Skip to main content

Biotechnology in Forest Tree Improvement: Trees of the Future

  • Chapter
Plant Aging

Part of the book series: NATO ASI Series ((NSSA,volume 186))

Abstract

Forest trees are the important source of renewable raw material and play a significant role in the formation of environment, with important functions in the field of soil protection, water retention, CO2 absorption and carbon storage, recreation and health improvement. The growing importance of all these functions can be expected in the near future and society is likely to highly appreciate them. With the growing world population, the deforestation occurs, above all in developing countries. In some industrial countries, air pollution, acid rains, drought, wind, snow, pests and diseases cause serious damages on forest stands. Present situation calls for urgent intensification of forest tree breeding. Long reproductive cycle of forest trees is a serious obstacle for effective tree improvement. Conventional tree breeding techniques using controlled crossing for transfer of desirable traits are time-consuming. The application of parasexual genetic recombination methods (cytogenetic manipulations, recombinant DNA technology) in forestry will accelerate tree improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, M.R., 1988, Gene transfer in woody plants: perspectives and limitations. In: Somatic Cell Genetics of Woody Plants, M.R. Ahuja, ed., Kluwer Academic Publishers, Dordrecht, pp. 83–101.

    Chapter  Google Scholar 

  • Chalupa, V., 1977, Organogenesis in Norway spruce and Douglas-fir tissue cultures. Commun. Inst. For. Cechosl., 10:79–87.

    Google Scholar 

  • Chalupa, V., 1979, In vitro propagation of some broadleaved forest trees. Commun. Inst. For. Cechosl., 11:159–170.

    Google Scholar 

  • Chalupa, V., 1981a, In vitro propagation of birch (Betula verrucosa Ehrh.). Biol. Plant., 23:472–474.

    Article  Google Scholar 

  • Chalupa, V., 1981b, Clonal propagation of broadleaved forest trees in vitro. Commun. Inst. For. Cechosl.,12:255–271.

    Google Scholar 

  • Chalupa, V., 1983a, In vitro propagation of willows (Salix spp.), European mountain-ash (Sorbus aucuparia L.) and black locust (Robinia pseudoacacia L.). Biol. Plant., 25:305–307.

    Article  Google Scholar 

  • Chalupa, V., 1983b, Micropropagation of conifer and broadleaved forest trees. Commun. Inst. For. Cechosl., 13:7–39.

    Google Scholar 

  • Chalupa, V., 1984, In vitro propagation of oak (Quercus robur L.) and linden (Tilia cordata Mill.).Biol.Plant., 26:374–377.

    Article  CAS  Google Scholar 

  • Chalupa, V., 1985a, Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Commun. Inst. For. Cechosl., 14:57–63.

    Google Scholar 

  • Chalupa, V., 1985b, In vitro propagation of Larix, Picea, Pinus, Quercus, Fagus and other species using adenine-type cytokinins and thidiazuron. Commun. Inst. For. Cechosl., 14:65–90.

    Google Scholar 

  • Chalupa, V., 1987a, Effect of benzylaminopurine and thidia-zuron on in vitro shoot proliferation of Tilia cordata Mill./ Sorbus aucuparia L. and Robinia pseudoaeaoia L.. Biol. Plant., 29:425–429.

    Article  CAS  Google Scholar 

  • Chalupa, V., 1987b, European hardwoods. In: Cell and Tissue Culture in Forestry, Vol. 3,J.M. Bonga and D.J. Durzan, eds, Martinus Nijhoff, Dordrecht, pp. 224–246.

    Google Scholar 

  • Chalupa, V., 1988, Large scale micropropagation of Quercus robur L. using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation. Biol. Plant., 30:414–421.

    Article  CAS  Google Scholar 

  • Chalupa, V., 1989a, Micropropagation of Larix decidua Mill. and Pinus sylvestris L., Biol. Plant., 31 (in press).

    Google Scholar 

  • Chalupa, V., 1989b, Micropropagation of mature trees of birch (Betula pendula Roth.) and aspen (Populus tremula L.). LesnictvĂ­, 34 (in press).

    Google Scholar 

  • Chalupa, V. and Durzan, D.J., 1973, Growth of Norway spruce (Picea abies (L.) Karst.) tissue and cell cultures. Commun. Inst. For. Cechosl., 8:111–125.

    Google Scholar 

  • Durzan, D.J., 1982, Somatic embryogenesis and sphaeroblasts in conifer cell suspension. In: Plant Tissue Culture, A. Fujiwara, ed., Jap. Assoc, for Plant Tissue Culture, Tokyo, pp. 113–114.

    Google Scholar 

  • Durzan, D.J., 1987, Improved somatic embryo recovery. Bio/ Technology, 5:636–637.

    Google Scholar 

  • Durzan, D.J., 1988, Process control in somatic polyembryo-genesis. In: Molecular Genetics of Forest Trees, J.E. Hällgren, ed., Swedish Univ. Agricult. Sciences, Umea, pp. 147–186.

    Google Scholar 

  • Durzan, D.J. and Gupta, P.K., 1987, Somatic embryogenesis and polyembryogenesis in Douglas fir cell suspension cultures. Plant Sci, 52:229–235.

    Article  CAS  Google Scholar 

  • Fillatti, J.J., Selmer, J., McCown, B., Haissig, B. and Cornai, L., 1987, Agrobacterium mediated transformation and regeneration of Populus. Mol. Gen. Genet., 206:192–199.

    Article  CAS  Google Scholar 

  • Gupta, P.K. and Durzan, D.J., 1986a, Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce).In Vitro, 22:685–688.

    Google Scholar 

  • Gupta, P.K. and Durzan, D.J., 1986b, Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/ Technology, 4:643–645.

    Google Scholar 

  • Hakman, I., Fowke, L.C., von Arnold, S. and Eriksson, T., 1985, The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci., 38:53–59.

    Article  Google Scholar 

  • Klein, T.M., Wolf, E.D., Wu, R. and Sanford, J.C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327:70–73.

    Article  CAS  Google Scholar 

  • Kriebel, H.B.,1988, Molecular biology in forestry research: when is it relevant and how can we use it? In: Molecular Genetics of Forest Trees, J.E. Hällgren, ed., Swedish Univ. Agricult. Sciences, Umea, pp. 5–18.

    Google Scholar 

  • Nagmani, R. and Bonga, J.M., 1985, Embryogenesis in subcultured callus of Larix deoidua. Can. J. For. Res., 15:1088–1091.

    Article  Google Scholar 

  • Weber, G., Monajembashi, S., Greulich, K.O. and Wolfrum, J., 1988, Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells. Naturwissenschaften, 75:35–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Chalupa, V. (1990). Biotechnology in Forest Tree Improvement: Trees of the Future. In: Rodríguez, R., Tamés, R.S., Durzan, D.J. (eds) Plant Aging. NATO ASI Series, vol 186. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5760-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5760-5_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5762-9

  • Online ISBN: 978-1-4684-5760-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics