Skip to main content

The Thyroidectomized Pregnant Rat — An Animal Model to Study Fetal Effects of Maternal Hypothyroidism

  • Chapter
Advances in Perinatal Thyroidology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 299))

Abstract

If women are hypothyroxinemic during pregnancy, their children show an abnormally high incidence of behavioral and neurological disorders. The most common problems seen in the children of hypothyroxinemic mothers are: visual disturbances, poor fine-motor coordination, signs of cerebral palsy and lower I.Q. scores (Man et al., 1971; Man and Jones, 1969; Jones and Man, 1969; Nelson and Ellenburg, 1986). Clinically this is a concern because the hypothyroxinemia may occur only during pregnancy and need not be severe to produce these effects; hence, the pregnancy could proceed to parturition with the thyroid disturbance remaining undiagnosed (Jones and Man, 1969). Support for the proposal that normal maternal thyroid function is essential for normal fetal development is provided by the well-established data which show that the developmental deficiencies seen in children suffering from congenital iodine deficiency-in which both the mother and the fetus have a thyroid hormone deficiency-are greater than those resulting only from a fetal thyroid hormone deficiency (Hetzel, 1983; Escobar del Rey et al., 1986; Van Middlesworth and Norris, 1980; Fierro-Benitez et al., 1974; Pharoah et al., 1981). Furthermore, if supplemental iodine is given to iodine deficient pregnant women after the fifth month of gestation (Fierro-Benitez et al., 1972), the iodine does not prevent significant neurological impairment. These data emphasize the importance of normal maternal thyroid hormone production, particularly during the first one-half of gestation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakke, J.L., Lawrence, N.L., Robinson, S., Bennett, J., 1975. Endocrine studies of the untreated progeny of thyroidectomized rats, Pediat. Res., 9: 742–748.

    Google Scholar 

  • Bakke, J.L., Lawrence, N.L., Robinson, S., Bennett, J., 1977. Endocrine studies in the untreated F1 and F2 progeny of rats treated neonatally with thyroxine, Biol. Neonate, 31: 71–83.

    Google Scholar 

  • Bass, N.H., Pelton, E.W., Young, E., 1977. Defective maturation of cerebral cortex: an inevitable consequence of dysthyroid states during early postnatal life, in: “Thyroid Hormones and Brain Development,” G.D. Grave, ed., pp. 199–214.

    Google Scholar 

  • Bernal, J., Liewendahl, K., Lamberg, B.A., 1985. Thyroid hormone receptors in fetal and hormone resistant tissues, Scand. of Clin Lab. invest., 45: 577–583.

    Article  CAS  Google Scholar 

  • Blondeau, J.P., Osty, J., Francon, J., 1988. Characterization of the thyroid hormone transport system of isolated hepatocytes, J. Biol. Chem., 263: 2685–2692.

    Google Scholar 

  • Centanni, M., Pontecorvi, A., Robbins, J., 1988. Insulin effect on thyroid hormone uptake in skeletal muscle, Metabolism, 37: 626–630.

    Article  PubMed  CAS  Google Scholar 

  • Docter, R., Krenning, E.P., Bernard, H.F., Hennemann, G., 1987. Active transport of iodothyronines into human cultured fibroblasts, J. Clin. Endocrinol. Metab., 65: 624–628.

    Google Scholar 

  • Dreskin, S.C., Kostyo, J.L., 1980. Acute effects of growth hormone on the function of ribosomes of rat skeletal muscle, Horm. Metab. Res., 12: 60–66.

    Google Scholar 

  • Dussault, J.H., Ruel, J., 1987. Thyroid hormones and brain development, Ann. Rev. Physiol., 49: 321–334.

    Google Scholar 

  • Eayrs, J.T., 1955. The cerebral cortex of normal and hypothyroid rats, Acta Anat., 25: 160–183.

    Article  PubMed  CAS  Google Scholar 

  • Escobar del Rey, F., Pastor, R., Mallot, J., Morreale de Escobar, G., 1986. Effects of maternal iodine deficiency on the L-thyroxine and 3,5,3’-triiodo-L-thyronine contents of rat embryonic tissues before and after onset of fetal thyroid function, Endocrinology, 118: 1259–1265.

    Article  Google Scholar 

  • Fierro-Benitez, R., Ramirez, I., Garces, J., Jaramillo, C., 1974. The clinical pattern of cretinism as seen in highland Ecuador, Amer. J. Clin. Nutr., 27: 531–543.

    Google Scholar 

  • Fierro-Benitez, R., Ramirez, I., Suarez, J., 1972. Effect of iodine correction early in fetal life on intelligence quotient. A preliminary report, in: “Human Development and the Thyroid Gland,” J.B. Stanbury, R.L. Kroc, eds., Plenum Press, N.Y., pp. 239–247.

    Google Scholar 

  • Fisher, D.A., Dussault, J.H., Sack, J., Chopra, I.J., 1977. Ontogenesis of hypothalam ic-pituitary-thyroid function and metabolism in man, sheep and rat, Rec. Prog. Horm. Res, 33: 59–116.

    Google Scholar 

  • Francon, J., Chantoux, F., Blondeau, J.P., 1989. Carrier-mediated transport of thyroid hormones into rat glial cells in primary culture, J. Neurochem., 53: 1456–1 463.

    Google Scholar 

  • Hendrich, C.E., Jackson, W.J., Porterfield, S.P., 1984. Behavioral testing of progenies of Tx (hypothyroid) and growth hormone-treated Tx rats: An animal model for mental retardation, Neuroendocrinology, 38: 429–437.

    Google Scholar 

  • Hendrich, C.E., Wiedmeier, V.T., Porterfield, S.P., 1982. Utilization of alanine by hypothyroid and growth hormone treated hypothyroid rats, their fetuses and progeny, Horm. Metabol. Res., 14: 658–666.

    Google Scholar 

  • Hetzel, B.S., 1983. Iodine deficiency disorders (IDD) and their eradication, Lancet, 2.3: 1126–1129.

    Google Scholar 

  • Ingenbleek, Y., Malvaux, P., 1980. Peripheral turnover of thyroxine and related parameters in infant protein-caloric malnutrition, Am. J. Clin. Nutri., 33: 606–616.

    Google Scholar 

  • Jones, W.S., Man, E.B., 1969. Thyroid function in human pregnancy. IV. Premature deliveries and reproductive failures of pregnant women with low serum butanol-ex tractable iodines, Maternal serum TBG and TBPA capacities, Amer J. Obstet. Gynec., 104: 909–914.

    Google Scholar 

  • Karlsson, I., Svennerholm, L., 1978. Biochemical development of rat forebrains in severe protein and essential fatty acid deficiencies, J. Neurochem., 31: 657–662.

    Article  PubMed  CAS  Google Scholar 

  • Legrand, J., 1982–1983. Hormones thyroidiennes et maturation du systeme nerveux, J. Physiol. Paris, 78: 603–652.

    Google Scholar 

  • Man, E.B., Holden, R.H., Jones, W.S., 1971. Thyroid function in human pregnancy. VII. Development and retardation of 4-year-old progeny of euthyroid and of hypothyroxinemic women, Amer. J. Obstet. Gynec., 109: 12–18.

    Google Scholar 

  • Man, E.B., Jones, W.S., 1969. Thyroid function in human pregnancy. V. Incidence of maternal serum low butanol-extractable iodines and of normal gestational TBG and TBPA capacities; retardation of 8-month-old infants, Amer. J. Obstet. Gynec., 104: 898–908.

    Google Scholar 

  • Morreale de Escobar, G., Escobar del Rey, F., Ruiz-Marcos, A., 1983. Thyroid hormone and the developing brain, in: “Congenital Hypothyroidism”, J.H. Dussault, P. Walker, eds. Marcel Dekker, Inc., N.Y., pp. 85–125.

    Google Scholar 

  • Morreale de Escobar, G., Pastor, R., Obregon, M.J., Escobar del Rey, F., 1985. Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function, Endocrinolo gy, 117: 1890–1900.

    Article  Google Scholar 

  • Munn, N.W., 1950. The role of sensory processes in maze behavior, in: “Handbook of Psychological Research on the Rat, pp. 213 ff, Houghton-Miffin, Boston.

    Google Scholar 

  • Narayanan, C.H., Narayanan, 1985. Cell formation in the motor nucleus and mesencephalic nucleus of the trigeminal nerve of rats made hypothyroid by propylthiouracil, Exp. Brain Res., 59: 257–266.

    Google Scholar 

  • Nelson, K.B., Ellenburg, J.H., 1986. Anticedents of cerebral palsy, New Eng. J. Med., 315: 81–86.

    Google Scholar 

  • Obregon, M.J., Mallol, J., Pastor, R., Morreale de Escobar, G., Escobar del Rey, F., 1984. L-thyroxine and 3,5,3’-triiodo-L-thyronine in rat embryos before onset of fetal thyroid function, Endocrinology, 114: 305–307.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Castillo, A., Bernal, J., Ferreiro, B., Pans, T., 1985. The early ontogenesis of thyroid hormone receptor in the rat fetus, Endocrinology, 117: 2457–2461.

    Article  PubMed  CAS  Google Scholar 

  • Pharoah, P., Connolly, K., Hetzel, B., Ekins, R., 1981. Maternal thyroid function and motor competence in the child, Develop. Med. Child. Neurol., 23: 76–82.

    Google Scholar 

  • Pickard, M.R., Sinha, A.K., Gullo, D., Patel, N., Hubank, M., Ekins, R.P., 1987. The effect of 3,5,3’-triiodothyronine on leucine uptake and incorporation into protein in cultured neurons and subcellular fractions of rat central nervous system, Endocrinology, 121: 2018–2026.

    Article  PubMed  CAS  Google Scholar 

  • Porterfield, S.P., 1985. Prenatal exposure of the fetal rat to excessive L-thyroxine or 3,5-dimethy1–3’-isopropyl-thyronine produces persistent changes in the thyroid control system, Horm. Metab. Res., 17: 655–659.

    Google Scholar 

  • Porterfield, S.P., Hendrich, C.E., 1982. Brain and liver deoxyribonucleic acid and ribonucleic acid in the progeny of hypothyroid and growth hormone-treated hypothyroid rats, Endocrinology, 111: 406–411.

    Article  PubMed  CAS  Google Scholar 

  • Porterfield, S.P., Whittle, E., Hendrich, C.E., 1975. Hypoglycemia and glycogen deficits in fetuses of hypothyroid pregnant rats, Proc. Soc. Expt’l Biol. Med. 149: 748–753.

    Google Scholar 

  • Potter, B.J., Mano, M.T., Belling, G.B., McIntosh, G.H., Hua, C., Cragg, B.G., Marshall, J., Wellby, M.L., Hetzel, B.S., 1982. Retarded fetal brain development resulting from severe dietary iodine deficiency in sheep, Neuropathol. Appl. Neurobiol., 8: 303–313.

    Google Scholar 

  • Potter, B.J., McIntosh, G.H., Hetzel, B.S., 1981. The effect of iodine deficiency on fetal brain development in the sheep. In: B.S. Hetzel, R.M. Smith (eds), “Fetal Brain Disorders-Recent Approaches to the Problem of Mental Deficiency, pp. 119–148, Elsevier North Holland, Amsterdam.

    Google Scholar 

  • Potter, B.J., McIntosh, G.H., Mano, M.T., Baghurst, P.A., Chavadej, J., Hua, C.H., Cragg, B.G., Hetzel, B.S., 1986. The effect of maternal thyroidectomy prior to conception on foetal brain development in sheep, Acta Endocrinol., 112: 93–99.

    PubMed  CAS  Google Scholar 

  • Shashoua, V.E., 1972. A multistage transduction model for informati on processing in the nervous system, Intl. J. Neurosci., 3: 299–304.

    Google Scholar 

  • Shashoua, V.E., 1976. Brain metabolism and the acquisition of new behaviors. I. Evidence for specific changes in the pattern of protein synthesis, Brain Res., 111: 347–367.

    Google Scholar 

  • Shashoua, V.E., 1977. Brain metabolism and the acquisition of new behaviors. II. Immunological studies of the a, ß, y proteins of gold fish brain, Brain Res., 122: 113–124.

    Google Scholar 

  • Shashoua, V.E., 1979. Brain metabolism and the acquisition of new behaviors. III. Evidence for secretion of two proteins into the brain extracellular fluid after training, Brain Res., 166: 349–358.

    Google Scholar 

  • Shashoua, V.E., 1981. Extraceilular fluid proteins of goldfish brain: Studies of concentration and labeling patterns, Neurochem. Res., 6: (10) 1129–1147.

    CAS  Google Scholar 

  • Shashoua, V.E., 1982. Molecular and cell biological aspects of learning: Towards a theory of memory, Adv. Cellular Neurobiol., 3: 97–141.

    Google Scholar 

  • Shashoua, V.E., 1982. The role of extracellular proteins in learning and memory, Am. Sci., 73: 364–369.

    Google Scholar 

  • Shashoua, V.E., Moore, M.E., 1978. Effects of antisera to ß and a goldfish brain proteins on the retention of a newly acquired behavior, Brain Res., 154: 441–449.

    Article  Google Scholar 

  • Silva, J.E., Matthews, P.S., 1984. Production rates and turnover of triiodothyionine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism. J. Clin. Invest., 74: 1035–1049.

    Google Scholar 

  • Strong, P.N., Jr., 1957. Activity in the white rat as a function of apparatus and hunger, J. Comp. Physiol. Psychol., 50: 596–600.

    Google Scholar 

  • Van Middlesworth, L., Norris, C.H., 1980. Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment, Endocrinology, 106: 1680.

    Google Scholar 

  • Vulsma, T., Gons, M.H., DeVijlder, J.J.M., 1989. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis, N. Engl. J. Med., 321: 13–16.

    Google Scholar 

  • Wiedmeier, V.T., Porterfield, S.P., Hendrich, C.E., 1982. Quantitation of Dns-amino acids from body tissues and fluids using high-performance liquid chromatography, J. Chromatography, 231: 410–417.

    Article  CAS  Google Scholar 

  • Zamenof, S., Van Marthens, E., 1971. Hormonal and nutritional aspects of prenatal brain development, In: “Cellular Aspects of Neural Growth and Differentiation,” D.C. Pease, ed., U. of California Press, Berkley, p. 329, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Porterfield, S.P., Hendrich, C.E. (1991). The Thyroidectomized Pregnant Rat — An Animal Model to Study Fetal Effects of Maternal Hypothyroidism. In: Bercu, B.B., Shulman, D.I. (eds) Advances in Perinatal Thyroidology. Advances in Experimental Medicine and Biology, vol 299. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5973-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5973-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5975-3

  • Online ISBN: 978-1-4684-5973-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics