Exp. 72:199–214.

    PubMed  CAS  Google Scholar 

  • Callebaut, M. 1985. Link between avian oogenesis and gastrulation: demonstration of a cytoplasmic pre-embryonic fate map by trypan blue induced fluorescence. IRCS Med. Sci. 13:711–712.

    Google Scholar 

  • Canning, D.R. and C.D. Stern. 1988. Changes in the expression of the carbohydrate epitope HKN-1 associated with mesoderm induction in the chick embryo. Development 104:643–655.

    PubMed  CAS  Google Scholar 

  • Chan, W.Y. and P.P.L. Tarn. 1988. A morphological and experimental study of the mesencephalic neural crest cells in the mouse embryo using wheat germ agglutinin-gold conjugate as the cell marker. Development 102:427–442.

    PubMed  CAS  Google Scholar 

  • Costanzo, R., R.L. Watterson, and G.C. Schoenwolf. 1982. Evidence that secondary neurulation occurs autonomously in the chick embryo. J. Exp. Zool. 219:233–240.

    PubMed  CAS  Google Scholar 

  • Criley, B.B. 1969. Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes. J. Morphol. 128:465–501.

    PubMed  CAS  Google Scholar 

  • Dias, M.S. and G.C. Schoenwolf. 1990. Formation of ectopic neurepithelium in chick blastoderms: Age-related capacities for induction and self-differentiation following transplantation of quail Hensen’s nodes. Anat. Rec. 229:437–448.

    Google Scholar 

  • Dodd, J. and T.M. Jessell. 1988. Axon guidance and the patterning of neuronal projections in vertebrates. Science 242:692–699.

    PubMed  CAS  Google Scholar 

  • Dryden, R. J. 1980. Spina bifida in chick embryos: Ultrastructure of open neural defects in the transitional region between primary and secondary modes of neural tube formation, p. 75–100. In: Advances in the Study of Birth Defects. T.V.N. Persaud (Ed.). MTP Press Ltd., Lancaster.

    Google Scholar 

  • Erickson, C.A. and J.A. Weston. 1983. An SEM analysis of neural crest migration in the mouse. J. Embryol Exp. Morphol. 74:97–118.

    PubMed  CAS  Google Scholar 

  • Eyal-Giladi, H. and S. Kochav. 1976. From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev. Biol. 49:321–337.

    PubMed  CAS  Google Scholar 

  • Fraser, S., R. Keynes, and A. Lumsden. 1990. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435.

    PubMed  CAS  Google Scholar 

  • Gallera, J. 1971. Primary induction in birds. Adv. Morphog. 9:149–180.

    PubMed  CAS  Google Scholar 

  • Gordon, R. 1985. A review of the theories of vertebrate neurulation and their relationship to the mechanics of neural tube birth defects. J. Embryol. Exp. Morphol. Suppl. 89:229–255.

    Google Scholar 

  • Griffith, C.M. and M.J. Wiley. 1990. Distribution of cell surface glycoconjugates during chick secondary neurulation. Anat. Rec. 226:81–90.

    PubMed  CAS  Google Scholar 

  • Gurdon, J.B. 1987. Embryonic induction—molecular prospects. Development 99:285–306.

    PubMed  CAS  Google Scholar 

  • Hamburger, V. and H.L. Hamilton. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92.

    Google Scholar 

  • Harrisson, F. 1989. The extracellular matrix and cell surface, mediators of cell interactions in chicken gastrulation. Int. J. Dev. Biol. 33:417–438.

    PubMed  CAS  Google Scholar 

  • Holmdahl, D.E. 1925a. Die erste Entwicklung des Körpers bei den Vögeln und Säugetieren, inkl. dem Menschen, besonders mit Rücksicht auf die Bildung des Rückenmarks, des Zöloms und der entodermalen Kloake nebst einem Exkurs über die Entstehung der Spina bifida in der Lumbosakralregion. Gegenbaurs Morphol. Jahrb. I. 54:333–384.

    Google Scholar 

  • Holmdahl, D.E. 1925b. Experimentelle Untersuchungen über die Lage der Grenze zwischen primarer und sekundarer Körperentwicklung beim Huhn. Anat. Anz. 59:393–396.

    Google Scholar 

  • Jacobson, A.G. 1980. Computer modeling of morphogenesis. Am. Zool. 20:669–677.

    Google Scholar 

  • Jacobson, A.G. 1981. Morphogenesis of the neural plate and tube. p. 233–263. In: Morphogenesis and Pattern Formation. T.G. Connelly, L.L. Brinkley, and B.M. Carlson (Eds.). Raven Press, New York.

    Google Scholar 

  • Jacobson, A.G., G.F. Oster, G.M. Odell, and L.Y. Cheng. 1986. Neurulation and the cortical tractor model for epithelial folding. J. Embryol. Exp. Morphol. 96:19–49.

    PubMed  CAS  Google Scholar 

  • Jacobson, C.-O. and T. Ebendal (Eds.). 1978. Formshaping Movements in Neurogenesis.Almqvist & Wiksell International, Stockholm.

    Google Scholar 

  • Jaffe, L.F. and C.D. Stern. 1979. Strong electrical currents leave the primitive streak region of chick embryos. Science 206:569–571.

    PubMed  CAS  Google Scholar 

  • Jessell, T.M., P. Bovolenta, M. Placzek, M. Tessier-Lavigne, and J. Dodd. 1989. Polarity and patterning in the neural tube: the origin and function of the floor plate, p. 257–282. In: Cellular Basis of Morphogenesis, Ciba Foundation Symposium. Wiley, Chichester.

    Google Scholar 

  • Karfunkel, P. 1974. The mechanisms of neural tube formation. Int. Rev. Cytol. 38:245–271.

    PubMed  CAS  Google Scholar 

  • Keller, R.E. 1975. Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42:222–241.

    PubMed  CAS  Google Scholar 

  • Keller, R.E. 1978. Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. J. Morphol. 157:223–247.

    Google Scholar 

  • Keller, R.E. 1980. The cellular basis of epiboly: An SEM study of deep cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morphol. 60:201–234.

    PubMed  CAS  Google Scholar 

  • Kochav, S. and H. Eyal-Giladi. 1971. Bilateral symmetry in chick embryo determination by gravity. Science 171:1027–1029.

    PubMed  CAS  Google Scholar 

  • Kochav, S., M. Ginsburg, and H. Eyal-Giladi. 1980. From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. II. Microscopic anatomy and cell population dynamics. Dev. Biol. 79:296–308.

    PubMed  CAS  Google Scholar 

  • Langman, J., R.L. Guerrant, and B.G. Freeman. 1966. Behavior of neuro-epithelial cells during closure of the neural tube. J. Comp. Neurol. 127:399–412.

    PubMed  CAS  Google Scholar 

  • LeDouarin, N.M. 1973. A Feulgen-positive nucleolus. Exp. Cell Res. 77:459–468.

    CAS  Google Scholar 

  • LeDouarin, N.M. 1982. The Neural Crest. Cambridge University Press, London.

    Google Scholar 

  • Lee, H.-Y., R.G. Nagele, and G.W. Kalmus. 1976a. Further studies on neural tube defects caused by Concanavalin A in early chick embryos. Experientia 32:1050–1052.

    PubMed  CAS  Google Scholar 

  • Lee, H.-Y., J.B. Sheffield, R.G. Nagele, and G.W. Kalmus. 1976b. The role of extracellular material in chick neurulation. I. Effects of Concanavalin A. J. Exp. Zool. 198:261–266.

    PubMed  CAS  Google Scholar 

  • Mak, L.L. 1978. Ultrastructural studies of amphibian neural fold fusion. Dev. Biol. 65:435–446.

    PubMed  CAS  Google Scholar 

  • Martin, A. and J. Langman. 1965. The development of the spinal cord examined by autoradiography. J. Embryol Exp. Morphol. 14:25–35.

    PubMed  CAS  Google Scholar 

  • Martins-Green, M. 1988. Origin of the dorsal surface of the neural tube by progressive delamination of epidermal ectoderm and neuroepithelium: Implications for neurulation and neural tube defects. Development 103:687–706.

    PubMed  CAS  Google Scholar 

  • Moran, D. and R.W. Rice. 1975. An ultrastructural examination of the role of cell membrane surface coat material during neurulation. J. Cell Biol. 64:172–181.

    PubMed  CAS  Google Scholar 

  • Nalbandov, A.V. and M.F. James. 1949. The blood-vascular system of the chicken ovary. Am. J. Anat. 85:347–378.

    PubMed  CAS  Google Scholar 

  • New, D.A.T. 1956. The formation of sub-blastodermic fluid in hens’ eggs. J. Embryol. Exp. Morphol. 4:221–227.

    Google Scholar 

  • Nichols, D.H. 1981. Neural crest formation in the head of the mouse embryo as observed using a new histological technique. J. Embryol. Exp. Morphol. 64:105–120.

    PubMed  CAS  Google Scholar 

  • Nicolet, G. 1970. Analyse autoradiographique de la localisation des différentes ébauches présomptives dans la ligne primitive de l’embryon de Poulet. J. Embryol. Exp. Morphol. 23:79–108.

    Google Scholar 

  • Nicolet, G. 1971. Avian gastrulation. Adv. Morphog. 9:231–262.

    PubMed  CAS  Google Scholar 

  • Ooi, V.E.C., E.J. Sanders, and R. Bellairs. 1986. The contribution of the primitive streak to the somites in the avian embryo. J. Embryol. Exp. Morphol. 92:193–206.

    PubMed  CAS  Google Scholar 

  • O’Shea, S. 1981. The cytoskeleton in neurulation: Role of cations, p. 35–60. In: Progress in Anatomy. R.J. Harrison (Ed.). Cambridge University Press, London.

    Google Scholar 

  • Penner, P.L. and I. Brick. 1984. Acetylcholinesterase and polyingression in the epiblast of the primitive streak chick embryo. Wilhelm Roux’s Arch. Dev. Biol. 193:234–241.

    Google Scholar 

  • Placzek, M., M. Tessier-Lavigne, T. Yamada, T. Jessell, and J. Dodd. 1991. Mesodermal control of neural cell identity: Floor plate induction by the notochord. Science 250:985–988.

    Google Scholar 

  • Rice, R.W. and D.J. Moran. 1977. A scanning electron microscope and X-ray microanalytic study of cell surface material during amphibian neurulation. J. Exp. Zool. 201:471–478.

    PubMed  CAS  Google Scholar 

  • Rosenquist, G.C. 1966. A radioautographic study of labeled grafts in the chick blastoderm. Development from primitive-streak stages to stage 12. Carnegie Inst. Wash. Contrib. Embryol. 38:31–110.

    Google Scholar 

  • Sadler, T.W. 1978. Distribution of surface coat material on fusing neural folds of mouse embryos during neurulation. Anat. Rec. 191:345–350.

    PubMed  CAS  Google Scholar 

  • Sanders, E.J., M.K. Khare, V.C. Ooi, and R. Bellairs. 1986. An experimental and morphological analysis of the tail bud mesenchyme of the chick embryo. Anat. Embryol. 174:179–185.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. 1977. Tail (end) bud contributions to the posterior region of the chick embryo. J. Exp. Zool. 201:227–246.

    Google Scholar 

  • Schoenwolf, G.C. 1978a. Effects of complete tail bud extirpation on early development of the posterior region of the chick embryo. Anat. Rec. 192:289–296.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. 1978b. An SEM study of posterior spinal cord development in the chick embryo. Scanning Electron Microsc. 1978/II:739–746.

    Google Scholar 

  • Schoenwolf, G.C. 1979a. Histological and ultrastructural observations of tail bud formation in the chick embryo. Anat. Rec. 193:131–148.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. 1979b. Observations on closure of the neuropores in the chick embryo. Am. J. Anat. 155:445–466.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. 1982. On the morphogenesis of the early rudiments of the developing central nervous system. Scanning Electron Microsc. 1982/I:289–308.

    Google Scholar 

  • Schoenwolf, G.C. 1983. The chick epiblast: A model for examining epithelial morphogenesis. Scanning Electron Microsc. 1983/III:1371–1385.

    Google Scholar 

  • Schoenwolf, G.C. 1985. Shaping and bending of the avian neuroepithelium: Morphometric analyses. Dev. Biol. 109:127–139.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. 1988. Microsurgical analyses of avian neurulation: Separation of medial and lateral tissues. J. Comp. Neurol. 276:498–507.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. 1991. Neurepithelial cell behavior during avian neurulation. In: Cell-Cell Interactions in Early Development. J. Gerhart (Ed.). Alan R. Liss, Inc., New York. In press.

    Google Scholar 

  • Schoenwolf, G.C. and I.S. Alvarez. 1989. Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development 106:427–439.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C, H. Bortier, and L. Vakaet. 1989a. Fate mapping the avian neural plate with quail/chick chimeras: Origin of prospective median wedge cells. J. Exp. Zool. 249:271–278.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C, N.B. Chandler, and J. Smith. 1985. Analysis of the origins and early fates of neural crest cells in caudal regions of avian embryos. Dev. Biol. 110:467–479.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and J. DeLongo. 1980. Ultrastructure of secondary neurulation in the chick embryo. Am. J. Anat. 158:43–63.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C, S. Everaert, H. Bortier, and L. Vakaet. 1989b. Neural plate- and neural tube-forming potential of isolated epiblast areas in avian embryos. Anat. Embryol. 179:541–549.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and M.V. Franks. 1984. Quantitative analyses of changes in cell shapes during bending of the avian neural plate. Dev. Biol. 105:257–272.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and R.O. Kelley. 1980. Characterization of intercellular junctions in the caudal portion of the developing neural tube of the chick embryo. Am. J. Anat. 158:29–41.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and D.H. Nichols. 1984. Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos. J. Comp. Neurol. 222:496–505.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and M.L. Powers. 1987. Shaping of the chick neuroepithelium during primary and secondary neurulation: Role of cell elongation. Anat. Rec. 218:182–195.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and P. Sheard. 1989. Shaping and bending of the avian neural plate as analysed with a fluorescent-histochemical marker. Development 105:17–25.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and P. Sheard. 1990. Fate mapping the avian epiblast with focal injections of a fluorescent-histochemical marker: Ectodermal derivatives. J. Exp. Zool. 255:323–339.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and J.L. Smith. 1990a. Epithelial cell wedging: A fundamental cell behavior contributing to hinge point formation during epithelial morphogenesis. In: Control of Morphogenesis by Specific Cell Behaviors. R.E. Keller and D. Fristrom (Eds.). W.B. Saunders Co., London. 1:325–334.

    Google Scholar 

  • Schoenwolf, G.C. and J.L. Smith. 1990b. Mechanisms of neurulation: Traditional viewpoint and recent advances. Development 109:243–270.

    PubMed  CAS  Google Scholar 

  • Schroeder, T.E. 1970. Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J. Embryol. Exp. Morphol. 23:427–462.

    PubMed  CAS  Google Scholar 

  • Silver, M.H. and J.M. Kerns. 1978. Ultrastructure of neural fold fusion in chick embryos. Scanning Electron Microsc. 1978/II:209–215.

    Google Scholar 

  • Smith, J.L. and G.C. Schoenwolf. 1987. Cell cycle and neuroepithelial cell shape during bending of the chick neural plate. Anat. Rec. 218:196–206.

    PubMed  CAS  Google Scholar 

  • Smith, J.L. and G.C. Schoenwolf. 1988. Role of cell-cycle in regulating neuroepithelial cell shape during bending of the chick neural plate. Cell Tissue Res. 252:491–500.

    PubMed  CAS  Google Scholar 

  • Smith, J.L. and G.C. Schoenwolf. 1989. Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J. Exp. Zool. 250:49–62.

    PubMed  CAS  Google Scholar 

  • Smith, J.L. and G.C. Schoenwolf. 1991. Further evidence of extrinsic forces in bending of the neural plate. J. Comp. Neurol. 307:225–236.

    PubMed  CAS  Google Scholar 

  • Smits-van Prooije, A.E., R.E. Poelmann, A.F. Gesink, M.J. van Groeningen, and C. Vermeij-Keers. 1986. The cell surface coat in neurulating mouse and rat embryos, studied with lectins. Anat. Embryol. 175:111–117.

    PubMed  CAS  Google Scholar 

  • Spemann, H. 1938. Embryonic Development and Induction. Yale University Press, New Haven.

    Google Scholar 

  • Spratt, N.T., Jr. 1942. Location of organ-specific regions and their relationship to the development of the primitive streak in the early chick blastoderm. J. Exp. Zool. 89:69–101.

    Google Scholar 

  • Spratt, N.T., Jr. 1952. Localization of the prospective neural plate in the early chick blastoderm. J. Exp. Zool. 120:109–130.

    Google Scholar 

  • Spratt, NT., Jr. 1955. Analysis of the organizer center in the early chick embryo. I. Localization of prospective notochord and somite cells. J. Exp. Zool. 128:121–164.

    Google Scholar 

  • Spratt, N.T., Jr. 1963. Role of substratum, supracellular continuity, and differential growth in morphogenetic cell movements. Dev. Biol. 7:51–63.

    PubMed  Google Scholar 

  • Spratt, N.T., Jr. and H. Haas. 1960a. Importance of morphogenetic movements in the lower surface of the young chick blastoderm. J. Exp. Zool. 144:257–276.

    Google Scholar 

  • Spratt, N.T., Jr. and H. Haas. 1960b. Morphogenetic movements in the lower surface of the unincubated and early chick blastoderm. J. Exp. Zool. 144:139–157.

    Google Scholar 

  • Stern, C.D. 1990. The marginal zone and its contribution to the hypoblast and primitive streak of the chick embryo. Development 109:667–682.

    PubMed  CAS  Google Scholar 

  • Stern, C. 1991. Mesoderm Formation in the Chick Embryo, Revisited, p. 29–42. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark Jr., F. Griffin (Eds.). Plenum Press, New York.

    Google Scholar 

  • Stern, C.D. and D.R. Canning. 1988. Gastrulation in birds: A model system for the study of animal morphogenesis. Experientia 44:651–657.

    PubMed  CAS  Google Scholar 

  • Stern, C.D. and D.R. Canning. 1990. Origin of cells giving rise to mesoderm and endoderm in chick embryo. Nature 343:273–275.

    PubMed  CAS  Google Scholar 

  • Stern, C.D. and D.O. MacKenzie. 1983. Sodium transport and the control of epiblast polarity in the early chick embryo. J. Embryol. Exp. Morphol. 77:73–98.

    PubMed  CAS  Google Scholar 

  • Stern, C.D., S. Manning, and J.I. Gillespie. 1985. Fluid transport across the epiblast of the early chick embryo. J. Embryol. Exp. Morphol. 88:365–384.

    PubMed  CAS  Google Scholar 

  • Takahashi, H. 1988. Changes in peanut lectin binding sites on the neuroectoderm during neural tube formation in the bantam chick embryo. Anat. Embryol. 178:353–358.

    PubMed  CAS  Google Scholar 

  • Takahashi, H. and R.I. Howes. 1986. Binding pattern of ferritin-labeled lectins (RCA1 and WGA) during neural tube closure in the bantam embryo. Anat. Embryol. 174:283–288.

    PubMed  CAS  Google Scholar 

  • Tan, S.S. and G. Morriss-Kay. 1985. The development and distribution of cranial neural crest in the rat embryo. Cell Tissue Res. 240:403–416.

    PubMed  CAS  Google Scholar 

  • Vakaet, L. 1962. Some new data concerning the formation of the definitive endoblast in the chick embryo. J. Embryol. Exp. Morphol. 10:38–57.

    PubMed  CAS  Google Scholar 

  • Vakaet, L. 1970. Cinephotomicrographic investigations of gastrulation in the chick blastoderm. Arch. Biol. 81:387–426.

    CAS  Google Scholar 

  • Vakaet, L. 1984. Early development of birds, p. 71–88. In: Chimeras in Developmental Biology. N. LeDouarin and A. McLaren (Eds.). Academic Press, London.

    Google Scholar 

  • Vakaet, L. 1985. Morphogenetic movements and fate maps in the avian blastoderm, p. 99–109. In: Molecular Determinants of Animal Form. G.M. Edelman (Ed.). Alan R. Liss, New York.

    Google Scholar 

  • van Straaten, H.W.M., J.W.M. Hekking, E.J.L.M. Wiertz-Hoessels, F. Thors, and J. Drukker. 1988. Effect of the notochord on the differentiation of a floor plate area in the neural tube of the chick embryo. Anat. Embryol. 177:317–324.

    PubMed  Google Scholar 

  • Veini, M. and K. Hara. 1975. Changes in the differentiation tendencies of the hypoblast-free Hensen’s node during “gastrulation” in the chick embryo. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 177:89–100.

    Google Scholar 

  • Waterman, R.E. 1975. SEM observations of surface alterations associated with neural tube closure in the mouse and hamster. Anat. Rec. 183:95–98.

    PubMed  CAS  Google Scholar 

  • Waterman, R.E. 1976. Topographical changes along the neural fold associated with neurulation in the hamster and mouse. Am. J. Anat. 146:151–172.

    PubMed  CAS  Google Scholar 

  • Weinberger, C. and I. Brick. 1982a. Primary hypoblast development in the chick. I. Scanning electron microscopy of normal development. Wilhelm Roux’s Arch. Dev. Biol. 191:119–126.

    Google Scholar 

  • Weinberger, C. and I. Brick. 1982b. Primary hypoblast development in the chick. II. The role of cell division. Wilhelm Roux’s Arch. Dev. Biol. 191:127–133.

    Google Scholar 

  • Weinberger, C, P.L. Penner, and I. Brick. 1984. Polyingression, an important morphogenetic movement in chick gastrulation. Am. Zool. 24:545–554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Schoenwolf, G.C. (1991). Cell Movements in the Epiblast During Gastrulation and Neurulation in Avian Embryos. In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics