Skip to main content

Part of the book series: Biochemistry of the Elements ((BOTE,volume 9A+B))

Abstract

The ionic radii of fluoride (F) (1.33 Å) and the hydroxide ion (1.29 Å) are comparable, and each has a primary hydration number of 5. In contrast, the ionic radii of chloride (Cl) (1.81 Å), bromide (Br) (1.97 Å), and iodide (I) (2.23 Å) are significantly higher, and these anions have lower hydration numbers (2, 2, and 1, respectively). As a result of its similarity to the hydroxide ion, F readily substitutes for hydroxide in many biochemical transformations, often with profound consequences. In addition, as a consequence of these same physicochemical properties, the biological behavior of F differs dramatically from that of the other halogens. For example, unlike Cl, F (as HF) readily enters cells by passive transport, F is the only halogen incorporated into the crystal lattice of mineralized tissue, and F does not compete with I in the thyroid gland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasenden, R., and Peebles, T. C., 1974. Effects of fluoride supplementation from birth on human deciduous and permanent teeth, Arch. Oral Biol. 19: 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Baglioni, C., 1972. Heterogeneity of the small ribosomal subunit and mechanism of chain initiation in eukaryotes, Biochim. Biophys. Acta 287: 189–193.

    PubMed  CAS  Google Scholar 

  • Baglioni, C., Vesco, C., and Jacobs-Lorena, M., 1969. The role of ribosomal subunits in mammalian cells, Cold Spring Harbor Symp. Quant. Biol. 34: 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Baikov, A. A., Smimova, I. N., and Volk, S. E., 1984. Membrane inorganic pyrophosphatase. “Syncatalytic” inactivation by the fluoride ion, Biochemistry (Biokhimiya) 49: 696–702.

    Google Scholar 

  • Bailey, K., and Webb, E. C., 1944. Purification and properties of yeast pyrophosphatase, Biochem. J. 38: 394–398.

    PubMed  CAS  Google Scholar 

  • Bakuleva, N. P., Nazarova, T. I., Baykov, A. A., and Avaeva, S. M., 1981. The phosphorylation of yeast inorganic pyrophosphatase and formation of stoichiometric amounts of me-bound pyrophosphate, FEBS Lett. 124: 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Bang, S., 1978 Effects of fluoride on the chemical composition of inorganic bone structure, in Fluoride and Bone ( B. Courvoisier, A. Donath, and C. A. Baud, eds.), Hans Huber Publishers, Bern, Switzerland, pp. 56–61.

    Google Scholar 

  • Banks, R. E., 1986. Isolation of fluorine by Moissan: Setting the scene, J. Fluorine Chem. 33: 3–26.

    Article  CAS  Google Scholar 

  • Banks, R. E., and Goldwhite, H., 1966. Fluorine chemistry, in Handbook of Experimental Pharmacology, XX/1. Pharmacology of Fluorides, Part 1 ( O. Eichler, A. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, Berlin, pp. 1–52.

    Google Scholar 

  • Barnes, D., 1987. Close encounters with an osteoclast, Science 236: 914–916.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C. A. L., 1968. Biological significance of piezoelectricity, Calcif. Tissue Res. 1: 252–272.

    Article  PubMed  CAS  Google Scholar 

  • Bawden, J. W., McLean, P., and Deaton, T. G., 1986. Fluoride uptake at various stages of rat molar development, J. Dent. Res. 65: 34–38.

    Article  PubMed  CAS  Google Scholar 

  • Baykov, A. A., and Avaeva, S. M., 1974. Yeast inorganic pyrophosphatase: Studies on metal binding, Eur. J. Biochem. 47: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Baylink, D. J., and Berstein, D. S., 1967. The effects of fluoride on metabolic bone disease: A histological study, Clin. Orthop. 55: 51–85.

    PubMed  CAS  Google Scholar 

  • Baylink, D., Wergedal, J., Stauffer, M., and Rich, C., 1970. Effects of fluoride on bone formation, mineralization, and resorption in the rat, in Fluoride in Medicine ( T. L. Vischer, ed.), Hans Huber Publishers, Bern, Switzerland, pp. 37–69.

    Google Scholar 

  • Baylink, D. J., Duane, P. B., Farley, S. M., and Farley, J. R., 1983. Monofluorophosphate physiology: The effects of fluoride on bone, Caries Res. 17 (Suppl. 1): 56–76.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1987. Inositol triphosphate and diacylglycerol: Two interacting second messengers, Annu. Rev. Biochem. 56: 159–193.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Bigay, J., Deterre, P., Pfister, C., and Chabre, M., 1985. Fluoroaluminates activate transducinGDP by mimicking the y-phosphate of GTP in its binding state, FEBS Lett. 191: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Bigay, J., Deterre, P., Pfister, C., and Chabre, M., 1987. Fluoride complexes of aluminum or beryllium act on G-proteins as reversibly bound analogues of y phosphate of GTP, EMBO J. 6: 2907–2913.

    PubMed  CAS  Google Scholar 

  • Blackmore, P. F., Bocckino, S. B., Waynick, L. E., and Exton, J. H., 1985. Role of guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-biphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride, J. Biol. Chem. 260: 14477–14483.

    PubMed  CAS  Google Scholar 

  • Boeckaert, J., Deterre, P., Pfister, C., Guillon, G., and Chabre, M., 1985. Inhibition of hormonally regulated adenylate cyclase by the ßy subunit of transducin, EMBO J. 4: 1413–1417.

    Google Scholar 

  • Bokoch, G. M., Katada, T., Northup, J. K., Hewlett, E. L., and Gilman, A. G., 1983. Identification of the predominant substrate for ADP-ribosylation by islet activating protein, J. Biol. Chem. 258: 2072–2075.

    PubMed  CAS  Google Scholar 

  • Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G., 1984. Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, J. Biol. Chem. 259: 3560–3577.

    PubMed  CAS  Google Scholar 

  • Borei, H., 1945. Inhibition of cellular oxidation by fluoride, Ark. Kim., Mineral. Geol. 20A: 1–125.

    Google Scholar 

  • Brandt, D. R., and Ross, E. M., 1986. Effect of Al3+ plus F− on the catecholamine-stimulated GTPase activity of purified and reconstituted Gs, Biochemistry 25: 7036–7041.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, J. M., 1981. Yeast enolase: Mechanism of activation by metal ions, CRC Crit. Rev. Biochem. 1981: 209–254.

    Article  Google Scholar 

  • Brewer, J. M., and Ellis, P. D., 1983. 31P-nmr studies of the effect of various metals on substrate binding to yeast enolase, J. Inorg. Biochem. 18: 71–82.

    Google Scholar 

  • Brewer, J. M., Carreira, K. M., Collins, K. M., Duvall, M. C., Cohen, C., and DerVartanian, D. V., 1983. Studies of activation and nonactivating metal ion binding to yeast enolase, J. Inorg. Biochem. 19: 255–267.

    Article  PubMed  CAS  Google Scholar 

  • Bunick, F. J., and Kashket, S., 1982. Binding of fluoride by yeast enolase, Biochemistry 21: 4285–4290.

    Article  PubMed  CAS  Google Scholar 

  • Burch, W. M., Hamner, G., and Wuthier, R. E., 1985. Phosphotyrosine phosphatase activity of alkaline phosphatase in mineralizing cartilage, Metabolism 34: 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Cimasoni, G., 1966. Inhibition of cholinesterase by fluoride in vitro, Biochem. J. 99: 133–137.

    PubMed  CAS  Google Scholar 

  • Cimasoni, G., 1972. The inhibition of enolase by fluoride in vitro, Caries Res. 6: 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Gomperts, B. D., 1985. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase, Nature 314: 534–536.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Taylor, J. A., 1987. Fluoroaluminates mimic guanosine 5’[y-thio]triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes, Biochem. J. 241: 409–414.

    PubMed  CAS  Google Scholar 

  • Colombo, B., Vesco, C., and Baglioni, C., 1968. Role of ribosomal subunits in protein synthesis in mammalian cells, Proc. Natl. Acad. Sci. USA 61: 651–658.

    Article  PubMed  CAS  Google Scholar 

  • Curnutte, J. T., Babior, B. M., and Karnovsky, M. L., 1979. Fluoride-mediated activation of the respiratory burst in human neutrophils, J. Clin. Invest. 63: 637–747.

    Article  PubMed  CAS  Google Scholar 

  • Dandona, P., Gill, D. S., and Khokher, M. A., 1989. Fluoride and osteoblasts (letter), Lancet 1989: 449–450.

    Article  Google Scholar 

  • Dreisbuch, R. H., 1980. Fluorine, hydrogen fluoride and derivatives, in Handbook of Poisoning, Lange Medical Publishers, Los Altos, California, pp. 210–213.

    Google Scholar 

  • Duncan, R. F., and Hershey, J. W., 1987. Initiation factor protein modifications and inhibition of protein synthesis, Mol. Cell. Biol. 7: 1293–1295.

    PubMed  CAS  Google Scholar 

  • Eager. J. M„ 1901. Denti di Chiaie (chiaie teeth), Public Health Rep. 16: 2576.

    Google Scholar 

  • Eanes, E. D., 1982: Effect of fluoride on mineralization of teeth and bones, Proceedings of the International Fluoride Symposium, Logan, Utah, pp. 195–198.

    Google Scholar 

  • Eanes, E. D., and Reddi, A. H., 1979. The effect of fluoride on bone mineral apatite, Metab. Bone Dis. Relat. Res. 2: 3–10.

    Article  CAS  Google Scholar 

  • Ericsson, Y., 1983. Monofluorophosphate physiology: General considerations, Caries Res. 17–(Suppl. 1 ): 46–55.

    Article  PubMed  CAS  Google Scholar 

  • Eriksen, E.F., Hodgson, S. F., and Riggs, B. L., 1988. Treatment of osteoporosis with sodium fluoride, in Osteoporosis. Etiology, Diagnosis, and Management ( B. L. Riggs and L. J. Melton, eds.), Raven Press, New York, pp. 415–432.

    Google Scholar 

  • Farley, J. R., Wergedal, J. E., and Baylink, D. J., 1983. Fluoride directly stimulates proliferation and alkaline phoshatase activity of bone-forming cells, Science 222: 330–332.

    Article  PubMed  CAS  Google Scholar 

  • Farley, J. R., Tarbaux, N. M., Lau, K.-H. W., and Baylink, D. J., 1987. Monofluorophosphate is hydrolyzed by alkaline phosphatase and mimics the actions of NaF on skeletal tissues, in vitro, Calcif. Tissue Int. 40: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Froede, H. C., and Wilson, I. B., 1985. The slow rate of inhibition of acetylcholinesterase by fluoride, Mol. Pharmacol. 27: 630–633.

    PubMed  CAS  Google Scholar 

  • Fung, B. K.-K., 1983. Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits, J. Biol. Chem. 258: 10495–10502.

    PubMed  CAS  Google Scholar 

  • Fung, B. K.-K., and Stryer, L., 1980. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rol outer segments, Proc. Natl. Acad. Sci. USA 77: 2500–2504.

    Article  CAS  Google Scholar 

  • Fung, B. K.-K., Hurley, J. B., and Stryer, L., 1981. Flow of information in the light-triggered cyclic nucleotide cascase of vision, Proc. Natl. Acad. Sci. USA 78: 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Gabler, W. L., and Hunter, N., 1987. Inhibition of human neutrophil phagocytosis and intracellular killing of yeast cells by fluoride, Arch. Oral Biol. 32: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Gabler, W. L., and Leong, P. A., 1979. Fluoride inhibition of polymorphonuclear leukocytes, J. Dent. Res. 58: 1933–1939.

    Article  PubMed  CAS  Google Scholar 

  • Germaine, G. R., and Tellefson, L. M., 1986a. Role of the cell membrane in pH-dependent fluoride inhibition of glucose uptake by Streptococcus mutans, Antimicrob. Agents Chemother, 29: 58–61.

    CAS  Google Scholar 

  • Germaine, G. R., and Tellefson, L. M., 1986b. Effect of endogenous phosphoenolpyruvate on fluoride inhibition of glucose by Streptococcus mutans, Infect. Immun. 51: 119–124.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G., 1984a Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase, J. Clin. Invest. 73: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G., 1984b. G proteins and dual control of adenylate cyclase, Cell 36: 577–579.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G., 1987. G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem. 56: 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Godchaux, W., III and Atwood, K. C., IV, 1976. Structure and function of initiation complexes which accumulate during inhibition of protein synthesis by fluoride ion, J. Biol. Chem. 251: 292–301.

    PubMed  CAS  Google Scholar 

  • Greenspan, C. M., and Wilson, I. B., 1970. The effect of fluoride on the reaction of acetylcholinesterase with carbamates, Mol. Pharmacol. 6: 266–272.

    PubMed  CAS  Google Scholar 

  • Gron, P., 1977. Chemistry of topical fluorides, Caries Res. 11 (Suppl. 1): 172–204.

    Article  PubMed  Google Scholar 

  • Guy, W.S., Taves, D.R. and Brey, W. S., Jr., 1976. Organic fluorocompounds in human plasma: Prevalence and characterization, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series 28, American Chemical Society, Washington, D. C., pp. 117–134.

    Chapter  Google Scholar 

  • Hamilton, I. R., 1977. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism, Caries Res. 11 (Suppl. 1): 262–278.

    Article  PubMed  Google Scholar 

  • Haromy, T. P., Knight, W. B., Dunaway-Mariano, D., and Sundaralingam, M., 1982. X-ray crystallographic and nuclear magnetic resonance spectral studies of the products from yeast inorganic pyrophosphatase-Co(NH3)4 PP reaction. Investigation of the pyrophosphatase reaction mechanism, Biochemistry 21: 6950–6956.

    Article  PubMed  CAS  Google Scholar 

  • Harper, D. S., and Loesche, W. J., 1986. Inhibition of acid production from oral bacteria by fluorapatite-derived fluoride, J. Dent. Res. 65: 30–33.

    Article  PubMed  CAS  Google Scholar 

  • Haugen, D. A., and Suttie, J. W., 1974. Fluoride inhibition of rat liver microsomal esterases, J. Biol. Chem. 249: 2723–2731.

    PubMed  CAS  Google Scholar 

  • Higashijima, T., Ferguson, K. M., Sternweis, P. C., Ross, E. M., Smigel, M. D., and Gilman, A. G., 1987. The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins, J. Biol. Chem. 262: 752–756.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, J. D., Codina, J., Risinger, R., and Birnbaumer, L., 1984. Identification of a y-subunit associated with the adenyl cyclase regulatory proteins N. and N. J. Biol. Chem. 259: 2039–2042.

    CAS  Google Scholar 

  • Hodge, H. C., and Smith, F. A., 1981. Fluoride, Mineral Metab. 1: 439–483.

    CAS  Google Scholar 

  • Hodge, H. C., and Smith, F. A., 1965a. Biological properties of inorganic fluorides, in Fluorine Chemistry, Volume IV ( J. H. Simon, ed.), Academic Press, New York, London, pp. 1–375.

    Google Scholar 

  • Hodge, H. C., and Smith, F. A., 1965b. Effects of fluoride on bonesiand teeth, in Fluorine Chemistry, Volume IV ( J. H. Simon, ed.), Academic Press, New York, London, pp. 376–691.

    Google Scholar 

  • Holland, R. I., 1979a. Fluoride inhibition of DNA synthesis in cells in vitro, Acta Pharmacol. Toxicol. 45: 96–101.

    Article  CAS  Google Scholar 

  • Holland, R. I., 1979b. Fluoride inhibition of protein synthesis, Cell Biol. Int. Rep. 3: 701–705.

    Article  PubMed  CAS  Google Scholar 

  • Hongslo, C. F., Hongslo, J. K., and Holland, R. I., 1980. Fluoride sensitivity of cells from different organs, Acta Pharmacol. Toxicol. 46: 73–77.

    Article  CAS  Google Scholar 

  • Howlett, A. C., Sternweis, P. C., Macik, B. A., Van Arsdale, P. M., and Gilman, A. G., 1979. Reconstitution of catecholamine-sensitive adenylate cyclase. Association of a regulatory component of the enzyme with membranes containing the protein and β-adrenergic receptors, J. Biol. Chem. 254: 2287–2295.

    PubMed  CAS  Google Scholar 

  • Humphreys, W. G., and Macdonald, T. L., 1988. The effects of tubulin polymerization and associated guanosine triphosphate hydrolysis of aluminum ion, fluoride ion, and fluoroaluminate species, Biochem. Biophys. Res. Commun. 151: 1025–1032.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, G. N., and Edgar, W. M., 1977. Distribution and forms of F in saliva and plaque, Caries Res. 11 (Supp1. 1): 226–242.

    Article  PubMed  Google Scholar 

  • Jowsey, J., and Kelley, P. J., 1968. Effect of fluoride treatment in a patient with osteoporosis, Mayo Clinic Proc. 43: 435–443.

    CAS  Google Scholar 

  • Jowsey, J., Riggs, B. L., Kelly, P. J., and Hoffman, D. L., 1972. Effect of combined therapy with sodium fluoride, vitamin D and calcium in osteoporosis, Amer. J. Med. 53: 43–59.

    Article  PubMed  CAS  Google Scholar 

  • Kanaho, Y., Moss, J., and Vaughan, M., 1985. Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum, J. Biol. Chem. 260: 11493–11497.

    PubMed  CAS  Google Scholar 

  • Katada, T., Bokoch, G. M., Northup, J. K., Ui, M., and Gilman, A. G., 1984a. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and functions of the purified protein, J. Biol. Chem. 259: 3568–3577.

    PubMed  CAS  Google Scholar 

  • Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G., 1984b. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition, J. Biol. Chem. 259: 3578–3585.

    PubMed  CAS  Google Scholar 

  • Kienast, J., Arnout, J., Pliegler, G., Deckmyn, H., Hoet, B., and Vermylen, J., 1987. Sodium fluoride mimics effects of both agonists and antagonists on intact human platelets by simultaneous modulation of phospholipase C and adenylate cyclase activity, Blood 69: 859–866.

    PubMed  CAS  Google Scholar 

  • Kilian, M., Larsen, M. J., Fejerskov, O., and Thylstrup, A., 1979. Effects of fluoride on the initial colonization of teeth in vivo, Caries Res. 13: 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Kleiner, H. S., and Allmann, D. W., 1982. The effects of fluoridated water on rat urine and tissue cAMP levels, Arch. Oral Biol. 27: 107–112.

    Article  PubMed  CAS  Google Scholar 

  • Knight, W. B., Fitts, S. W., and Dunaway-Mariano, D., 1981. Investigation of the catalytic mechanism of yeast inorganic pyrophosphate, Biochemistry 20: 4079–4086.

    Article  PubMed  CAS  Google Scholar 

  • Knight, W. B., Ting, S.-J., Chuang, S., Dunaway-Mariano, D., Harmony, T., and Sundaralingam, M., 1983. Yeast inorganic pyrophosphatase substrate recognition, Arch. Biochem. Biophys. 227: 302–309.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, H., 1980. Light-and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes, Nature 283: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Kuza, M., and Kazimierczak, W, 1982. On the mechanism of histamine release from sodium fluoride-activated mouse mast cells, Agents Actions 12: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Lange, A. J., Anion, W. J., Burchell, A., and Burchell, B., 1986. Aluminum ions are required for stabilization and inhibition of hepatic microsomal glucose-6-phosphatase by sodium fluoride, J. Biol. Chem. 261: 101–107.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R. J., Caron, M. G., and Stiles, G. L., 1984. Mechanisms of membrane-receptor regulation. Biochemical, physiological, and clinical insights derived from studies of the adrenergic receptors, N. Engl. J. Med. 310: 1570–1579.

    Article  PubMed  CAS  Google Scholar 

  • Lin, I., Knight, W. B., Hsueh, A., and Dunaway-Mariano, D., 1986. Investigation of the regiospecificity and stereospecificity of proton transfer in the yeast inorganic pyrophosphatase catalyzed reaction, Biochemistry 25: 4688–4692.

    Article  PubMed  CAS  Google Scholar 

  • Litosch, I., and Fain, J. N., 1986. Regulation of phosphoinositide breakdown by guanine nucleotides, Life Sci. 39: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Lochrie, M. A., and Simon, M. I., 1988. G Protein multiplicity in eukaryotic signal transduction systems, Biochemistry 27: 4957–4965.

    Article  PubMed  CAS  Google Scholar 

  • Lundy, M. W., Farley, J. R., and Baylink, D. J., 1986. Characterization of a rapidly responding animal model for fluoride-stimulated bone formation, Bone 7: 289–293.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, T. L., and Martin, R. B., 1988. Aluminum ion in biological systems, Trends Biochem. Sci. 13: 15–19.

    Article  PubMed  CAS  Google Scholar 

  • Marks, P. A., Burka, E. R., Conconi, F. M., Perl, W., and Rifkind, R. A., 1965. Polyribosome dissociation and formation in intact reticulocytes with conservation of messenger ribonucleic acid, Proc. Natl. Acad. Sci. USA 53: 1437–1443.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, 1970. Changes in cell function due to inorganic fluoride, in Handbook of Experimental Pharmacology, XX/2. Pharmacology of Fluorides, Part 2 ( A. F. Smith, ed.), Springer-Verlag, Berlin, pp. 98–143.

    Google Scholar 

  • Maurer, P. J., and Nowak, T., 1981. Fluoride inhibition of yeast enolase. 1. Formation of the ligand complexes, Biochemistry 20: 6894–6900.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, J. P., Capon, D. J., Goeddel, D. V., and Levinson, A. D., 1984. Comparative biochemical properties of normal and activated human ras p21 protein, Nature 310: 644–649.

    Article  PubMed  CAS  Google Scholar 

  • Mclvor, M. E., Cummings, C. C., Mower, M. M., Baltazar, R. F., Wenk, R. E., Lustgarten, J. A., and Salomon, J., 1985. The manipulation of postassium efflux during fluoride intoxication: Implications for therapy, Toxicology 37: 233–239.

    Article  Google Scholar 

  • McPhail, L. C., Shirley, P. S., Clayton, C. C., and Snyderman, R., 1985. Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. Evidence for a soluble cofactor, J.Clin.invest. 75: 1735–1739.

    Article  PubMed  CAS  Google Scholar 

  • Messer, H. H. 1984. Flunrine, in Biochemistry of the Essential Ultratrace Elements ( E. Frieden, ed.), Plenum Press, New York, pp. 55–87.

    Chapter  Google Scholar 

  • Miki, N., Keims, J. J., Marcus, F. R., Freeman, J., and Bitensky, M. W., 1973. Regulation of cyclic nucleotide concentrations in photoreceptors: An ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light, Proc. Natl. Acad. Sci. USA 70: 3820–3824.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. L., Hubbard, C. M., Litman, B. J., and Macdonald, T. L., 1989. Inhibition of transducin activation and guanosine triphosphatase activity by aluminum ion, J. Biol. Chem. 264: 243–250.

    PubMed  CAS  Google Scholar 

  • Moreno, E. C., Kresak, M., and Zahradnik, R. T., 1977. Physicochemical aspects of fluorideapatite systems relevant to the study of caries, Caries Res. 11 (Suppl. 1): 142–171.

    Article  PubMed  Google Scholar 

  • Mundy, G. R., 1989. Identifying mechanisms for increasing bone mass, J. NIH Res. 1: 65–68.

    Google Scholar 

  • Neuman, W. F., DiStefano, V., and Mulryan, B. J., 1951. The surface chemistry of bone. III. Observations on the role of phosphatase. J. Biol. Chem. 17: 286–293.

    Google Scholar 

  • Newbold, R., 1984. Mutant ras proteins and cell transformation, Nature 310: 628–629.

    Article  PubMed  CAS  Google Scholar 

  • Northup, J. K., Sternweis, P. C., and Gilman, A. G., 1983a. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity, and properties of the 35,000-Da (β) subunit, J. Biol. Chem. 258: 11361–11368.

    PubMed  CAS  Google Scholar 

  • Northup, J. K., Smigel, M. D., Sternweis, P. C., and Gilman, A. G., 1983b. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-Dalton (α) subunit, J. Biol. Chem. 258: 11369–11376.

    PubMed  CAS  Google Scholar 

  • Nowak, T., and Maurer, P. J., 1981. Fluoride inhibition of enolase 2. Structural and kinetic properties of the ligand complexes determined by nuclear relaxation rate studies, Biochemistry 20: 6901–6911.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, T., Mildvan, A. S., and Kenyon, G. L., 1973. Nuclear relaxation and kinetic studies of the role of Mn2+ in the mechanism of enolase, Biochemistry 12: 1690–1701.

    Article  PubMed  CAS  Google Scholar 

  • Page, J. D., and Wilson, I. B., 1983. The inhibition of acetylcholinesterase by arsenite and fluoride, Arch. Biochem. Biophys. 226: 492–497.

    Article  PubMed  CAS  Google Scholar 

  • Page, J. D., Wilson, I. B., and Silman, I., 1985. Butyrylcholinesterase: Inhibition by arsenite, fluoride, and other ligands, cooperativity in binding, Mol. Pharmacol. 27: 437–443.

    PubMed  CAS  Google Scholar 

  • Pain, V. M., 1986. Inhibition of protein synthesis in mammalian cells, Biochem. J. 235: 625–637.

    PubMed  CAS  Google Scholar 

  • Pak, C. Y. C., Sakhaee, K., Zerwekh, J. E., Parcel, C., Peterson, R., and Johnson, K., 1989. Safe and effective treatment of osteoporosis with intermittent slow release sodium fluoride: Augmentation of vertebral bone mass and inhibition of fractures, J. Clin. Invest. Metab. 68: 150–159.

    CAS  Google Scholar 

  • Peck, W. A., and Woods, W. L., 1988. The cells of bone, in Osteoporosis: Etiology, Diagnosis, and Management ( B. L. Riggs and J. L. Melton, eds.), Raven Press, New York, pp. 1–44.

    Google Scholar 

  • Peters, R. A., Shorthouse, M., and Murray, L. R., 1964. Enolase and fluorophosphate, Nature 202: 1331.

    Article  PubMed  CAS  Google Scholar 

  • Poll, C., Kyrle, P., and Westwick, J., 1986. Activation of protein kinase C inhibits sodium fluoride-induced elevation of human platelet cytosolic free calcium and thromboxane B2 generation, Biochem. Biophys. Res. Commun. 136: 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Prince, R. C., and Gunson, D. E., 1987. Superoxide production by neutrophile, Trends Biochem. Sci. 12: 86–87.

    Article  CAS  Google Scholar 

  • Reinbold, W.-D., Genant, H. K., Reiser, U. J., Harris, S. T., and Ettinger, B., 1986. Bone mineral content in early-postmenopausal and postmenopausal women: Comparison of measurement method, Radiology 160: 469–478.

    PubMed  CAS  Google Scholar 

  • Revell, P. A., 1986. Pathology of Bone, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Rich, C., and Ensinek, J., 1961. Effect of sodium fluoride on calcium metabolism of human beings, Nature 191: 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Rich, C., Ensinck, J., and Ivanovich, P., 1964. The effects of sodium fluoride on calcium metabolism of subjects with metabolic bone disease, J. Clin. Invest. 43: 545–556.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, B. L., 1984. Treatment of osteoporosis with sodium fluoride: An appraisal, in Bone and Mineral Research, Annual 2 ( W. A. Peck, ed.), Elsevier, Amsterdam, pp. 366–393.

    Google Scholar 

  • Riggs, B. L., and Melton, L. J., III (eds.), 1988. Osteoporosis: Etiology, Diagnosis, and Management, Raven Press, New York.

    Google Scholar 

  • Riggs, B. L., Seeman, E., Hodgson, S. F., Taves, D. R., and O’Fallon, W. M., 1982. Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis: Comparison with conventional therapy, N. Engl. J. Med. 306: 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1975. Functionally distinct classes of K+ sites on the (Na+ + K+)-dependent ATPase, Biochim. Biophys. Acta 384: 250–264.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., Davis, R. L., and Steinberg, M., 1986. Fluoride and beryllium interact with the (Na+ K)-dependent ATPase as analogs of phosphate, J. Bioenerg. Biomembr. 18: 521–531.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, R., 1923. The possible significance of hexose phosphoric esters in ossification, Biochem. J. 17: 286–293.

    Google Scholar 

  • Rodbell, M., 1980. The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Schelling, D. L., and Cohen, P., 1987. MgATP-Dependent inactivation of rat liver aminoacyltRNA synthetases is explained by pyrophosphate generation and not by phosphorylation, Biochem. Soc. Proc. 15: 271–272.

    CAS  Google Scholar 

  • Skorecki, K. L., Verkman, A. S., Jung, C. Y., and Ausiello, D. A., 1986. Evidence for vasopressin activation of adenylate cyclase by subunit dissociation, Am. J. Physiol. 250: C103 - C123.

    PubMed  Google Scholar 

  • Smirnova, I. N., and Baikov, A. A., 1983. Two-step mechanism of inhibition of inorganic pyrophosphatase by fluoride, Biochemistry (Biokhimiya) 48: 1414–1423.

    Google Scholar 

  • Smith, F. A.,1966. Metabolism of inorganic fluoride, in Handbook of Experimental Pharmacology, XXII. Pharmacology ofFriorides, Part I (O. Eichler, A. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, Berlin, pp. 53–140.

    Google Scholar 

  • Spencer, S. G., and Brewer, J. G., 1982. Substrate-dependent inhibition of yeast enolase by fluoride, Biochem. Biophys. Res. Commun. 106: 553–558.

    Article  PubMed  CAS  Google Scholar 

  • Springs, B., Welsh, K. M., and Cooperman, B. S., 1981. Thermodynamics, kinetics, and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: Inorganic phosphate equilibration, Biochemistry 20: 6384–6391.

    Article  PubMed  CAS  Google Scholar 

  • Stein, P. J., Halliday, K. R., and Rasenick, M. M., 1985. Photoreceptor protein mediates fluoride activation of phosphodiesterase, J. Biol. Chem. 260: 9081–9084.

    PubMed  CAS  Google Scholar 

  • Sternweis, P. C., and Gilman, A. G., 1982. Aluminum: A requirement for activation of the regulatory component of adenylate cyclase by fluoride, Proc. Natl. Acad. Sci. USA 79: 4888–4891.

    Article  PubMed  CAS  Google Scholar 

  • Stiles, G. L., Caron, M. C., and Lefkowitz, R. J., 1984. β-Adrenergic receptors: Biochemical mechanisms of physiological regulation, Physiol. Rev. 64: 661–742.

    Google Scholar 

  • Strnad, C. F., and Wong, K., 1985. Calcium mobilization in fluoride activated human neutrophils, Biochem. Biophys. Res. Commun. 133: 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Susheela, A., K., and Singh, M., 1982. Adenyl cyclase activity following fluoride ingestion, Toxicol. Lett. 10: 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, E. W., and Rall, T. W., 1958. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles, J. Biol. Chem. 232: 1077–1091.

    PubMed  CAS  Google Scholar 

  • Swarup, G., Cohen, S., and Garbers, D. L., 1981. Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatases, J. Biol. Chem. 256: 8197–8201.

    PubMed  CAS  Google Scholar 

  • ten Cate, J. M., and Arends, J., 1977. Remineralization of artificial enamel lesions in vitro, Caries Res. 11: 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, J., 1981. The Physiology of Bone, Clarendon Press, Oxford.

    Google Scholar 

  • Verkman, A. S., Ausiello, D. A., Jung, C. Y., and Skorecki, K. L., 1986. Mechanisms of non-hormonal activation of adenylate cyclase based on target analysis, Biochemistry 25: 4566–4572.

    Article  PubMed  CAS  Google Scholar 

  • Vittur, F., and deBernard, B., 1973. Alkaline phosphatase activity associated to a calcium-binding glycoprotein from calf scapula cartilage, FEBS Lett. 38: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T., and Himoe, A., 1973. Kinetics of the rabbit muscle enolase-catalyzed dehydration of 2-phosphoglycerate: Fluoride and phosphate inhibition, J. Biol. Chem. 249: 3895–3902.

    Google Scholar 

  • Warburg, O., and Christian, W., 1942. Isolierung and Kristallisation des Gärungsferments Enolase, Biochem. Z. 310: 384–421.

    CAS  Google Scholar 

  • Weatherell, J. A., 1969. Fluoride and the skeletal and dental tissues, in Handbook of Experimental Pharmacology XXII. Pharmacology of Fluorides, Part 1 ( O. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, Berlin, pp. 141–172.

    Google Scholar 

  • Whyte, M. P., and Vrabel, L. A., 1987. Infantile hypophosphatasia fibroblasts proliferate normally in culture: Evidence against a role for alkaline phosphatase (tissue nonspecific isoenzyme) in the regulation of cell growth and differentiation, Calcif. Tissue Int. 40: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. B., 1985. Cholinesterase: Two surprising inhibitors, in Molecular Basis of Nerve Activity ( J. P. Changeux, ed.), Walter de Gruyter & Co., Berlin, pp. 667–678.

    Google Scholar 

  • Wiseman, A., 1970. Effect of inorganic fluoride on enzymes, in Handbook of Experimental Pharmacology XX/2. Pharmacology of Fluorides, Part 2 ( F. A. Smith, ed.), Springer-Verlag, Berlin, pp. 48–97.

    Google Scholar 

  • Wuthier, R. E., and Register, T. C., 1984. Role of alkaline phosphatase, a polyfunctional enzyme, in mineralizing tissues, in The Chemistry and Biology of Mineralized Tissues (W. T. Butler, ed.), Proceedings of the Second International Conference on the Chemistry and Biology of Mineralized Tissues, Gulf Shores, Alabama, September 9–14, 1984, Ebsco Media, Birmingham.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kirk, K.L. (1991). Biochemistry of Inorganic Fluoride. In: Biochemistry of the Elemental Halogens and Inorganic Halides. Biochemistry of the Elements, vol 9A+B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5817-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5817-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5819-0

  • Online ISBN: 978-1-4684-5817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics