Skip to main content

Ca/CaM-Stimulated and cGMP-Specific Phosphodiesterases in Vascular and Non-Vascular Tissues

  • Chapter
Cellular and Molecular Mechanisms in Hypertension

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 308))

Abstract

A large body of evidence indicates that guanosine 3’,5’-cyclic monophosphate (cGMP) plays an essential role in vasorelaxant actions of various agents such as atrial natriuretic factor (ANF), nitrogen oxide containing compounds (e.g., nitroprusside) and endothelium dependent vasodilators (e.g., acetylcholine) (1). These agents elevate cGMP by stimulating either soluble or particulate guanylate cyclase (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78: 1–5, 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Beavo JA. Multiple isozymes of cyclic nucleotide phosphodiesterase. Adu Second Messenger Phosphoprotein Res 22: 1–38, 1988.

    CAS  Google Scholar 

  3. Lorenz KL, Wells JN. Potentiation of the effects of sodium nitroprusside and of isoproterenol by selective phosphodiesterase inhibitors. Mol Pharmacol 23: 424–430, 1983.

    PubMed  CAS  Google Scholar 

  4. Hidaka H, Endo T. Selective inhibitors of three forms of cyclic nucleotide phosphodiesterases—basic and potential clinical applications. Adv Cyclic Nucleotide Res 16: 245–259, 1984.

    CAS  Google Scholar 

  5. Lugnier C, Schoeffter P, LeBec A, Strouthou E, Stoclet JC. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol 35: 1743–1751, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Ahn HS, Crim W, Romano M, Moroney S, Pitts B. Effects of selective inhibitors on cyclic nucleotide phosphodiesterases (PDEs) of rabbit and pig aorta. Pharmacologist 29: 522, 1987.

    Google Scholar 

  7. Hagiware M, Endo T, Hidaka H. Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem Pharmacol 33: 453–457, 1984.

    Article  Google Scholar 

  8. Bergstrand H, Kristoffersson J, Lundquist B, Schurmann A. Effects of antiallergic agents, compounds 48/80, and some reference inhibitors on the activity of partially purified human lung tissue adenosine cyclic 3’,5’-monophosphate and guanosine cyclic 3’5’monophosphate phosphodiesterases. Mol Pharmacol 13: 38–43, 1977.

    PubMed  CAS  Google Scholar 

  9. Ahn HS, Crim W, Romano M, Moroney SJ, Sybertz EJ, Pitts B. Calmodulin dependent phosphodiesterase (CaM-PDE) and cyclic GMP specific PDE (cG-PDE) distribution and response to inhibitors in aorta and non-vascular tissues. Pharmacologist 30: A213, 1988.

    Google Scholar 

  10. Hansen RS, Beavo AJ. Differential recognition of calmodulinenzyme complexes by a conformation-specific anti-calmodulin monoclonal antibody. JBiol Chem 261: 14636–14645, 1986.

    CAS  Google Scholar 

  11. Ahn HS, Crim W, Romano M, Sybertz EJ, Pitts B. Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta. Biochem Pharmacol 38: 3331–3339, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Ahn HS, Eardley D, Watkins R, Prioli N. Effects of several newer cardiotonic drugs on cardiac cyclic AMP metabolism. Biochem Pharmacol 34: 1113–1121, 1986.

    Article  Google Scholar 

  13. Ahn HS, Crim W, Pitts B, Sybertz EJ. Ca/CaM-stimulated and cGMP specific phosphodiesterases: tissue distribution, drug sensitivity and regulation of cGMP levels. Adv Second Messenger Phosphoprotein Res, Vol. 24, In Press, 1990.

    Google Scholar 

  14. Sharma RK, Wang JH. Isolation of bovine brain calmodulindependent cyclic nucleotide phosphodiesterase isozyme. Methods in Enzymology 159: 582–594, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ahn, H.S., Foster, M., Cable, M., Pitts, B.J.R., Sybertz, E.J. (1991). Ca/CaM-Stimulated and cGMP-Specific Phosphodiesterases in Vascular and Non-Vascular Tissues. In: Cox, R.H. (eds) Cellular and Molecular Mechanisms in Hypertension. Advances in Experimental Medicine and Biology, vol 308. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6015-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6015-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6017-9

  • Online ISBN: 978-1-4684-6015-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics