Skip to main content

IGF-I Mediated Recruitment of Glucose Transporters from Intracellular Membranes to Plasma Membranes in L6 Muscle Cells

  • Chapter
Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 293))

Abstract

IGF-I has long been known to have mitogenic effects on isolated skeletal tissue (Salmon and Daughaday, 1957) and insulin-like metabolic effects on isolated adipose tissue and muscle tissue (Froesch et al., 1966; Poggi et al., 1979). Stimulation of glucose utilization by IGF-I has been observed in vivo in rats and humans (Zapf et al., 1986; Guler et al., 1987). Moreover, Giacca et al. (1990) have demonstrated that skeletal muscle is the preferred site for the stimulation of glucose utilization by IGF-I in completely insulin-deficient diabetic dogs. Simultaneously, Moxely III et al. (1990) demonstrated that in vivo, IGF-I stimulates hexose uptake directly into rat muscles. These specific effects of IGF-I on skeletal muscle are consistent with the observation that skeletal muscle expresses abundant amounts of IGF-I receptors (Livingston et al., 1988, Dohm et al., 1990), whereas adipose tissue has very low numbers of IGF-I receptors (Rechler and Nissley, 1985; Sinha et al., 1990). Skeletal muscle is also the primary site of action for the stimulation of glucose utilization by insulin in vivo (Defronzo et al., 1981). Although IGF-I and insulin have common biological actions, IGF-I and insulin receptors may function independently. For example, rat 1 fibroblasts expressing a mutant insulin receptor with an inactive tyrosine kinase are unresponsive to insulin stimulation of glucose uptake but can still respond to IGF-I through their endogenous IGF-I receptors (McClain et al., 1990). Secondly, Lammers et al. (1989) demonstrated that chimeric receptors consisting of the extracellular insulin receptor domain and the intracellular IGF-I receptor domain were ten times more responsive to insulin for stimulation of DNA synthesis than was the native insulin receptor. This suggested that the intracellular kinase of the IGF-I receptor is more active than the insulin receptor kinase and is thus inherently different from its insulin receptor counterpart. Hence, IGF-I and insulin and their receptors share common responses but can trigger them independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin, S.A., Baldwin, J.M., and Lienhard, G.E., 1982, Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation, Biochemistry, 21: 3836–3842.

    Article  PubMed  CAS  Google Scholar 

  • Beguinot, F., Kahn, C.R., Moses, A.C., and Smith, R.J., 1985, Distinct biologically active receptors for insulin, insulin-like growth factor I and insulin-like gorwth factor II in cultured skeletal muscle cells, J. Biol. Chem., 260: 15892–15898.

    PubMed  CAS  Google Scholar 

  • Beguinot, F., Kahn, C.R., Moses, A.C., and Smith R.J., 198 6, The development of insulin receptors and responsiveness is an early marker of differentiation in the muscle cell line L6, Endocrinology, 118: 446–455.

    Article  PubMed  CAS  Google Scholar 

  • Bilan, P.J., and Klip, A., 1990, Glycation of the human erythrocyte glucose transporterin vtiro and its functional consequences, Bjochem. J., 268: 661–667.

    CAS  Google Scholar 

  • Birnbaum, M.J., 1989, Identification of a novel gene encoding an insulin-responsive glucose transporter protein, Cell, 57: 305–315.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem.,72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Burant, C.F., Treutelar, M.K., Allen, K.D., Sens, D.A., and Buse, M.G., 1987, Comparison of insulin and insulin-like growth factor I receptors from rat skeletal muscle and L6 myocytes, Biochem. Biophys. Res. Commnn.,147: 100–107.

    Article  CAS  Google Scholar 

  • Calderhead, D.M., Kitagawa, K., Lienhard, G.E., and Gould G.W., 1990, Translocation of the brain-type glucose transporter largely accounts for insulin stimulation of glucose transport in BC3H-1 myocytes, Biochem. J., 269: 597–601.

    PubMed  CAS  Google Scholar 

  • Defronzo, R.A., Ferranninni, E., Sato, Y., Felig, P., and Wahren, J., 1981, Synergistic interaction between exercise and insulin on peripheral glucose uptake, J. Clin. Invest., 68: 1468–1474.

    Article  PubMed  CAS  Google Scholar 

  • Dohm, C.L., Elton, C.W., Raju, M.S., Mooney, N.D., Dimarchi, R., Pories, W.J., Flickinger, E.G., Atkinson, S.M. Jr., and Caro, J.F., 1990, IGF-I-Stimulated glucose transport in human skeletal muscle and IGF-I resistance in obesity and NIDDM, Diabetes, 39: 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  • Douen, A.G., Ramlal, T., Rastogi, S., Bilan, P.J., Cartee, G.D., Vranic, M., Holloszy, J.O., and Klip, A., 1990, Exercise induces recruitment of the insulin-responsive glucose transporter, J. Biol. Chem., 265:13427.

    PubMed  CAS  Google Scholar 

  • Froech, E.R., Muller, W.A., Burgi, H., Waldvogel, M., and Labhart, A., 1966, Nonsuppressable insulin-like activity of human serum. I. Physicochemical properties, extraction and partial purification, Biochim. Biophys. Acta, 121: 360–374.

    Google Scholar 

  • Fushiki, T., Wells, J.A., Tapscott, E.B., and Dohm, G.L., 1989, Changes in glucose transporters in muscle in reponse to exercise, Am.J. Physiol., 256: E580-E587.

    Google Scholar 

  • Giacca, A., Gupta, R., Efendic, S., Hall, K., Skottner, A., Lickley, L., and Vranic, M., 1990, Differential effects of IGF-I and insulin of glucoregulation and fat metabolism in depancreatized dogs, Diabetes, 39: 340–347.

    Article  PubMed  CAS  Google Scholar 

  • Guler, H.P., Zapf, J., and Froesch, E.R., 1987, Short-term metabolic effects of recombinant human insulin-like growth factor I in healthy adults, N. Engl. J. Med., 317: 137–140.

    Article  PubMed  CAS  Google Scholar 

  • Holman, G.D., and Rees, W.D., 1987, Photolabelling of the hexose transporter at external and internal sites: Fragmentation patterns and evidence for a conformational change, Biochim. Biophys. Acta, 897: 395–405.

    Article  PubMed  CAS  Google Scholar 

  • James, D.E., Brown, R. Navarro, J., and Pilch, P.F., 1988, Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein, Nature, 333: 183–185.

    Article  PubMed  CAS  Google Scholar 

  • James, D.E., Strube, M., and Mueckler, M., 1989, Molecular cloning and characterization of an insulin-regulatable glucose transporter, Nature, 338: 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Kidokoro, Y., 1975, Developmental Changes of membrane electrical properties in a rat skeletal muscle cell line, J. Physiol.(London)r 244: 129– 143.

    CAS  Google Scholar 

  • Klip, A., Li, G., and Walker, D., 1983, Insulin binding to differentiating muscle cells in culture, Can. J. Biochem. Cell Biol., 61: 644–649.

    Article  PubMed  CAS  Google Scholar 

  • Klip, A., Li, G., and Logan, W.J., 1984, Induction of sugar uptake response to insulin by serum depetion in fusing L6 myoblasts, Am. J. Physiol., 247: E291–E296.

    PubMed  CAS  Google Scholar 

  • Koivisto, U.-M., Martinez-Valdez, H., Bilan, P.J., Burdett, E., Ramlal, T., and Klip, A., Differential regulation of GLUT-1 and GLUT-4 transport systems by glucose and insulin in L6 muscle cells in culture, J. Biol. Chem. (in press) .

    Google Scholar 

  • Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lammers, R., Gray, A., Schlessinger, J., and Ullrich, A., 1989, Differential signalling potential of insulin and IGF-I receptor cytoplasmic domains, EMBO J.8: 1369–1375.

    PubMed  CAS  Google Scholar 

  • Livingston, N., Pollare, T., Lithell, H., and Arner, P., 1988, Characterization of insulin-like growth factor I receptor in skeletal muscles of normal and insulin resistant subjects, Diabetolocria. 31: 871–877.

    CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193: 265– 275.

    PubMed  CAS  Google Scholar 

  • McClain, D.A., Maegawa, H., Thies, R.S., and Olefsky, J.M., 1990, Dissection of the growth versus metabolic effects of insulin and insulin-like growth factor-I in transfected cells expressing kinase-defective human insulin receptors, J. Biol. Chem., 265: 1678–1682.

    PubMed  CAS  Google Scholar 

  • Moxley III, R.T., Arner, P., Moss, A., Skottner, A., Fox, M., James, D., Livingston, J.N., 1990, Acute effects of insulin-like growth factor I and insulin on glucose metabolism in vivo, Am. J. Physiol., 259: E561–E567.

    PubMed  CAS  Google Scholar 

  • Poggi, C., Le Marchand-Brustel, Y., Zapf, J., Froesch, E.R., and Freychet, P., 1979, Effects and binding on insulin-like growth factor I (IGF I) in the isolated soleus muscle of lean and obese mice: Comparison with insulin, Endocrinology, 105: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Ramlal, T., Sarabia, V., Bilan, P.J., and Klip, A., 1988, Insulin-mediated translocation of glucose transporters from intracellular membranes to plasma membranes: Sole mechanism of stimulation of glucose transport in L6 muscle cells, Biochem. Biophys. Res. Commun., 157: 1329–1335.

    Article  PubMed  CAS  Google Scholar 

  • Rechler, M.M., and Nissley, S.P., 1985, The nature and regulation of the receptors for insulin-like growth factors, Ann. Rev. Physiol., 47: 425–442.

    Article  CAS  Google Scholar 

  • Ross, M., Francis, G.L., Szabo, L., Wallace, J.C., and Ballard, F.J., 1989, Insulin-like growth factor (IGF)-binding proteins inhibit the biological activities of IGF-1 and IGF-2 but not des-(1-3)-IGF-1, Biochem. J., 258: 267–272.

    PubMed  CAS  Google Scholar 

  • Salmon, W.D. Jr., and Daughaday, W.H., 1957, A hormonally controlled serum factor which stimulates sulfate incorporation by cartilagein vivo. J. Lab. Clin. Med., 49: 825–836.

    PubMed  CAS  Google Scholar 

  • Shainberg, A., Yagil, G., and Yaffe, D., 1971, Alteration of enzymatic activities during muscle differentiation in vitro, Dev. Biol., 25: 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, I.A., and Cushman, S.W., 1988, Hormonal regulation of mammalian glucose transport, Annu. Rev. Biochem., 55: 1059–1089.

    Article  Google Scholar 

  • Sinha, M.K., Buchanan, C. Leggett, N., Martin, L., Khazanie, P.G., DiMarchi, R., Pories, W.J., and Caro, J.F., 1989, Mechanism of IGF-I-stimulated glucose transport in human adipocytes: Demontration of specific IGF-I receptors not involved in stimulation of glucose transport, Diabetes, 38: 1217–1225.

    Article  PubMed  CAS  Google Scholar 

  • Walker, P.S., Ramlal, T., Sarabia, V., Koivisto, U.-M., Bilan, P.J., Pessin, J.E., and Klip, A., 1990, Glucose transport activity in L6 muscle cells is regulated by the coordinate control of subcellular glucose transproter distribution, biosynthesis and mRNA transcription,J. Biol. Chem.. 265: 1516–1523.

    PubMed  CAS  Google Scholar 

  • Widdas, W.F., 1988, Old and new concepts of the membrane transport for glucose in cells, Biochim. Biophys. Acta, 947: 385–404.

    PubMed  CAS  Google Scholar 

  • Yaffe, D., 1968, Retention of differentiation potentialities during prolonged cultivation of myogenic cells, Proc. Natl. Acad. Sci. U.S.A.. 61: 477–483.

    Article  PubMed  CAS  Google Scholar 

  • Yasumoto, K., Iwami, K., Fushiki, T., and Mitsuda, H., 1978, Purification and enzymatic properties of γ-glutamyl transferase from bovine colostrum, J. Biochem., 84: 1227–1236.

    PubMed  CAS  Google Scholar 

  • Zapf, J., Hauri, C. Waldvogel, M., and Froesch, E.R., 1986, Acute metabolic effects and half-lives of intravenously administered insulin-like growth factors I and II in normal and hypophysectomized rats, J. Clin. Invest., 77: 1768–1775.

    Article  PubMed  CAS  Google Scholar 

  • Zorzano, A., Wilkinson, W., Kotliar, N., Thoidis, G., Wadzinski, B.E., Ruoho, A.E., and Pilch, P.F., 1989, Insulin-regulated glucose uptake in rat adipocytes mediated by two transporter isoforms present in at least two vesicle populations, J. Biol. Chem., 264: 1235–1263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Bilan, P.J., Ramlal, T., Klip, A. (1991). IGF-I Mediated Recruitment of Glucose Transporters from Intracellular Membranes to Plasma Membranes in L6 Muscle Cells. In: Raizada, M.K., LeRoith, D. (eds) Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors. Advances in Experimental Medicine and Biology, vol 293. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5949-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5949-4_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5951-7

  • Online ISBN: 978-1-4684-5949-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics