Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 314))

Abstract

In most instances when the host is asked to mount a specific immune response, the initial event or the subsequent response, or both, are associated with non-specific inflammation. In recent years, with the identification of numerous molecular and cellular components of the inflammatory response, investigators have initiated studies of potential interactions between the latter and the protagonists of more specific immunological reactions. In particular, soluble mediators of inflammation, produced by phagocytes, endothelial cells or nerves have been studied in regard to their possible modulation of lymphocyte and monocyte-macrophage functions. In the present chapter, we will focus on a group of lipid molecules, the leukotrienes (LTs) and platelet-activating factor (PAF), and their potential role in modulation of the immune response at the cytokine level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Borgeat, and B. Samuelsson, Metabolism of arachidonic acid in polymorphonuclear leukocytes: unstable intermediate in formation of dihydro acids. Proc, Natl Acad. Sri, V.SA 76: 3213(1979).

    Article  CAS  Google Scholar 

  2. P. Sirois, and P. Borgeat, Leukotrienes: a new approach to the biochemistry of hypersensitivity. Surv. Immunol. Res. 1: 279 (1982).

    PubMed  CAS  Google Scholar 

  3. P. Borgeat, and B. Samuelsson, Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes: formation of a novel dihydro-eicosa-tetraenoic acid. J. Biol. Chem. 254: 2643 (1979).

    PubMed  CAS  Google Scholar 

  4. A.W. Ford-Hutchinson, M.A. Bray, M.V. Doig, M.E. Shipley, and M.J.H. Smith, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leucocytes. Nature 286: 264 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. J. Palmblad, C.L. Malmsten, A.M. Uden, K.O. Radmar, L. Engstedt, and B. Samuelsson, Leukotriene B4 is a potent stereospecific stimulator of neutrophil Chemotaxis and adherence. Blood 58: 658 (1981).

    PubMed  CAS  Google Scholar 

  6. H.J. Showell, P.H. Naccache, P. Borgeat, S. Picard, P. Valerand, E.L. Becker, and R.I. Sha’afi, Characterization of the secretory activity of LTB4 toward rabbit neutrophils. J. Immunol. 128: 811 (1982).

    PubMed  CAS  Google Scholar 

  7. D.A. Bass, M.J. Thomas, E.J. Goetzl, E.R. DeChatelet, and C.E. McCall, Lipoxygenase-derived products of arachidonic acid mediate stimulation of hexose uptake in human polymorphonuclear leukocytes. Biochem. Biophys. Res. Commun. 100: 1 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. M.A. Bray, A.W. Ford-Hutchinson, and M.J.H. Smith, Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins 22: 213 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. T.F.P. Molski, P.H. Naccache, P. Borgeat, and R.I. Sha’afi, Similarities in the mechanisms by which formylmethionyl-leucyl-phenylalanine, arachidonic acid and leukotriene B4 increase calcium and sodium influxes in rabbit neutrophils. Biochem. Biophys. Res. Commun. 103: 227 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. D.P. Lew, J.-M. Dayer, C.B. Wollheim, and T. Pozzan, Effect of leukotriene B4 and arachidonic acid on cytosolic-free calcium in human neutrophils. FEBS Lett. 166: 44 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. D.W. Goldman, L.A. Gifford, D.M. Olson, and E.J. Goetzl, Transduction by leukotriene B4 receptors of increases in cytosolic calcium in human polymorphonuclear leukocytes. J. Immunol. 135: 525(1985).

    PubMed  CAS  Google Scholar 

  12. T. Andersson, W. Schlegel, A. Monod, K.-H. Krause, O. Stendahl, and D.P. Lew, Leukotriene B4 stimulation of phagocytes results in the formation of inositol 1, 4, 5-trisphosphate. Biochem. J., 240: 333 (1986).

    PubMed  CAS  Google Scholar 

  13. S. Mong, G. Chi-Rosso, J. Miller, K. Hoffman, K.A. Raggaitis, P. Bender, and S.T. Crooke, Leukotriene B4 induces formation of inositol phosphates in rat peritoneal polymorphonuclear leukocytes. Mol. Pharmacol. 30: 235 (1986).

    PubMed  CAS  Google Scholar 

  14. A.O. Fels, N.A. Pawlowski, E.B. Cramer, T.K. King, A.Z. Cohen, and W.A. Scott, Human alveolar macrophages produce leukotriene B4. Proc. Natl. Acad. Sci. USA 79: 7866 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. P.A.J. Hewricks, M.E. VanDertol, F. Engels, F.P. Nijkamp and J. Verhoef, Human polymorphonuclear leukocytes release leukotriene B4 during phagocytosis of staphylococus aureus. Inflammation 10: 37 (1986).

    Article  Google Scholar 

  16. N.R. Ferreri, W.C. Howland and H.L. Spiegelberg, Release of leukotrienes C4 and B4 and prostaglandin E2 from human monocytes stimulated with aggregated IgG, IgA and IgE. J. Immunol. 136: 4188 (1986).

    PubMed  CAS  Google Scholar 

  17. Dubois, C, Bissonnette, E., Rola-Pleszczynski, M.: Asbestos fibers and silica particles stimulate rat alveolar macrophages to release TNF; autoregulatory role of leukotriene B4. Am. Rev. Resp. Dis., 139: 1257–1264 (1989).

    PubMed  CAS  Google Scholar 

  18. J. Maclouf, B. Fruteau de Laclos, and P. Borgeat, Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroperoxy-icosatetraenoic acid. Proc. Natl. Acad. Sci. USA. 79: 6042 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. F.H. Chilton, J.T. O’Flaherty, C.E. Walsh, M.J. Thomas, R.L. Wykle, L.R. DeChatelet, and B.M. Waite, Stimulation of the lipoxygenase pathway in polymorphonuclear leukocytes by l-0-alkyl-2-0-acetyl-SN-glycero-3-phosphocholine. J. Biol. Chem. 257: 5402 (1982).

    PubMed  CAS  Google Scholar 

  20. A.H. Lin, D.R. Morton, and R.R. Gorman, Acetyl glyceryl ether phosphorylcholine stimulates leukotriene B4 synthesis in human polymorphonuclear leukocytes. J. Clin. Invest., 70: 1058 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. M.E. Goldyne, G.F. Burrish, P. Poubelle, and P. Borgeat, Arachidonic acid metabolism among human mononuclear leukocytes. Lipoxygenase related pathways. J. Biol. Chem. 259: 8815 (1984).

    PubMed  CAS  Google Scholar 

  22. P. Poubelle, P. Borgeat, and M. Rola-Pleszczynski, Assessment of leukotriene B4 synthesis in human lymphocytes using high performance liquid chromatography and radioimmunoassay methods. J. Immunol. 139: 1273 (1987).

    PubMed  CAS  Google Scholar 

  23. M.E. Goldyne, and L. Rea, Stimulated T cell and natural killer (NK) cell lines fail to synthesize leukotriene B4. Prostaglandins 34: 783 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. E.J. Goetzl, Selective feed-back inhibition of the 5-lipoxygenation of arachidonic acid in human T-lymphocytes. Biochem. Biophys. Res. Commun., 1901: 344 (1981).

    Article  Google Scholar 

  25. D. Atluru, E.A. Lianos, J.S. Goodwin, Arachidonic acid inhibits 5-lipoxygenase in human T cells. Biochem. Biophys. Res. Commun. 135: 670 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. B. Odlander, P.-J. Jakobsson, A. Rosen, and H.-E. Claesson, Human B and T lymphocytes convert leukotriene A4 into leukotriene B4. Biochem. Biophys. Res. Commun. 153: 203 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. J.L. Ambrus, C.H. Jurgensen, N.L. Witzel, R.A. Lewis, J.L. Butler, and A.S. Fauci, Leukotriene C4 produced by a human T-T hybridoma suppresses Ig production by human lymphocytes. J. Immunol. 140: 2382 (1988).

    PubMed  CAS  Google Scholar 

  28. E.M. Davidson, S.A. Rae, and M.J.H. Smith, Leukotriene B4 in synovial fluid. J. Pharm. Pharmacol. 34: 410 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. S.D. Brain, R.D.R. Camp, P.M. Dowd, A.K. Black, P.M. Woolard, A.I. Mallet, and M.W. Greaves, Psoriasis and leukotriene B4. Lancet 2: 762 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. Y. Kikawa, Y. Shigematsu, and M. Sudo, Leukotriene B4 and 20-OH-LTB4 in purulent peritoneal exudates demonstrated by GC-MS. Prostagl. Leukotr. Med. 23: 85 (1986).

    Article  CAS  Google Scholar 

  31. P. Sharon, and W.F. Stenson, Production of leukotrienes by colonic mucosa from patients with inflammatory bowel disease. Gastroenterol 84: 1306 (1983).

    Google Scholar 

  32. R.D. Zipser, C.C. Nast, M. Lee, H.W. Kao, and R. Duke, In vivo production of leukotriene B4 and leukotriene C4 in rabbit colitis. Gastroenterol. 92: 33 (1987).

    CAS  Google Scholar 

  33. F.H. Chilton, J.M. Ellis, S.C. Olson, and R.L. Wykle. l-0-alkyl-2-arachidonyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes. J. Biol. Chem. 259: 12014 (1984).

    PubMed  CAS  Google Scholar 

  34. P. Braquet, L. Touqui, T.Y. Shen, and B.B. Vargaftig. Perspectives in platelet activating factor research. Pharmacol. Review 39: 97 (1987).

    CAS  Google Scholar 

  35. E. Jouvin-Marche, E. Ninio, G. Beauvain, M. Tence, P. Niaudet and J. Benveniste. Biosynthesis of PAF-acether (platelet-activating factor). VII. Precursors of PAF-acether and acetyl-transferase activity in human leukocytes. J. Immunol. 133: 892 (1984).

    PubMed  CAS  Google Scholar 

  36. F. Bussolino, R. Foa, F. Malavasi, M.L. Ferrando, and G. Camussi. Release of platelet-activating factor (PAF)-like material from human lymphoid cell lines. Exp. Haematol. 12: 688 (1984).

    CAS  Google Scholar 

  37. F. Malavasi, C. Tetta, A. Funaro, G. Bellone, E. Ferrero, and F. Caligaris-Cappio. Fc receptor triggering induces expression of surface activation antigens and release of platelet-activating factor in large granular lymphocytes. Proc. Natl. Acad. Sci. (USA), 83: 2443(1986).

    Article  PubMed  CAS  Google Scholar 

  38. M. Rola-Pleszczynski, Immunoregulation by leukotrienes and other lipoxygenase metabolites. Immunol. Today 6: 302 (1985).

    Article  CAS  Google Scholar 

  39. P. Braquet, M. Rola-Pleszczynski. Platelet-activating factor and cellular immune responses. Immunol. Today. 8: 345 (1987).

    Article  CAS  Google Scholar 

  40. C.A. Dinarello, I. Bishai, L.J. Rosenwasser and F. Coceani. The influence of lipoxygenase inhibitors on the in vitro production of human leukocytic pyrogen and lymphocyte activating factor (interleukin 1). Int. J. Immunopharmacol. 1: 43 (1984).

    Article  Google Scholar 

  41. M. Rola-Pleszczynski and I. Lemaire. Leukotrienes augment interleukin 1 production by human monocytes. J. Immunol. 135: 3958(1985).

    PubMed  CAS  Google Scholar 

  42. M. Rola-Pleszczynski, L. Bouvrette, D. Gingras and M. Girard. Identification of interferon-γ as the lymphokine that mediates leukotriene B4-induced immunoregulation. J. Immunol. 139: 513 (1987).

    PubMed  CAS  Google Scholar 

  43. P. Poubelle, J. Stankova, J. Grassi, M. Rola-Pleszczynski. Leukotriene B4 up-regulates IL-6 rather than IL-1 synthesis in human monocytes. Agents and Actions, in press, 1991.

    Google Scholar 

  44. L. Gagnon, L. Fillion, C. Dubois, and M. Rola-Pleszczynski. Leukotrienes and macrophage activation: augmented cytotoxic activity and enhanced interleukin 1, tumor necrosis factor and hydrogen peroxide production. Agents and Actions, 26: 141 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. L. Gagnon, L.G. Filion, M. Rola-Pleszczynski. Enhanced production of tumor necrosis factor (TNF)-α by human monocytes exposed to leukotriene B4. Int. J. Immunopathol. Pharmacol. 2: 155 (1989).

    Google Scholar 

  46. M. Rola-Pleszczynski, P.-A. Chavaillaz, and I. Lemaire. Stimulation of interleukin 2 and interferon-γ production by leukotriene B4 in human lymphocyte cultures. Prostagl. Leukotr. Med. 23: 207 (1986).

    Article  CAS  Google Scholar 

  47. M. Rola-Pleszczynski, L. Gagnon, and P.-A. Chavaillaz. Immune regulation by leukotriene B4. in: “Biology of the leukotrienes.”, R. Levi and R.D. Krell, eds., Ann. N.Y. Acad. Sci., 524: 218 (1988).

    Google Scholar 

  48. H.M. Johnson, and B.A. Torres. Leukotrienes, positive signals for regulation of interferon-production. J. Immunol., 132: 413 (1984).

    PubMed  CAS  Google Scholar 

  49. W.L. Farrar, and J.L. Humes. The role of arachidonic acid metabolism in the activities of interleukin 1 and 2. J. Immunol. 135: 1153 (1985).

    PubMed  CAS  Google Scholar 

  50. H.-P. Hartung. Acetyl glyceryl ether phosphoryl-choline (platelet-activating factor) mediates heightened metabolic activity in macrophages. Studies on PGE1, TXA2 and O2 production, spreading and the influence of calmodulin inhibitor W-7. FEBS Lett. 160: 209 (1983).

    Article  PubMed  CAS  Google Scholar 

  51. Y.-S. Ho, W.M.F. Lee, and R. Snyderman. Chemoattractant-induced activation of c-fos gene expression in human monocytes. J. Exp. Med. 165: 1524 (1987).

    Article  PubMed  CAS  Google Scholar 

  52. H. Homma, D.J. Hanahan. Attenuation of platelet-activating factor (PAF)-induced stimulation of rabbit platelet GTPase by phorbol ester, dibutyryl cAMP, and desensitisation: concomitant effects on PAF receptor binding characteristics. Arch. Biochem. Biophys. 262: 32(1988).

    Article  PubMed  CAS  Google Scholar 

  53. M. Bachelet, M.J.P. Adolfs, J. Masliah, G. Bereziat, B.B. Vargaftig, and I.L. Bonta. Interaction between PAF-acether and drugs that stimulate cyclic AMP in guinea-pig alveolar macrophages. Eur. J. Pharmacol. 149: 73 (1988).

    Article  PubMed  CAS  Google Scholar 

  54. G. Barzaghi, and S. Mong. Platelet-activating factor (PAF) stimulates a phospholipase C(PLC) in differentiated human monocytic leukemia (U-937) cells, resulted in phosphoinositide (PI) hydrolysis and intracellular calcium mobilization. Prostaglandins 35: 819 (1988).

    Article  Google Scholar 

  55. S. Hopple, R. Meurer, J. Westwick, and D.E. MacIntyre. PAF-induced Ca2+ flux and formation of inositol tris-and tetrakis-phosphates in U937 cells. FASEB J 2: A415 (1988).

    Google Scholar 

  56. V. Prpic, R.J. Uhing, J.E. Weiel, L. Jakoi, G. Gawdi, B. Herman, and D.O. Adams. Biochemical and functional responses stimulated by platelet-activating factor in murine peritoneal macrophages. J. Cell. Biol. 107: 363 (1988).

    Article  PubMed  CAS  Google Scholar 

  57. F. Bussolino, F. Turrini, E. Fischer, D. Alessi, M.D. Kazatchkine, and P. Arese. PAF enhances erythrophagocytic activity of human monocytes by the protein kinase C dependent phosphorylation of C36 receptor (CR1). Role of PAF receptor antagonists. Prostaglandins 35: 803(1988).

    Article  Google Scholar 

  58. B. Pignol, S. Hénane, J.-M. Mencia-Huerta, M. Rola-Pleszczynski, and P. Braquet. Effect of platelet-activating factor (PAF-acether) and its specific receptor antagonist, BN 52021, on interleukin 1 (IL 1) release and synthesis by rat spleen adherent monocytes. Prostaglandins, 33: 931 (1987).

    Article  PubMed  CAS  Google Scholar 

  59. B. Pignol, S. Hénane, B. Sorlin, B. M. Rola-Pleszczynski, J.-M. Mencia-Huerta, P Braquet. Effect of long-term treatment with platelet-activating factor on IL 1 and IL 2 production by rat spleen cells. J. Immunol. 145: 980 (1990).

    PubMed  CAS  Google Scholar 

  60. M.L. Barrett, G.P. Lewis, S. Ward, and J. Westwick. Plateletactivating factor induces interleukin 1 production from human adherent macrophages. Br. J. Pharmacol. 90: 113P (1987).

    Google Scholar 

  61. P. Salem, S. Derickx, A. Dulioust, E. Vivier Y. Denizot, C. Damais, C. Dinarello, Y. Thomas. Immunoregulatory functions of paf-acether. Enhancement of IL 1 production by muramyl dipeptide-stimulated monocytes. J. Immunol. 144: 1338(1990).

    PubMed  CAS  Google Scholar 

  62. P. Poubelle, D. Gingras, C. Demers, C. Dubois, D. Harbour, and M. Rola-Pleszczynski, M. Platelet activating factor (PAF-acether) enhances the concomitant production of tumor necrosis factor alpha and interleukin 1 by subsets of human monocytes. Immunol. in press, 1991.

    Google Scholar 

  63. R. Barthelson, F. Valone. Interaction of platelet-activating factor with interferon-γ in the stimulation of interleukin-1 production by human monocytes. J. Allergy Clin. Immunol. 86: 193 (1990).

    Article  PubMed  CAS  Google Scholar 

  64. F.H. Valone, and L.B. Epstein. Biphasic platelet-activating factor (PAF) synthesis by human monocytes stimulated with interleukin 1 beta (IL Iβ), tumor necrosis factor (TNF) or IFN-γ. J. Immunol. 141: 3945 (1988).

    PubMed  CAS  Google Scholar 

  65. G.M. Vercellotti, H.Q Yin, K.S. Gustabson, R.D. Nelson, and H.S. Jacob. Platelet-activating factor primes neutrophils responses to agonists: role in promoting neutrophil-mediated endothelial damage. Blood 71: 1100 (1988).

    PubMed  CAS  Google Scholar 

  66. M. Paubert-Braquet, M.-O. Lonchampt, P. Klotz, and J. Guilbaud. Tumor necrosis factor (TNF) primes platelet-activating factor (PAF)-induced superoxide generation by human neutrophils (PMN): consequences in promoting PMN-mediated endothelial cell (EC) damages. Prostaglandins 35: 803 (1988).

    Article  Google Scholar 

  67. G.S. Worthen, J.F. Seccombe, K.L. Clay, L.A. Guthrie, and R.B. Jr Johnston. The priming of neutrophils by lipopolysaccharide for production of intracellular platelet-activating factor. J. Immunol. 140: 3553(1988).

    PubMed  CAS  Google Scholar 

  68. M. Rola-Pleszczynski, L. Bouvrette, M. Thivierge, C. Lacasse. Platelet-activating factor enhances interleukin 6 production by monocytes, alveolar macrophages and endothelial cells. FASEB J. 4: A1713 (1990).

    Google Scholar 

  69. M. Rola-Pleszczynski, J. Bossé, E. Bissonnette and C. Dubois. PAF-acether enhances the production of tumor necrosis factor by human and rodent lymphocytes and macrophages. Prostaglandins 35: 802 (1988).

    Article  Google Scholar 

  70. C. Dubois, E. Bissonnette, M. Rola-Pleszczynski, M. Platelet-activating factor (PAF) stimulates tumor necrosis factor production by alveolar macrophages: prevention by PAF receptor antagonists and lipoxygenase inhibitors J. Immunol. 143: 964 (1989).

    PubMed  CAS  Google Scholar 

  71. Bonavida, Braquet, P. Effect of platelet-activating factor (PAF) on monocyte activation and production of tumor necrosis factor (TNF). Int. Arch. Allergy Appl. Immunol. (1988).

    Google Scholar 

  72. M. Rola-Pleszczynski, J. Stankova. Differentiation-dependent modulation of TNF production by PAF in human HL-60 myeloid leukemia cells. Submitted for publication, J. Immunol. (1990).

    Google Scholar 

  73. M. Rola-Pleszczynski. Priming of human monocytes with PAF augments their production of tumor necrosis factor. J. Lipid Mediators 2: S77 (1990).

    CAS  Google Scholar 

  74. J. Bossé, S. Turcotte, and M. Rola-Pleszczynski. Platelet activating factor (PAF) enhances the production of cytotoxic cytokines during natural cell-mediated cytotoxicity. FASEB J. 2: A415 (1988).

    Google Scholar 

  75. C. Lacasse, and M. Rola-Plesczcynski. Immune regulation by PAF II. Mediation of suppression by cytokine-stimulated endothelial cells. J. Leuk. Biol., in press,1990.

    Google Scholar 

  76. M. Rola-Pleszczynski, B. Pignol, C. Pouliot, and P. Braquet, Inhibition of human lymphocyte proliferation and interleukin 2 production by platelet-activating factor (PAF-acether): Reversal by a specific antagonist: BN52021. Biochem. Biophys. Res. Commun., 142: 754(1987).

    Article  PubMed  CAS  Google Scholar 

  77. A. Dulioust, V. Duprez, C. Pittou, P. Salem, A. Hemar, J. Benveniste, Y. THomas,. Immunoregulatory functions of PAF-acether. Downregulation of CD4+ T cells high affinity IL 2 receptor expression, J. Immunol. 144: 3123 (1990).

    PubMed  CAS  Google Scholar 

  78. M. Rola-Pleszczynski, C. Pouliot, S. Turcotte, B. Pignol, P. Braquet and L. Bouvrette.: Immune regulation by platelet-activating factor. I. Induction of suppressor cell activity in human monocytes and CD8+ T cells and of helper cell activity in CD4+T cells. J. Immunol. 140: 3547 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Rola-Pleszczynski, M. (1991). LTB4 and PAF in the Cytokine Network. In: Wong, P.YK., Serhan, C.N. (eds) Cell-Cell Interactions in the Release of Inflammatory Mediators. Advances in Experimental Medicine and Biology, vol 314. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6024-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6024-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6026-1

  • Online ISBN: 978-1-4684-6024-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics