Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 257))

Abstract

Electrons above the surface of superfluid helium are held in a vertical potential well formed by the repulsion of the helium atoms and the attraction of the image or polarization charges induced in the liquid, which may be augmented by a vertical electric holding field F z Below 1K all the electrons can be in the quantum ground state as far as vertical motion is concerned. However, the electrons are free to move parallel to the helium surface (the x–y plane) and form a non-degenerate two-dimensional electron gas (2DEG), density n, with a Maxwell-Boltzmann distribution of thermal velocities. Their mobility µ in a horizonatal electric field is limited by collisions with He atoms from the vapour and with the surface wave excitations, or ripplons, on the liquid helium. Electron-electron correlations are also very important and lead to a phase transition to a classical electron solid at low temperatures. This solid phase prevents the Fermi degenerate gas regime from being reached for electrons on bulk liquid. This coupled 2-D system of electrons and helium is of great interest both for the properties of the electrons and for the information which can be obtained about the helium itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Iye, J. Low Temp.Phys. 40: 441 (1980).

    Article  ADS  Google Scholar 

  2. M. Saitoh, J.Phys.Soc.Japan 42: 201 (1977).

    Article  ADS  Google Scholar 

  3. Yu.P. Monarkha, Fiz.Nizk.Temp. 2: 1232 (1976).

    Google Scholar 

  4. Yu.P. Monarkha, Sov.J. Low Temp.Phys. 2: 600 (1976);

    Google Scholar 

  5. G. Beni and P.M. Platzman, Phys.Rev.Lett. 36:626 (1976)

    Article  ADS  Google Scholar 

  6. G. Beni and P.M. Platzman, Phys.Rev.Lett. 36: 1350 (E) (1976).

    Article  ADS  Google Scholar 

  7. R. Mehrotra, C.J. Guo, Y.Z. Ruan, D.B. Mast and A.J. Dahm, Phys.Rev. B29: 5239 (1984)

    ADS  Google Scholar 

  8. V.A. Buntar,Yu.Z. Kovdyra,V.N. Grigor’ev, Yu.P. Monarkha and S.S. Sokolov, Fiz.Nizk.Temp. 13: 789 (1987).

    Google Scholar 

  9. V.A. Buntar,Yu.Z. Kovdyra,V.N. Grigor’ev, Yu.P. Monarkha and S.S. Sokolov, Sov.J. Low Temp.Phys. 13: 451 (1987).

    Google Scholar 

  10. V.A. Buntar, V.N. Grigoriev, O.I. Kirichek, Yu.Z. Kovdyra,Yu.P. Monarkha and S.S. Sokolov, J.Low Temp.Phys. 79: 323 (1990).

    Article  ADS  Google Scholar 

  11. R. Mehrotra, J.Low Temp.Phys. 79: 311 (1990).

    Article  ADS  Google Scholar 

  12. T. Ando, A.B. Fowler and F. Stern, Rev.Mod.Phys. 54: 437 (1982).

    Article  ADS  Google Scholar 

  13. M. Saitoh, Solid State Commun. 52: 63 (1984).

    Article  ADS  Google Scholar 

  14. M.I. Dykman and L.S. Khazan, Sov.Phys.JETP 50: 747 (1979).

    ADS  Google Scholar 

  15. W.T. Sommer and D.J. Tanner, Phys.Rev.Lett. 27: 1345 (1971).

    Article  ADS  Google Scholar 

  16. R. Mehrotra and A. J. Dahm, J.Low Temp.Phys. 67: 641 (1987).

    Google Scholar 

  17. L. Wilen and R. Giannetta, J.Low Temp.Phys. 72: 353 (1988).

    Article  ADS  Google Scholar 

  18. R.W. van der Heijden, H.M. Gijsman and F.M. Peeters, J.Phys.C.Solid State Phys. 21: L1165 (1988).

    Article  ADS  Google Scholar 

  19. M.J. Lea, A.O. Stone and P. Fozooni, Europhys.Letts 7: 641 (1988).

    Article  ADS  Google Scholar 

  20. R.W. van der Heijden, M.C.M. van de Sanden, J.H.G. Surewaard, A.Th.A.M. de Waele, H.M. Gijsman and F.M. Peeters, Europhys.Letts 6: 75 (1988).

    Article  ADS  Google Scholar 

  21. M.J. Lea, in press.

    Google Scholar 

  22. D.B. Mast, A.J. Dahm and A.L. Fetter, Phys.Rev.Lett. 54: 1706 (1985);

    Article  ADS  Google Scholar 

  23. D.C. Glattli, E.Y. Andrei, G. Deville, G. Poitrenaud and F.I.B. Williams, Phys.Rev.Lett. 54: 1710 (1985).

    Article  ADS  Google Scholar 

  24. A.O. Stone, P. Fozoni, M.J. Lea and M. Abdul-Gader, J.Phys.Condens.Matter 1: 2743 (1989).

    Google Scholar 

  25. O.I. Kirichek, B.A. Buntar’, V.N. Grigor’ev and Yu.Z. Kovdyra, Kharkov Report 33–88 (1988);

    Google Scholar 

  26. V.N. Grigor’ev, O.I. Kirichek, Yu.Z. Kovdyra and Yu.P. Momarkha, Fiz.Nizk.Temp. 16: 394 (1990).

    Google Scholar 

  27. A.O. Stone, Ph.D. Thesis, University of London (1990).

    Google Scholar 

  28. M.I. Dykman, J.Phys.O Solid State Phys. 15:7397(1982); private communication.

    Google Scholar 

  29. P. Fozooni, M.J. Lea, A.O. Stone and J. Frost, 19th. Intern.Conf.Low Temp.Phys. (1990).

    Google Scholar 

  30. M.J. Lea, J. Frost, A.O. Stone and P. Fozooni,19th. Intern.Conf.Low Temp.Phys. (1990).

    Google Scholar 

  31. A. Isihara, Solid State Physics, 42: 271 (1989).

    Google Scholar 

  32. A.O. Stone, M.J. Lea, P. Fozooni and J. Frost, J.Phys.CM 2: 485 (1990).

    Google Scholar 

  33. M.A. Stan and A.J. Dahm, Phys.Rev B40: 8995 (1990).

    Google Scholar 

  34. J. Surewaard, Unpublished Report, Technishe Universiteit, Eindhoven (1988).

    Google Scholar 

  35. M. Saitoh, J.Phys.Soc.Japan 56: 706 (1987).

    Google Scholar 

  36. S. Edel’man, Zh.Eksp.Teor.Fiz. 77: 673 (1979)

    Google Scholar 

  37. S. Edel’man, Sov,Phys.JETP 50: 338 (1979).

    Google Scholar 

  38. L. Wilen and R. Giannetta, Phys.Rev.Letts. 60: 231 (1988).

    Article  ADS  Google Scholar 

  39. M. Saitoh, J.Phys.C 16: 6983 (1983).

    MathSciNet  Google Scholar 

  40. M.I. Dykman, Sov.J. Low Temp.Phys. 6: 268 (1980).

    Google Scholar 

  41. A.M.L. Janssen, R.W. van der Heijden, A.Th. A.M. de Waele and H.M. Gijsman and F.M. Peeters, Surf.Sci. 229: 365 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Lea, M.J. (1991). Electrons on Helium in a Quantizing Magnetic Field. In: Wyatt, A.F.G., Lauter, H.J. (eds) Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids. NATO ASI Series, vol 257. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5937-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5937-1_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5939-5

  • Online ISBN: 978-1-4684-5937-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics