Skip to main content

Factors Influencing the Selectivity of Hydrocracking in Zeolites

  • Chapter
Guidelines for Mastering the Properties of Molecular Sieves

Part of the book series: NATO ASI Series ((NSSB,volume 221))

Abstract

Hydrocracking is an industrial refinery process which is widely used to convert vacuum gas oil (VGO) to gasoline 1–3. In addition, there are process variants which convert a variety of other feedstocks, including residues or waxy distillates, to produce valuable hydrocarbon fuels, such as middle distillates or teamcracker feedstocks 4–6. To a large extent, this process versatility has its origin in the availability of a broad spectrum of hydrocracking catalysts, tailored for specific purposes. Usually, these catalysts consist of an acidic carrier loaded with a hydrogenation/dehydrogenation component, in other words they are bifunctional. Typical acidic components are zeolites, amorphous silica- alumina and alumina. Typical hydrogenation components include palladium and platinum, or non-noble metals such as cobalt, nickel, molybdenum and tungsten 2. The latter metals are usually in a sulfided form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. P. Bolton, Hydrocracking, Isomerization and Other Industrial Processes, in: “Zeolite Chemistry and Catalysis”, J. A. Rabo, ed., p. 714/779, ACS Monograph 171, American Chemical Society, Washington, D. C. (1976).

    Google Scholar 

  2. J. W. Ward, Design and Preparation of Hydrocracking Catalysts, in: “Preparation of Catalysts III”, G. Poncelet, P. Grange and P. A. Jacobs, eds., p. 587/616, Studies in Surface Science and Catalysis, Vol. 16, Elsevier Science Publishers, Amsterdam, Oxford, New York (1983).

    Google Scholar 

  3. I. E. Maxwell, Zeolite Catalysis in Hydroprocessing Technology, Catalysis Today 1: 385 (1987).

    Article  CAS  Google Scholar 

  4. K. Hedden and J. Weitkamp, Das Hydrocracken schwerer Erdölfraktionen, Chem.-Ing.-Tech. 47: 505 (1975).

    Article  CAS  Google Scholar 

  5. J. G. Sikonia, W. L. Jacobs and S. A. Gembicki, Hydrocrack for More Distillates, Hydrocarbon Process. 57 (No. 5): 117 (1978).

    CAS  Google Scholar 

  6. S. D. Light, R. V. Bertram and J. W. Ward, Hydrocrack Heavier Feeds, Hydrocarbon Process. 60 (No. 5): 93 (1981).

    CAS  Google Scholar 

  7. J. Weitkamp, The Influence of Chain Length in Hydrocracking and Hydroisomerization of n-Alkanes, in: “Hydrocracking and Hydrotreating”, J. W. Ward and S. A. Qader, eds., p. 1/27, ACS Symposium Series, Vol. 20, American Chemical Society, Washington, D. C. (1975).

    Google Scholar 

  8. J. Weitkamp, Hydrocracken, Cracken und Isomerisieren von Kohlenwasserstoffen, Erdöl, Kohle-Erdgas-Petrochem. 31: 13 (1978).

    CAS  Google Scholar 

  9. J. Weitkamp and P. A. Jacobs, Isomerization and Hydrocracking of Long Chain Alkanes: New Insight into Carbenium Ion Chemistry, Preprints, Div. Petr. Chem., Am. Chem. Soc. 26: 9 (1981).

    CAS  Google Scholar 

  10. M. Steijns, G. Froment, P. A. Jacobs, J. Uytterhoeven and J. Weitkamp, Hydroisomerization and Hydrocracking. 2. Product Distributions from n-Decane and n-Dodecane, Ind. Eng. Chem., Prod. Res. Dev. 20: 654 (1981).

    Article  CAS  Google Scholar 

  11. H. Pichler, H. Schulz, H. O. Reitemeyer and J. Weitkamp, Über das Hydrocracken gesättigter Kohlenwasserstoffe, Erdöl, Kohle-Erdgas-Petrochem. 25: 494 (1972).

    CAS  Google Scholar 

  12. G. A. Mills, H. Heinemann, T. H. Milliken and A. G. Oblad, Catalytic Mechanisms, Ind. Eng. Chem. 45: 134 (1953).

    Article  CAS  Google Scholar 

  13. P. B. Weisz, Polyfunctional Heterogeneous Catalysis, Adv. Catal. 13: 137 (1962).

    Article  CAS  Google Scholar 

  14. J. Weitkamp, S. Ernst and H. G. Karge, Peculiarities in the Conversion of Naphthenes on Bifunctional Catalysts, Erdöl, Kohle-Erdgas-Petrochem. 37: 457 (1984).

    CAS  Google Scholar 

  15. B. S. Greensfelder, H. H. Voge and G. M. Good, Catalytic and Thermal Cracking of Pure Hydrocarbons: Mechanisms of Reactions, Ind. Eng. Chem. 41: 2573 (1949).

    Article  CAS  Google Scholar 

  16. J. A. Martens, P. A. Jacobs and J. Weitkamp, Attempts to Rationalize the Distribution of Hydrocracked Products. I Qualitative Description of the Primary Hydrocracking Modes of Long Chain Paraffins in Open Zeolites, Appi. Catal. 20: 239 (1986).

    Article  CAS  Google Scholar 

  17. J. Weitkamp, W. Gerhardt and P. A. Jacobs, Isomerization and Hydrocracking of Alkanes on Pt/CeY, Pt/LaY and Pd/LaY Zeolites-Bifunctional or Metallic Catalysis?, in: “Proc. Intern. Symp. on Zeolite Catalysis”, Siòfok, Hungary, May 13–16, 1985, p. 261.

    Google Scholar 

  18. J. A. Martens, P. A. Jacobs and J. Weitkamp, Attempts to Rationalize the Distribution of Hydrocracked Products. II. Relative Rates of Primary Hydrocracking Modes of Long Chain Paraffins in Open Zeolites, Appl. Catal. 20: 283 (1986).

    Article  CAS  Google Scholar 

  19. P. A. Jacobs, J. A. Martens, J. Weitkamp and H. K. Beyer, Shape Selectivity Changes in High Silica Zeolites, Farad. Discuss. Chem. Soc. 72: 353 (1982).

    Article  CAS  Google Scholar 

  20. H. L. Coonradt and W. E. Garwood, Mechanisms of Hydrocracking: Reactions of Paraffins and Olefins, Ind. Eng. Chem., Proc. Pes. Dev. 3: 38 (1964).

    Article  CAS  Google Scholar 

  21. J. Weitkamp, Isomerization of Long Chain n-Alkanes on a Pt/CaY-Zeolite Catalyst, Ind. Eng. Chem., Prod. Res. Dev. 21: 550 (1982).

    Article  CAS  Google Scholar 

  22. J. Weitkamp, P. A. Jacobs and J. A. Martens, Isomerization and Hydrocracking of C9 Through C16 n-Alkanes on Pt/HZSM-5 Zeolite, Appl. Catal. 8: 123 (1983).

    Article  CAS  Google Scholar 

  23. C. J. Egan, G. E. Langlois and R. J. White, Selective Hydrocracking of Cg-to Cx2-Alkylcyclohexanes on Acidic Catalysts. Evidence for the Paring Reaction, J. Am. Chem. Soc. 84: 1204 (1962).

    Article  CAS  Google Scholar 

  24. D. M. Brouwer and H. Hogeveen, The Importance of Orbital Orientation as a Rate-Controlling Factor in Intramolecular Reactions of Carbonium Ions, Ree. Trav. Chim. 89: 211 (1970).

    Article  CAS  Google Scholar 

  25. S. Ernst and J. Weitkamp, Hydrocracking of Cg Through C1 Naphthenes on Pd/LaY and Pd/HZSM-5 Zeolites, in: “Proc. Intern. Symp. on Zeolite Catalysis”, Siofok, Hungary, May 13–16, 1985, p. 457.

    Google Scholar 

  26. J. Weitkamp, S. Ernst and R. Kumar, “The Spaciousness Index: A Novel Test Reaction for Characterizing the Effective Pore Width of Bi-functional Zeolite Catalysts”, Appl. Catal. 27: 207 (1986).

    Article  CAS  Google Scholar 

  27. J. Weitkamp and S. Ernst, Shape Selective Hydroconversion of Hydrocarbons: A Powerful Tool for Characterizing the Effective Pore Width of Zeolites and Related Materials, in: “Catalysis 1987”, J. W. Ward, ed., p. 367/382, Studies in Surface Science and Catalysis, Vol. 38, Elsevier, Amsterdam, Oxford, New York (1988).

    Google Scholar 

  28. H. Schulz and J. Weitkamp, Zeolite Catalysts: Hydrocracking and Hydroisomerization of n-Dodecane, Ind. Eng. Chem., Prod. Res. Dev. 11: 46 (1972).

    Article  CAS  Google Scholar 

  29. J.-K. Chen, A. M. Martin and V. T. John, Modifications of n-Hexane Hydroisomerization over Pt/Mordenite as Induced by Aromatic Cofeeds, J. Catal. III: 425 (1988).

    Article  CAS  Google Scholar 

  30. H. Dauns and J. Weitkamp, Modelluntersuchungen zum Isomerisieren und Hydrocracken von Alkan-Gemischen an einem Pd/LaY-Zeolith-Kata-lysator, Chem.-Ing.-Tech. 58: 900 (1986).

    Article  CAS  Google Scholar 

  31. H. Dauns, S. Ernst and J. Weitkamp, The Influence of Hydrogen Sulfide in Hydrocracking of n-Dodecane over Palladium/Faujasite Catalysts, in: “New Developments in Zeolite Science and Technology”, Y. Murakami, A. Iijima and J. W. Ward, eds., p. 787/794, Kodansha, Tokyo and Elsevier, Amsterdam (1986).

    Google Scholar 

  32. J. Weitkamp and H. Dauns, Hydrieraktivität und Acidität bifunktioneller Katalysatoren: Insitu-Charakterisierung mittels Umsetzung von Ethylbenzol, Erdöl, Kohle-Erdgas-Petrochem. 40: 111 (1987).

    CAS  Google Scholar 

  33. H. G. Karge and J. Rasko, Hydrogen Sulfide Adsorption on Faujasite-Type Zeolites with Systematically Varied Si-Al Ratios, J. Colloid Interface Sci. 64: 552 (1978).

    Article  Google Scholar 

  34. T. Y. Yan, The Promotonial Effect of Water in Hydrocracking, J. Catal. 25: 204 (1972).

    Article  CAS  Google Scholar 

  35. O. Weisser and S. Landa, “Sulphide Catalysts, Their Properties and Applications”, p. 18/22, Pergamon Press, Oxford, New York and Vieweg-Verlag, Braunschweig (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Weitkamp, J., Ernst, S. (1990). Factors Influencing the Selectivity of Hydrocracking in Zeolites. In: Barthomeuf, D., Derouane, E.G., Hölderich, W. (eds) Guidelines for Mastering the Properties of Molecular Sieves. NATO ASI Series, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5787-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5787-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5789-6

  • Online ISBN: 978-1-4684-5787-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics