Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 274))

Abstract

For about a quarter of a century, nonapeptides of the vasopressin (VP) type, especially arginine-VP (AVP) and oxytocin (OXT), have been studied in relation to the behavioral performance of mammals. The starting point was the observation that, in addition to their classical roles in endocrine function, certain peptides modified central neuronal processes. The results of de Wied (1,2) attracted special interest, because they suggested the involvement of nonapeptides in learning and memory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Wied, D., The influence of the posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats, Int J Neuropharmacol 4157–167,1965.

    Article  Google Scholar 

  2. de Wied, D., and B. Bohus, Long term and short term effects on retention of a conditioned avoidance response in rats by treatment with long acting pitresin and a-MSH, Nature 212 1484–1486, 1966.

    Article  PubMed  Google Scholar 

  3. Sterba, G., and J. Kormann, Der einfluss von Oxytocinen auf das ständige hirnpotential von narkotisierten fröschen, Pflügers Archiv fur die Gesamte Physiologe 287 345–350, 1966.

    Article  CAS  Google Scholar 

  4. Schäker, W., F. Klingberg, G. Sterba, and L. Pickenhain, Der einfluss von oxytocin auf zentralnervöse funktionen bei der ratte im chronischen experiment, Pflügers Archiv fur die Gesamte Physiologie 288 322–331, 1966.

    Article  Google Scholar 

  5. Sterba, G., Ascending neurosecretory pathways of the peptidergic type, In F. Knowles and L. Vollrath (eds) Neurosecretion-The Final Neuroendocrine Pathway ,Springer Verlag, Berlin, pp. 38–47, 1974.

    Google Scholar 

  6. Sterba, G., Das oxytocinerge neurosekreterische system der Wirbeltiere, beitrag zu einem erweiterten konsept, Zool Jb Physiol 78 409–423, 1974.

    Google Scholar 

  7. Sterba, G., H. Petter, R. Landgraf, W. Lösecke, K. Sciler, W. Naumann, Cytochemistry of neurosecretory cells, In P.M. Gross (ed) Circumventricular Organs and Body Fluids, Vol III ,CRC Press, Inc., Boca Raton, pp. 63–82, 1987.

    Google Scholar 

  8. Sterba, G., G. Hoheisel, R. Wegelin, W. Naumann, and F. Schober, Peptide containing vesicles within neuro-neuronal synapses, Brain Res 169 55–64, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. de Wied, D., Neuropeptides and behaviour, In M.J. Parnham and J. Bruinvles (eds) Discoveries in Pharmacology, Volume 1 Psycho-and Neuro-Pharmacology ,Elsevier Science Publishers, B.V., Amsterdam, pp. 307–353, 1983.

    Google Scholar 

  10. Buijs, R.M., Vasopressin localization and putative functions in the brain, In D.M. Gash and G.J. Boer (eds) Vasopressin, Principles and Properties ,Plenum Press, New York, pp. 91–115, 1987.

    Google Scholar 

  11. Jard, S., Vasopressin isoreceptors in mammals relation to cyclic AMP-dependent and cyclic AMP-independent transduction mechanisms, In A. Kleinzeller and B.R. Martin (eds) Current Topics in Membranes and Transport, Volume 18 Membrane Receptors ,Academic Press, New York, pp. 255–285, 1983.

    Google Scholar 

  12. Kretzschmar, R., and A. Ermisch, Arginine-vasopressin binding to isolated hippocampal microvessels of rats with different endogenous concentrations of the neuropeptide, Exp Clin Endocrinol 94 151–156, 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Van Leeuwen, F.W., Vasopressin receptors in the brain and pituitary, In D.M. Gash and G.J. Boer (eds) Vasopressin, Principles and Properties ,Plenum Press, New York, pp. 477–496, 1987.

    Google Scholar 

  14. Poulain, DA., and D.T. Theodosis, Coupling of electrical activity and hormone release in mammalian neurosecretory neurons, Curr Top Neuroendocrinol 9 73–104, 1988.

    Article  Google Scholar 

  15. Jójárt, I., F. Joó, L. Siklós, FA. Lázló, Immunoelectronhistochemical evidence for innervation of brain microvessels by vasopressin-immunoreactive neurons in the rat, Neurosci Lett 51 259–264, 1984.

    Article  PubMed  Google Scholar 

  16. Landgraf, R., I. Neumann, and H. Schwarzberg, Central and peripheral release of vasopressin and oxytocin in the conscious rat after osmotic stimulation, Brain Res 457 219–225, 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Demotes-Mainard, J., J. Chauveau, F. Rodrigues, J.D. Vincent, and DA. Poulain, Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats, Brain Res 381314–321, 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Landgraf, R., T.J. Malkinson, T. Horn, W.L. Veale, K. Lederis, and Q.J. Pittman, Release of vasopressin and oxytocin from nucleus tractus solitarius/dorsal vagal nucleus following PVN stimulation in rats, Am J Physiol In Press.

    Google Scholar 

  19. Neumann, I., H. Schwarzberg, and R. Landgraf, Measurement of septal release of vasopressin and oxytocin by the push-pull technique following electrical stimulation of the paraventricular nucleus of rats, Brain Res 462 181–184, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Landgraf, R., T.J. Malkinson, W.L. Veale, K. Lederis, and Q.J. Pittman, Vasopressin and oxytocin in the rat brain in response to prostaglandin fever, In Preparation.

    Google Scholar 

  21. Pittman, Q.J., A. Naylor, P. Poulin, J. Disturnal, W.L. Veale, S.M. Martin, T.J. Malkinson, and B. Mathieson, The role of vasopressin as an antipyretic in the ventral septal area and its possible involvement in convulsive disorders, Brain Res Bull 20 887–892, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Neumann, I., R. Landgraf, Septal and hippocampal release of oxytocin, but not vasopressin, in the conscious lactating rat during suckling, J Neuroendocrinol 1 305–308, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Kasting, N.W., Potent stimuli for vasopressin release, hypertonic saline and hemorrhage cause antipyresis in the rat, Regul Pept 15 293–300, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Koob, G.F., R. Dantzer, F. Rodriguez, F.E. Bloom, and M. Le Moal, Osmotic stress mimics effects of vasopressin on learned behaviour, Nature 315 750–752, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Pittman, Q. J., and L.G. Franklin, Vasopressin antagonist in nucleus tractus solitarius/vagal area reduces pressor and tachycardia responses to paraventricular nucleus stimulation in rats, Neurosci Lett 56 155–160, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Kasting, N.W., Criteria for establishing a physiological role for brain peptides. A case in point the role of vasopressin in thermoregulation during fever and antipyresis, Brain Res Rev 14 143–153, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Doris, P.A., Central cardiovascular regulation and the role of vasopressin a review, Clin Exp Theor Practice A6 2197–2217, 1984.

    Article  CAS  Google Scholar 

  28. Schmid, P.G., F.M. Sharabi, G.B. Guo, F.M. Abboud, and M.D. Thanes, Vasopressin and oxytocin in the neural control of the circulation, Fed Proc 43 97–102, 1984.

    PubMed  CAS  Google Scholar 

  29. Leibowitz, S.F., Hypothalamic paraventricular nucleus interaction between α2-noradrenergic system and circulating hormones and nutrients in relation to energy balance, Neurosci Biobehav Rev 12 101–109, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Messing, R.B., S.B. Sparker, Greater task difficulty amplifies the facilitatory effect of des-glycinamide arginine vasopressin on appetitivily motivated learning, Behav Neurosci 99 1114–1119, 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Berkowitz, BA., S. Sherman, Characterization of vasopressin analgesia, J Pharmacol Exp Ther 220 329–334, 1982.

    PubMed  CAS  Google Scholar 

  32. Ermisch, A., M. Koch, and T. Barth, Learning performance of rats after pre-and postnatal application of arginine-vasopressin, In G. Dörner, S.M. McCann, and L. Martini (eds) Monographs in Neural Sciences, Volume 12, Systemic Hormones, Neurotransmitters and Brain Development ,Karger, Basel, pp. 142–147, 1985.

    Google Scholar 

  33. Ermisch, A., R. Landgraf, and P. Möbius, Vasopressin and oxytocin in brain areas of rats with high or low behavioral performance, Brain Res 379 24–29, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Ermisch, A., R. Landgraf, P. Möbius, and H. Petter, Behavioral performance of rats and the content of vasopressin and oxytocin in distinct brain areas, In H. Matthies (ed) Learning and Memory Mechanisms of Information Storage in the Nervous System, Advances in the Biosciences, Volume 59 ,Pergamon Press, Oxford, pp. 369–372, 1986.

    Google Scholar 

  35. Landgraf, R, Simultaneous measurement of arginine vasopressin and oxytocin in plasma and neurohypophyses by radioimmunoassay, Endokrinologie 78 191–204, 1981.

    PubMed  CAS  Google Scholar 

  36. Hasche, W., Grundzüge der neurophysiologie unter dem aspekt der integrativen Tätikeit des ZNS, 3. Aufl., VEB Gustav Fischer Verlag, Jena, 1986.

    Google Scholar 

  37. Melander, T., WA. Staines, T. Hökfelt, A. Rökaeus, F. Eckenstein, P.M. Salvaterr, and B.H. Wainer, Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projection to the hippocampus of the rat, Brain Res 360 130–138, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Nyakas, C, P.G.M. Luiten, D.G. Spencer, and J. Traper, Detailed projection patterns of the septal and diagonal band efferents to the hippocampus in the rat with emphasis on innervation of CA1 and dentate gyrus, Brain Res Bull 18 533–545, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Kennedy, M.B., Synaptic memory molecules, Nature 335 770–772, 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Matthies, H., Plasticity in the nervous system an approach to memory research, In CA. Marsan and H. Matthies (eds) Neuronal Plasticity and Memory Formation, IBRO-Monograph Series Volume 9 ,Raven Press, New York, pp. 1–15, 1982.

    Google Scholar 

  41. Rose, S.P.R., Obstacles and progress in studying the cell biology of learning and memory, In H. Matthies (ed) Learning and Memory Mechanisms of Information Storage in the Nervous System, Advances in the Biosciences Volume 59 ,Pergamon Press, Oxford, pp. 165–172, 1986.

    Google Scholar 

  42. Zlokovič, B.V., D.J. Begley, M.B. Segal, H. Davson, L.J. Rakič, M.N. Lipovač, D.M. Mitrovič, and R.M. Jankov, Neuropeptide transport mechanisms in the central nervous system, In L.J. Rakič, DJ. Begley, H. Davson, and B.V. Zlokovič (eds) Peptide and Amino Acid Transport Mechanisms in the Central Nervous System ,Stockton Press, NY, pp. 3–20, 1988.

    Google Scholar 

  43. Oldendorf, W.H., Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard, Brain Res 24 372–376, 1970.

    Article  PubMed  CAS  Google Scholar 

  44. Reith, J., A. Ermisch, N.H. Diemer, and A. Gjedde, Saturable retention of vasopressin by hippocampus vessels in vivo, associated with inhibition of blood-brain barrier transfer of large neutral amino acids, J Neurochem 49 1471–1479, 1987.

    Article  PubMed  CAS  Google Scholar 

  45. Jod, F., The blood-brain barrier new aspects to the function of the cerebral endothelium, Nature 321 197–198, 1986.

    Article  Google Scholar 

  46. Oldendorf, W.H., and L.D. Braun, [3H]tryptamine and [3H]-water as diffusible internal standards for measuring brain extraction of radio-labeled substances following carotid injection, Brain Res 113219–224, 1976.

    Article  PubMed  CAS  Google Scholar 

  47. Rapoport, S.I., WA. Klee, K.D. Pettigrew, and K. Ohno, Entry of opioid peptides into the central nervous system, Science 207 84–86, 1980.

    Article  PubMed  CAS  Google Scholar 

  48. Frank, H.J.L., and W.M. Pardridge, A direct in vitro demonstration of insulin binding to isolated brain microvessels, Diabetes 30 757–761, 1981.

    Article  PubMed  CAS  Google Scholar 

  49. Kretzschmar, R., R. Landgraf, A. Gjedde, and A. Ermisch, Vasopressin binds to microvessels from rat hippocampus, Brain Res 380 325–330, 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Speth, R.C., and S.I. Harik, Angiotensin II receptor binding sites in brain microvessels, Proc Natl Acad Sci USA 82 6340–6343, 1985.

    Article  PubMed  CAS  Google Scholar 

  51. Chabrier, P.E., P. Roubert, P. Plas, and P. Braquet, Blood-brain barrier and atrial natriuretic factor, Can J Physiol Pharmacol 66 276–279, 1988.

    Article  PubMed  CAS  Google Scholar 

  52. Smith, K.R., A. Kato, and R.T. Borchardt, Characterization of specific receptors for atrial natriuretic factor on cultured bovine brain capillary endothelial cells, Biochem Biophys Res Comm 157 308–314, 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Niwa, M., M. Ibaragi, K. Tsutsumi, M. Kurihara, A. Himeno, K. Mori, and M. Ozaki, Specific atrial natriuretic peptide binding sites in rat cerebral capillaries, Neurosci Lett 91 89–94, 1988.

    Article  PubMed  CAS  Google Scholar 

  54. Cornford, E.M., The blood-brain barrier, a dynamic regulatory interface, Mol Physiol 7 219–260,1985.

    CAS  Google Scholar 

  55. Van Zwieten, E.J., R. Ravid, D.F. Swaab, and T.J. Woude, Immunocytochemically stained vasopressin binding sites on blood vessels in the rat brain, Brain Res 474 369–373, 1988.

    Article  PubMed  Google Scholar 

  56. Ermisch, A., Blood-brain barrier and peptides, Wiss Z Karl-Marx-Univ Leipzig Math-Naturwiss Reihe 36 72–77, 1987.

    CAS  Google Scholar 

  57. Möhring, B., and J. Möhring, Plasma ADH in normal Long-Evans rats and in Long-Evans rats heterozygous and homozygous for hypothalamic diabetes insipidus, Life Sci 17 1307–1314, 1975.

    Article  PubMed  Google Scholar 

  58. Hess, J., A. Gjedde, and H. Jessen, Vasopressin receptors at the blood-brain barrier in rats, Wizz Z Karl-Marx-Univ Leipzig Math-Naturwiss Reihe 36 81–83, 1987.

    CAS  Google Scholar 

  59. Ermisch, A., R. Landgraf, P. Brust, R. Kretzschmar, and J. Hess, Peptide receptors of the cerebral capillary endothelium and the transport of amino acids across the blood-brain barrier, In L.J. Rakič, D.J. Begley, H. Davson, and B.V. Zlokovič (eds) Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, Stockton Press, New York, pp. 41–54, 1988.

    Google Scholar 

  60. Landgraf, R., J. Hess, and E. Hartmann, The influence of oxytocin on the regional uptake of [3H] orotic acid by rat brain, Endokrinologie 70 45–52, 1977.

    PubMed  CAS  Google Scholar 

  61. Landgraf, R., J. Hess, and A. Ermisch, The influence of vasopressin on the regional uptake of [3H] orotic acid by rat brain, Acta Biol Med Germ 37 655–658, 1978.

    PubMed  CAS  Google Scholar 

  62. Ermisch, A., T. Barth, HJ. Rühle, J. Skopková, P. Hrbas, and R. Landgraf, On the blood-brain barrier to peptides accumulation of labelled vasopressin, desglyHG2-vasopressin and oxytocin by brain regions, Endocrinologia Experimentalis 19 29–37, 1985.

    PubMed  CAS  Google Scholar 

  63. Brust, P., Changes in regional blood-brain transfer of L-leucine elicited by arginine-vasopressin, J Neurochem 46 534–541, 1986.

    Article  PubMed  CAS  Google Scholar 

  64. Brust, P., and J. Zicha, Kinetics of regional blood-brain barrier transport of L-leucine in Brattleboro rats, Biomed Biochim Acta 47 1013–1021, 1988.

    PubMed  CAS  Google Scholar 

  65. Ermisch, A., H.-J. Rühle, K. Neubert, K. Hartrodt, and R. Landgraf, On the blood-brain barrier to peptides [3H]β-casomorphin-5 uptake by eighteen brain regions in vivo, J Neurochem 41 1229–1233, 1983.

    Article  PubMed  CAS  Google Scholar 

  66. Ermisch, A., H.-J. Rühle, R. Landgraf, and J. Hess, Blood-brain barrier and peptides, J Cereb Blood Flow Metab 5 350–357, 1985.

    Article  PubMed  CAS  Google Scholar 

  67. Landgraf, R., E. Klauschenz, M. Bienert, A. Ermisch, and P. Oehme, Some observations indicating a low brain uptake of [3H]Nle11 -substance P, Pharmazie 38 108–110, 1983.

    PubMed  CAS  Google Scholar 

  68. Gjedde, A., and M. Rasmussen, Blood-brain glucose transport in the conscious rat comparison of the intravenous and intracarotid injection methods, J Neurochem 35 1375–1381,1980.

    Article  PubMed  CAS  Google Scholar 

  69. Kretzschmar, R., and A. Ermisch, Arginine-vasopressin binding to isolated cerebral microvessels, Wiss Z Karl-Marx-Univ Leipzig Math-Naturwiss Reihe 36 78–80,1987.

    CAS  Google Scholar 

  70. Pearlmutter, A.F., M. Szkrybalo, Y. Kim, and S.I. Harik, Arginine vasopressin receptors in pig cerebral microvessels, cerebral cortex and hippocampus, Neurosci Lett 87 121–126, 1988.

    CAS  Google Scholar 

  71. Chabrier, P.E., P. Roubert, and P. Braquet, Specific binding of atrial natriuretic factor in brain microvessels, Proc Natl Acad Sci USA 84 2078–2081,1987.

    Article  PubMed  CAS  Google Scholar 

  72. Pillion, DJ., J.F. Haskell, and E. Meezan, Cerebral cortical microvessels an insulin-sensitive tissue, Biochem Biophys Res Comm 104 686–692, 1982.

    Article  PubMed  CAS  Google Scholar 

  73. Haskell, J.F., E. Meezan, and DJ. Pillion, Identification of the insulin receptor of cerebral microvessels, Am J Physiol 248 E115–E125, 1985.

    PubMed  CAS  Google Scholar 

  74. Frank, HJ.L, T. Jankovic-Vokes, W.M. Pardridge, and W.L. Morris, Enhanced insulin binding to blood-brain barrier in vivo and to brain microvessels in vitro in newborn rabbits, Diabetes 34 728–733, 1985.

    Article  PubMed  CAS  Google Scholar 

  75. Pardridge, W.M., J. Eisenberg, and J. Yang, Human blood-brain barrier insulin receptor, J Neurochem 44 1771–1778, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Ermisch, A., Landgraf, R. (1990). Vasopressin, the Blood-Brain Barrier, and Brain Performance. In: Porter, J.C., Ježová, D. (eds) Circulating Regulatory Factors and Neuroendocrine Function. Advances in Experimental Medicine and Biology, vol 274. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5799-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5799-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5801-5

  • Online ISBN: 978-1-4684-5799-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics