Skip to main content

Hypoxanthine and Xanthine Transport through the Blood-Brain Barrier in Hypoxanthine Phosphoribosyltransferase (HPRT) Deficiency

  • Chapter
Purine and Pyrimidine Metabolism in Man VI

Abstract

Purine metabolism in the central nervous system (CNS) is characterized by: (i) reduced de novo purine synthesis (1), (ii) increased HPRT activity (2), and (iii) absence of detectable xanthine oxidase activity (3, 4). These facts determine that, instead of uric acid, the end products of purine nucleotide degradation in the CNS are hypoxanthine for adenine nucleotides and xanthine for guanine nucleotides (2, 5). On the other hand, HPRT hyperactivity seems to be essential to salvage an important amount of hypoxanthine for purine nucleotide synthesis. Hypoxanthine transport from blood to the brain could be another important source for the synthesis of purine nucleotides in the CNS (6, 7). The devastating neurological manifestations of complete HPRT deficiency suggest that hypoxanthine salvage is important for adequate neuronal function (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.J. Howard, L.A. Kerson and S.H. Appel. Synthesis de novo of purines in slices of rat brain and liver. J Neurochem 17: 121–128 (1970).

    Article  PubMed  CAS  Google Scholar 

  2. F.M. Rosenbloom, W.N. Kelley, J. Miller, J.F. Henderson and J.E. Seegmiller. Inherited disorders of purine metabolism. J Am Med Ass 202: 175–177 (1967).

    Article  CAS  Google Scholar 

  3. U.A.S. Al-Khalidi and T.H. Chaglassian. The species distribution of xanthine oxidase. Biochem J 97: 316–320 (1965).

    Google Scholar 

  4. R.D. Berlin. Purines: Active transport by isolated choroid plexus. Science 163: 1194–1195 (1969).

    Article  PubMed  CAS  Google Scholar 

  5. R. Hällgren, F. Niklasson, A. Terent, A. Akerblon and E. Widerlöv. Oxypurines in cerebrospinal fluid as indices of disturbed brain disease. Stroke 14: 382–388 (1983).

    Article  PubMed  Google Scholar 

  6. J.D. Moyer and J.F. Henderson. Salvage of circulating hypoxanthine by tissues of the mouse. Can J Biochem Cell Biol 61: 1153–1157 (1983).

    Article  PubMed  CAS  Google Scholar 

  7. R. Spector. Hypoxanthine transport through the blood-brain barrier. Neurochem Res 12: 791–796 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. W.N. Kelley and J.B. Wyngaarden. Clinical syndromes associated with hypoxanthine-guanine phosphoribosyltransferase deficiency. In: “The Metabolic Basis of Inherited Diseases”, J.B. Stanbury, J.B. Wyngaarden, D.S. Frederickson, J.L. Goldstein and M.S. Brown, eds., McGraw-Hill, New York, 1115–1143 (1983).

    Google Scholar 

  9. R. Spector. Hypoxanthine transport and metabolism in central nervous system. J Neurochem 50: 969–976 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. I. Pascual-Castroviejo, A. Vélez, J.G. Puig and M.L. Jiménez. Síndrome de Lesch-Nyhan con déficit total de la enzima HPRT. Neurología 1: 44–45 (1986).

    PubMed  CAS  Google Scholar 

  11. L. Hernández Nieto, W.L. Nyhan, T. Page, et al. Síndrome de Lesch-Nyhan nueva variante con actividad hipoxantina-guanina fosforribosiltransfe-rasa (HPRT) superior a la de la enfermedad clásica y detección delrasgo heterocigoto en los hematíes de la portadora. Med Clin (Barc) 84: 68–71 (1985).

    Google Scholar 

  12. A. Andrés, M. Praga, L.M. Ruilope, et al. Partial defect of hypoxan-thine-guanine phsphoribosyltransferase presenting as acute renal failure. Nephron 46: 936–941 (1984).

    Google Scholar 

  13. J.G. Puig and I.H. Fox. Ethanol-induced activation of adenine nucleo-tide turnover: Evidence for a role of acetate. J Clin Invest 74: 936–941 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. F.A. Mateos, J.G. Puig, M.L. Jiménez and I.H. Fox. Hereditary xanthinuria: Evidence for enhanced hypoxanthine salvage. J Clin Invest 79: 847–852 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. N. Kageyama. A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system. Clin Chim Acta 31: 421–427 (1971).

    Article  PubMed  CAS  Google Scholar 

  16. M. Farstad, J.O. Haug, H. Linbak and O.E. Skaug. Uric acid in the cerebrospinal fluid in cerebral atrophy. Acta Neurol Scand 41: 52–58 (1965).

    Article  PubMed  CAS  Google Scholar 

  17. F. Niklasson. Simultaneous liquid-chromatographic determination of hypoxanthine, xanthine, urate and creatinine in cerebrospinal fluid, with direct injection. Clin Chem 29: 1543–1546 (1986).

    Google Scholar 

  18. C. Carlsson and S.J. Dencker. Cerebrospinal uric acid in alcoholics. Acta Neurol Scand 49: 39–46 (1973).

    Article  PubMed  CAS  Google Scholar 

  19. F. Lahoda and D. Athen. Typing of uric acid level in cerebrospinal fluid in neurological and psychiatric diseases. Adv Exp Med Biol 76B: 256–258 (1977).

    PubMed  CAS  Google Scholar 

  20. Y. Sidi and B.S. Mitchell. Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients. J Clin Invest 76: 2416–2419 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. H.A. Simmonds, L.D. Fairbanks, G.S. Morris, D.R. Webster and E.H. Harley. Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine or pyrimidine metabolism. Clin Chim Acta 171: 197–210 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. M. Goldstein, L.T. Anderson, R. Revben and J. Dancis. Self-mutilation in Lesch-Nyhan disease is caused by dopaminergic denervation. Lancet 1: 338–339 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. P. Sholnick, P.J. Marangos, F.K. Goodwin, M. Edwards and S. Paul. Identification of inosine and hypoxanthine as endogenous inhibitors of (3H) diazepam binding in the central nervous system. Life Sci 23: 1473–1480 (1978).

    Article  Google Scholar 

  24. I.P. Lapin. Nicotinamide, inosine and hypoxanthine, putative endogenous ligands of the benzodiazepine receptor, opposite to diazepam are much more effective against kynurenine-induced seizures than against pentyl-enetetrazole-induced seizures. Pharmacol Biochem Behav 14: 589–593 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. M. Coleman, M. Langrebe and A. Langrebe. Progressive seizures with hyperuricosuria reversed by allopurinol. Arch Neurol 31: 238–242 (1974).

    Article  PubMed  CAS  Google Scholar 

  26. M. Coleman. Allopurinol: A new application as a metabolic anticonvulsant. 15th Epilepsy International Symposium. Washington 135 (1985). Abstract.

    Google Scholar 

  27. P. de Marco and P. Zagnoni. Allopurinol and severe epilepsy. Neurology 36: 1538–1539 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Jiménez, M.L., Puig, J.G., Mateos, F.A., Ramos, T.H., Castroviejo, I.P., Vázquez, J.O. (1989). Hypoxanthine and Xanthine Transport through the Blood-Brain Barrier in Hypoxanthine Phosphoribosyltransferase (HPRT) Deficiency. In: Mikanagi, K., Nishioka, K., Kelley, W.N. (eds) Purine and Pyrimidine Metabolism in Man VI. Advances in Experimental Medicine and Biology, vol 253A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5673-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5673-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5675-2

  • Online ISBN: 978-1-4684-5673-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics