Skip to main content

Cerebral Hypoxia during Repetitive Seizures

  • Chapter
Mechanisms of Cerebral Hypoxia and Stroke

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 35))

Summary

Cerebral oxygenation was investigated during experimentally-induced status epilepticus to determine whether O2 supply is always sufficient to meet demand. Early in a series of seizures, cerebral oxygenation increased phasically in association with paroxysmal electrocortical activity. During later seizures, cerebral oxygenation decreased phasically, accompanied by attenuation of increases in cerebral blood flow, cerebral blood volume, and arterial blood pressure. The seizure-associated cerebral hypoxia occurred in many experiments without any changes in arterial PO2. Ventilation of the animal with 100% O2 restored the phasic increases in cerebral oxygenation, probably by restoring increases in cerebral blood flow. Systemic complications of status epilepticus (e.g., pulmonary edema) also can profoundly decrease cerebral oxygenation. An important remaining question is whether the cerebral hypoxia accompanying later seizures contributes to the neuronal damage following prolonged status epilepticus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazan, N. G., D. L. Birkle, W. Tang and T. S. Reddy, The accumulation of free arachidonic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy, In: “Basic Mechanisms of the Epilepsies, Molecular and Cellular Approaches,” Advances in Neurology, Vol. 44, A.V. Delgado-Escueta, D. M. Woodbury, A. A. Ward, Jr. and R. J. Porter, Eds., Raven Press, New York (1986).

    Google Scholar 

  2. Blennow, G., J. B. Brierley, B. S. Meldrum and B. K. Siesjö, Epileptic brain damage. The role of systemic factors that modify cerebral energy metabolism, Brain, 101: 687–700 (1978).

    Article  Google Scholar 

  3. Blennow, G., B. Nilsson and B. Siesjö, Influence of reduced oxygen availability on cerebral metabolic changes during bicuculline-induced seizures in rats, J. Cereb. Blood Flow Metab., 5: 439–445 (1985).

    Article  Google Scholar 

  4. Caspers, H. and F. J. Speckmann, Cerebral p02, pCO2 and pH: Changes during convulsive activity and their significance for spontaneous arrest of seizures, Epilepsia, 13: 699–725 (1972).

    Article  Google Scholar 

  5. Heiss, W. D., M. Turnheim, R. Vollmer and P. Rappelsberger, Coupling between neuronal activity and focal blood flow in experimental seizures, Electroencephalogr. Clin. Neurophysiol., 27: 396–403 (1979).

    Google Scholar 

  6. Jöbsis, F. F., J. Keizer, J. C. LaManna and M. Rosenthal, Reflectance spectrophotometry of the intact cerebral cortex. I. Dual wavelength technique, J. Appl. Physiol., 43: 858–872 (1977).

    Google Scholar 

  7. Kiessling, M., J. A. Hossmann and P. Kleihues, Pulmonary edema during bicuculline induced seizures in rats, Exp. Neurol. 74: 430–438 (1981).

    Article  Google Scholar 

  8. Kreisman, N. R., R. A. Hodin, B. L. Brizzee, M. Rosenthal, T. J. Sick, R. Busto, and M. D. Ginsberg, Seizure-associated pulmonary edema and cerebral oxygenation in the rat, J. Appl. Physiol., 62: 658–667, (1987).

    Google Scholar 

  9. Kreisman, N. R., R. A. Hodin, M. Rosenthal, and T. J. Sick, Role of pulmonary edema in phasic changes of cerebral oxygenation during serial seizures, Brain Res., 417–335: 342 (1987).

    Google Scholar 

  10. Kreisman, N. R., J. C. LaManna, M. Rosenthal, and T. J. Sick, Oxidative metabolic responses with recurrent seizures in rat cerebral cortex: role of systemic factors, Brain Res., 218: 174–188 (1981).

    Google Scholar 

  11. Kreisman, N. R., M. Rosenthal, J. C. LaManna, and T. J. Sick, Cerebral oxygenation during recurrent seizures, In: “Status Epilepticus: Mechanisms of Brain Damage and treatment,” Advances in Neurology, Vol. 34, A. Delgado-Escueta, C. G. Wasterlain, D. M. Treiman, and R. J. Porter, eds., Raven Press, New York (1983).

    Google Scholar 

  12. Kreisman, N. R., M. Rosenthal, T. J. Sick, and J. C. LaManna, Oxidative metabolic responses during recurrent seizures are independent of convulsant, anesthetic, or species, Neurology, 33: 861–867 (1983).

    Article  Google Scholar 

  13. Kreisman, N. R., T. J. Sick, and D. F. Bruley, Local oxygen tension and its relationship to unit activity during penicillin interictal discharges in the bullfrog hippocampus, Electroencephalogr. Clin. Neurophysiol., 46: 619–633 (1979).

    Article  Google Scholar 

  14. Kreisman, N. R., T. J. Sick, J. C. LaManna, and M. Rosenthal, Local tissue oxygen tension—cytochrome a,a3 redox relationships in rat cerebral cortex in vivo, Brain Res., 218: 161–174 (1981).

    Article  Google Scholar 

  15. Kreisman, N. R., T. J. Sick, and M. Rosenthal, Importance of vascular responses in determining cortical oxygenation during recurrent paroxysmal events of varying duration and frequency of repetition, J. Cereb. Blood Flow Metabol., 3: 330–338 (1983).

    Article  Google Scholar 

  16. Meldrum, B. S., Metabolic factors during prolonged seizures and their relation to nerve cell death, In: “Status Epilepticus, Mechanisms of Brain Damage and Treatment”, Advances in Neurology, Vol. 34, A. V. Delgado-Escueta, D. M. Woodbury, A. A. Ward, Jr., and R. J. Porter, eds., Raven Press, New York (1983).

    Google Scholar 

  17. Meldrum, B. S., Cell damage in epilepsy and role of calcium in cytotoxicity, In: “Basic Mechanisms of the Epilepsies, Molecular and Cellular Approaches,” Advances in Neurology, Vol. 44, A. V. Delgado-Escueta, C. G. Wasterlain, D. M. Treiman, and R. J. Porter, eds., Raven Press, New York (1986).

    Google Scholar 

  18. Meldrum, B. S. and R. W. Horton, Physiology of status epilepticus in primates, Arch. Neurol., 28: 1–9 (1973).

    Article  Google Scholar 

  19. Meldrum, B. S. and B. Nilsson, Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline, Brain, 99: 523–542, 1976.

    Article  Google Scholar 

  20. Navari, R. M., E. P. Wei, H. A. Kontos, and J. L. Patterson, Jr., Comparison of the open skull and cranial window preparations in the study of the cerebral microcirculation, Microvasc. Res., 16: 304–315 (1978).

    Article  Google Scholar 

  21. Olney, J. W., R. C. Collins, and R. S. Sloviter, Excitotoxic mechanisms of epileptic brain damage, In: “Basic Mechanisms of the Epilepsies, Molecular and Cellular Approaches,” Advances in Neurology, Vol. 44, A.V. Delgado-Escueta, D. M. Woodbury, A. A. Ward, Jr., and R. J. Porter, Eds., Raven Press, New York (1986).

    Google Scholar 

  22. Pinard, E., E. Tremblay, Y. Ben-Ari, and J. Seylaz, Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainateinduced seizures, Neuroscience 13: 1039–1949 (1984).

    Article  Google Scholar 

  23. Plum, F., J. B. Posner, and B. Troy, Cerebral metabolic and circulatory responses to induced convulsions in animals, Arch. Neurol. (Chicago), 197: 629–628 (1968).

    Google Scholar 

  24. Robin, E. D., Dysoxia: abnormal tissue 02 utilization, Arch. Int. Med., 137: 905–910 (1977).

    Article  Google Scholar 

  25. Schiff, S. J. Schiff and G. G. Somjen, Overshoot of oxygen pressure in posthypoxic brain tissue, Brain Res., 344: 159–153 (1985).

    Article  Google Scholar 

  26. Scholz, W., The contribution of pathoanatomical research to the problem of epilepsy, Epilepsia, 1: 36–55 (1959).

    Article  Google Scholar 

  27. Siesjö, B. K., “Brain Energy Metabolism,” John Wiley & Sons, New York (1978).

    Google Scholar 

  28. Siesjö B. K., M. Ingvar, J. Folbergrova, and A. G. Chapman, Local cerebral circulation and metabolism in bicuculline-induced status epilepticus: relevance for development of cell damage, In: “Status Epilepticus, Mechanisms of Brain Damage and Treatment,” Advances in Neurology, Vol. 34, A.V. Delgado-Escueta, C. G. Waterlain, M. M. Treiman, and R. J. Porter, Raven Press, New York (1983).

    Google Scholar 

  29. Siesjö B. K. and T. Wieloch, Epileptic brain damage: pathophysiology and neuro-chemical pathology, In: “Basic Advances in Neurology,” Vol. 44, A. V. DelgadoEscueta, D. M. Woodbury, A. A. Ward, Jr., and R. J. Porter, eds., Raven Press, New York (1986).

    Google Scholar 

  30. Spielmeyer, W., 1927, Die pathogenese des epileptischen krampfes, Z. Neurol. Psychiatr., 109: 501–520 (1927).

    Google Scholar 

  31. Wasterlain, C. G., Mortality and morbidity from serial seizures, Epilepsia, 15: 155–176 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kreisman, N.R. (1988). Cerebral Hypoxia during Repetitive Seizures. In: Somjen, G. (eds) Mechanisms of Cerebral Hypoxia and Stroke. Advances in Behavioral Biology, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5562-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5562-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5564-9

  • Online ISBN: 978-1-4684-5562-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics