Skip to main content

Abstract

Because of the vast number of cellular processes sensitive to changes in pH, the control of intracellular pH (pHi) is of vital importance both for the individual cell and for the organism as a whole. The fundamental problem that pHiregulating mechanisms must address is the chronic tendency toward intracellular acidification. Depending on the conditions of incubation, a chronic intracellular acid load can be imposed by cellular metabolism. However, a nearly universal source of chronic acid loading are the fluxes across the cell membrane of H+ and of ionized weak acids and bases. Consider a cell having a transmembrane voltage (Vm) of -60 mV (cell negative) and an extracellular pH (pHo) of 7.4. The Nernst equation predicts that pHi would be ∼ 6.4 if H+ were in electrochemical equilibrium across the cell membrane. Because the actual pHi is nearly a full pH unit higher, there is a substantial gradient favoring the influx of H+, and one of equal magnitude favoring the efflux of OH. It can be shown (see Section 4.1) that the anionic, conjugate weak base (e.g., HCO3 ) of any neutral weak acid (e.g., CO2) is influenced by the same electrochemical gradient as that for OH, provided the neutral weak acid is equilibrated across the cell membrane. Similarly, the electrochemical gradient for any cationic conjugate weak acid (e.g., NH4 + ) of a neutral weak base (e.g., NH3) is the same as that for H+, provided the neutral weak base is in equilibrium across the cell membrane. Thus, the passive fluxes of H+, and of ionized weak acids or bases will all produce a chronic intracellular acid load. The gradual fall of pHi toward its equilibrium value (i.e., ∼ 6.4 in this example) can be forestalled only by an active-transport process that extrudes acid from the cell at a rate equal to the total rate of acid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abercrombie, R. F., R. W. Putnam, and A. Roos. 1983. The intracellular pH of frog skeletal muscle: Its regulation in isotonic solution. J. Physiol. (London) 345:175–187.

    PubMed  CAS  Google Scholar 

  2. Abercrombie, R. F., and A. Roos. 1983. The intracellular pH of frog skeletal muscle: Its regulation in hypertonic solutions. J. Physiol (London) 345:189–204.

    CAS  Google Scholar 

  3. Aickin, C. C., and R. C. Thomas. 1977. Microelectrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres. J. Physiol. (London) 267:791–810.

    Google Scholar 

  4. Aickin, C. C., and R. C. Thomas. 1977. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J. Physiol (London) 273:295–316.

    CAS  Google Scholar 

  5. Ammann, D., F. Lanter, R. A. Steiner, P. Schulthess, Y. Shijo, and W. Simon. 1981. Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies. Anal Chem. 53:2267–2269.

    Article  PubMed  CAS  Google Scholar 

  6. Aronson, P. S., J. Nee, and M. A. Suhm. 1982. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature (London) 229:161–163.

    Article  Google Scholar 

  7. Aronson, P. A., M. A. Suhm, and J. Nee. 1983. Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles. J. Biol, Chem. 258:6767–6771.

    CAS  Google Scholar 

  8. Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1982. Optical measurements of intracellular pH and magnesium in frog skeletal muscle fibres. J. Physiol (London) 331:105–137.

    CAS  Google Scholar 

  9. Biagi, B., and M. Sohtell. 1984. Bicarbonate voltage transients in the rabbit proximal tubule. Kidney Int. 25:271a.

    Google Scholar 

  10. Boron, W. F. 1977. Intracellular pH transients in giant barnacle muscle fibers. Am. J. Physiol. 233:C61–C73.

    PubMed  CAS  Google Scholar 

  11. Boron, W. F. 1980. Intracellular pH regulation. Curr. Top. Membr. Transp. 13:3–22.

    Article  CAS  Google Scholar 

  12. Boron, W. F. 1983. Transport of H+ and of ionic weak acids and bases. J. Membr. Biol 72:1–16.

    Article  PubMed  CAS  Google Scholar 

  13. Boron, W. F. 1984. Control of intracellular pH. In: The Kidney: Physiology and Pathology. D. W. Seldin and G. Giebisch, eds. Raven Press, New York. Pp. 1417–1439.

    Google Scholar 

  14. Boron, W. F. 1985. Intracellular pH-regulating mechanism of the squid axon: Relation between the external Na+ and HCO3 + dependencies. J. Gen. Physiol 85:325–345.

    Article  PubMed  CAS  Google Scholar 

  15. Boron, W. F., and E. L. Boulpaep. 1983. Intracellular pH regulation in salamander proximal tubules: Na-H exchange. J. Gen. Physiol 81:29–52.

    Article  PubMed  CAS  Google Scholar 

  16. Boron, W. F., and E. L. Boulpaep. 1983. Intracellular pH regulation in salamander proximal tubules: Basolateral HCO3 + transport. J. Gen. Physiol. 81:53–94.

    Article  PubMed  CAS  Google Scholar 

  17. Boron, W. F., and P. DeWeer. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J. Gen. Physiol 67:91–112.

    Article  PubMed  CAS  Google Scholar 

  18. Boron, W. F., and P. DeWeer. 1976. Active proton transport stimulated by CC2/HCO3, blocked by cyanide. Nature (London) 259:240–241.

    Article  CAS  Google Scholar 

  19. Boron, W. F., and P. Fong. 1983. Effect of carbonic anhydrase inhibitors on basolateral HCO3 transport in salamander proximal tubules. Kidney Int. 23:230.

    Google Scholar 

  20. Boron, W. F., W. C. McCormick, and A. Roos. 1979. pH regulation in barnacle muscle fibers: Dependence on intracellular and extracellular pH. Am. J. Physiol. 237:C185–C193.

    PubMed  CAS  Google Scholar 

  21. Boron, W. F., McCormick, W. C., and A. Roos. 1981. pH regulation in barnacle muscle fibers: Dependence on extracellular sodium and bicarbonate. Am. J. Physiol. 240:C80–C89.

    PubMed  CAS  Google Scholar 

  22. Boron, W. F., and A. Roos. 1976. Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am. J. Physiol 231:799–809.

    PubMed  CAS  Google Scholar 

  23. Boron, W. F., and J. M. Russell. 1983. Stoichiometry and ion dependencies of the intracellular pH-regulating mechanism in squid giant axons. J. Gen. Physiol 81:373–399.

    Article  PubMed  CAS  Google Scholar 

  24. Boron, W. F., J. M. Russell, M. S. Brodwick, D. W. Keifer, and A. Roos. 1978. Influence of cyclic AMP on intracellular pH regulation and chloride fluxes in barnacle muscle fibres. Nature (London) 276:511–513.

    Article  CAS  Google Scholar 

  25. Busa, W. B., and J. H. Crowe. 1983. Intracellular pH regulates transitions between dormancy and development of brine shrimp (Anemia salina) embryos. Science 221:366–368.

    Article  PubMed  CAS  Google Scholar 

  26. Busa, W. B., and R. Nuccitelli. 1984. Metabolic regulation via intracellular pH. Am. J. Physiol 246:R409–R438.

    PubMed  CAS  Google Scholar 

  27. Cabantchik, Z. I., P. A. Knauf, and A. Rothstein. 1978. The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of ‘probes.’ Biochim. Biophys. Acta 515:239–302.

    PubMed  CAS  Google Scholar 

  28. Cabantchik, Z. I. and A. Rothstein. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membr. Biol. 10:311–328.

    Article  PubMed  CAS  Google Scholar 

  29. Cassel, D., P. Rothenberg, Y. Zhuand, T. F. Deuel, and L. Glaser. 1983. Platelet-derived growth factor stimulates Na+ /H+ exchange and induces cytoplasmic alkalinization in NR6 cells. Proc. Natl. Acad. Sci. USA 80:6224–6228.

    Article  PubMed  CAS  Google Scholar 

  30. Chaillet, J. R., K. Amsler, and W. F. Boron. 1985. Optical measurements of intercellular pH in single PK1 cells: Evidence for Cl-HCO3 exchange. Kidney Int. in press.

    Google Scholar 

  31. Chaillet, J. R., and W. F. Boron. 1985. Intracellular calibration of a pH-sensitive dye in isolated perfused salamander proximal tubules. J. Gen Physiol. in press.

    Google Scholar 

  32. Chaillet, J. R., A. G. Lopes, and W. F. Boron. 1985. Basolateral Na-H exchange in the rabbit cortical collecting tubule. J. Gen. Physiol. in press.

    Google Scholar 

  33. Clancy, R. L., N. C. Gonzales, and R. A. Fenton. 1976. Effect of beta-adrenoreceptor blockade on rat cardiac and skeletal muscle pH. Am. J. Physiol. 230:959–964.

    PubMed  CAS  Google Scholar 

  34. Cogan, M. G. 1984. Stimulation of proximal bicarbonate reab-sorption by chronic hypercapnia. Kidney Int. 25:273a.

    Google Scholar 

  35. Cohn, D. E., S. Klahr, and M. R. Hammerman. 1983. Metabolic acidosis and parathyroidectomy increase Na+-H+ exchange in brush border vesicles. Am. J. Physiol. 345:F217–F222.

    Google Scholar 

  36. DeHemptine, A. 1980. Intracellular pH and surface pH in skeletal and cardiac muscle measured with a double-barrelled pH microelectrode. Pfluegers Arch. 386:121–126.

    Article  Google Scholar 

  37. DeHemptine, A., R. Marranes, and B. Vanheel. 1983. Influence of organic acids on intracellular pH. Am. J. Physiol. 245:C178–C183.

    Google Scholar 

  38. Deitmer, J. W., and D. Ellis. 1980. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J. Physiol. (London) 304:471–488.

    PubMed  CAS  Google Scholar 

  39. Dennis, V. W. 1976. Influence of bicarbonate on parathyroid-induced changes in fluid absorption by the proximal tubule. Kidney Int. 10:373–380.

    Article  PubMed  CAS  Google Scholar 

  40. Deutsch, C., J. S. Taylor, and D. F. Wilson. 1982. Regulation of intracellular pH by human peripheral blood lymphocytes as measured by 19F NMR. Proc. Natl. Acad. Sci. USA 79:7944–7948.

    Article  PubMed  CAS  Google Scholar 

  41. Ellis, D., and R. C. Thomas. 1976. Direct measurement of the intracellular pH of mammalian cardiac muscle. J. Physiol (London) 262:755–761.

    CAS  Google Scholar 

  42. Evans, M. G., and R. C. Thomas. 1984. Acid influx into snail neurones caused by reversal of the normal pHi-regulating system. J. Physiol (London) 346:143–154.

    CAS  Google Scholar 

  43. Evans, M. G., and R. C. Thomas. 1984. The effects of acid solutions on intracellular pH and Na in snail neurones. J. Physiol (London) 341:68P.

    Google Scholar 

  44. Fenton, R. A., N. C. Gonazalez, and R. L. Clancy. 1978. The effect of dibutyrl cyclic AMP and glucagon on the myocardial cell pH. Respir. Physiol. 32:213–223.

    Article  PubMed  CAS  Google Scholar 

  45. Folbergrova, J., V. MacMillan, and B. K. Siesjo. 1972. The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain. J. Neurochem. 19:2507–2517.

    Article  PubMed  CAS  Google Scholar 

  46. Frelin, C., P. Vigne, and M. Lazdunski. 1983. The amiloride-sensitive Na+/H+ antiport in 3T3 fibroblasts. J. Biol. Chem. 258:6272–6276.

    PubMed  CAS  Google Scholar 

  47. Fromter, E., K. Sato, and K. Gessner. 1975. Acetazolamide inhibits passive buffer exit from rat kidney proximal tubular cells. Pfluegers Arch. 359:R118.

    Google Scholar 

  48. Gadian, D. G., G. K. Radda, M. J. Dawson, and D. R. Wilkie. 1982. pHi measurements of cardiac and skeletal muscle using 31-NMR. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. R. Nuccitelli and D. W. Deamer, eds. Liss, New York. Pp. 61–77.

    Google Scholar 

  49. Gilies, R. J., J. R. Alger, J. A. den Hollander, and R. G. Shul-man. 1982. Intracellular pH measured by NMR: Methods and results. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. R. Nuccitelli and D. W. Deamer, eds. Liss, New York. Pp. 79–104.

    Google Scholar 

  50. Heiple, J. M., and D. L. Taylor. 1982. An optical technique of measurement of intracellular pH in single living cells. In: Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions. R. Nuccitelli and D. W. Deamer, eds. Liss, New York. Pp. 21–54.

    Google Scholar 

  51. Hinke, J. A. M. 1967. Cation-selective microelectrodes for intracellular use. In: Glass Electrodes for Hydrogen and Other Cations: Principles and Practice. G. Eisenman, ed. Dekker, New York. pp. 464–477.

    Google Scholar 

  52. Jacobs, M. H. 1920. The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am. J. Physiol. 53:457–463.

    CAS  Google Scholar 

  53. Jacobs, M. H. 1922. The influence of ammonium salts on reaction. J. Gen. Physiol. 5:181–188.

    Article  PubMed  CAS  Google Scholar 

  54. Kahn, A. M., G. M. Dolson, S. C. Bennett, and E. J. Weinman. 1984. cAMP and PTH inhibits Na+ /H+ exchange in brush border membrane vesicles (BBM) derived from a suspension of rabbit proximal tubules. Kidney Int. 25:289a.

    Google Scholar 

  55. Keifer, D. W., and A. Roos. 1981. Membrane permeability to the molecular and ionic forms of DMO in barnacle muscle. Am. J. Physiol. 240:C73–C79.

    PubMed  CAS  Google Scholar 

  56. Kinsella, J. L., and P. S. Aronson. 1980. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238:F461–F469.

    PubMed  CAS  Google Scholar 

  57. Kinsella, J. L., and P. S. Aronson. 1981. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 241:F374–F379.

    PubMed  CAS  Google Scholar 

  58. Kinsella, J. L., and P. S. Aronson. 1981. Interaction of NH4 + and Li+ with the renal microvillus membrane Na+-H+ exchanger. Am. J. Physiol. 241:C220–C226.

    PubMed  CAS  Google Scholar 

  59. Kinsella, J. L., and P. S. Aronson. 1982. Determination of the coupling ratio for Na+-H+ exchange in renal microvillus membranes vesicles. Biochim. Biophys. Acta 689:161–164.

    Article  PubMed  CAS  Google Scholar 

  60. Koppel, M., and K. Spiro. 1914. Uber die wirking von moder-atoren (Puffern) bei der Verschiebung des saure-basengleichgewichtes in biologischen flussigkeiten. Biochem. Z. 65:409–439.

    CAS  Google Scholar 

  61. MacMillan, V., and B. K. Siesjo. 1973. The influence of hypo-capnea upon intracellular pH and upon some carbohydrate substrates, amino acids and organic phosphates in the brain. J. Neu-rochem. 21:1283–1299.

    CAS  Google Scholar 

  62. Meech, R. W., and R. C. Thomas. 1977. The effect of calcium injection on the intracellular sodium and pH of snail neurones. J. Physiol. (London) 265:867–879.

    PubMed  CAS  Google Scholar 

  63. Meech, R. W., and R. C. Thomas. 1980. Effect of measured calcium chloride injections on the membrane potential and internal pH of snail neurones. J. Physiol. (London) 298:111–129.

    PubMed  CAS  Google Scholar 

  64. Michaelis, L. 1922. Die Wasserstoffionenkonzentration. Springer-Verlag, Berlin, pp. 89–93.

    Google Scholar 

  65. Moody, W. J., Jr. 1981. The ionic mechanism of intracellular pH regulation in crayfish neurones. J. Physiol. (London) 316:293–308.

    PubMed  Google Scholar 

  66. Moolenaar, W. H., J. Boonstra, P. T. van-der Saag, and S. W. de Laat. 1981. Sodium/proton exchange in mouse neuroblastoma cells. J. Biol. Chem. 256:12883–12887.

    PubMed  CAS  Google Scholar 

  67. Moolenaar, W. H., R. W. Tsien, P. T. van der Saag, and S. W. Laat. 1983. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature (London) 304:645–648.

    Article  CAS  Google Scholar 

  68. Moolenaar, W. H., Y. Yarden, S. W. de Laat, and J. Schlessinger. 1982. Epidermal growth factor induces electrically silent Na+ influx in human fibroblasts. J. Biol. Chem. 257:8502–8506.

    PubMed  CAS  Google Scholar 

  69. Moore, R. D. 1979. Elevation of intracellular pH by insulin in frog skeletal muscle. Biochem. Biophys. Res. Commun. 91:900–904.

    Article  PubMed  CAS  Google Scholar 

  70. Moore, R. D., M. L. Fidelman, and S. H. Seeholzer. 1979. Correlation between insulin action upon glycolysis and change in intracellular pH. Biochem. Biophys. Res. Commun. 91:905–910.

    Article  PubMed  CAS  Google Scholar 

  71. Murer, H., U. Hopfer, and R. Kinne. 1976. Sodium/proton antiport in brush border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597–604.

    PubMed  CAS  Google Scholar 

  72. Piwnica-Worms, D., and M. Lieberman. 1983. Micro-fluorometric monitoring of pH, in cultured heart cells: Na+-H+ exchange. Am. J. Physiol. 244:C442–C448.

    Google Scholar 

  73. Riegle, K. M., and R. L. Clancy. 1975. Effect of norepinephrine on myocardial intracellular hydrogen ion concentration. Am. J. Physiol. 229:344–349.

    PubMed  CAS  Google Scholar 

  74. Rindler, M. J., and M.H. Saier, Jr. 1981. Evidence for Na+/H+ antiport in cultured dog kidney cells (MDCK). J. Biol. Chem. 256:10820–10825.

    PubMed  CAS  Google Scholar 

  75. Rindler, M. J., M. Taub, and M. H. Saier, Jr. 1979. Uptake of 22Na+ by cultured dog kidney cells (MDCK). J. Biol. Chem. 254:11431–11439.

    PubMed  CAS  Google Scholar 

  76. Rink, T. J., R. W. Tsien, and T. Pozzan. 1982. Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95:189–196.

    Article  PubMed  CAS  Google Scholar 

  77. Roos, A. 1975. Intracellular pH and distribution of weak acids across cell membranes: A study of D-and L-lactate and of DMO in rat diaphragm. J. Physiol. (London) 249:1–25.

    PubMed  CAS  Google Scholar 

  78. Roos, A., and W. F. Boron. 1980. The buffer value of weak acids and bases: Origin of the concept, and first mathematical derivation and application to physico-chemical systems. The work of M. Koppel and K. Spiro. Respir. Physiol. 40:1–32.

    Article  PubMed  CAS  Google Scholar 

  79. Roos, A., and W. F. Boron. 1981. Intracellular pH. Physiol. Rev. 61:296–434.

    CAS  Google Scholar 

  80. Rothenberg, P., L. Glaser, P. Schlesinger, and D. Cassel. 1983. Activation of Na+/H+ exchange by epidermal growth factor elevates intracellular pH in A431 cells. J. Biol Chem. 258:12644–12653.

    PubMed  CAS  Google Scholar 

  81. Russell, J. M., and W. F. Boron. 1976. Role of chloride transport in regulation of intracellular pH. Nature (London) 264:73–74.

    Article  CAS  Google Scholar 

  82. Russell, J. M., W. F. Boron, and M. S. Brodwick. 1983. Intracellular pH and Na fluxes in barnacle muscle with evidence for reversal of the ionic mechanism of intracellular pH regulation. J. Gen. Physiol. 82:47–78.

    Article  PubMed  CAS  Google Scholar 

  83. Sachs, G., J. G. Spenney, and M. Lewin. 1978. H+ transport: Regulation and mechanism in gastric mucosa and membrane vesicles. Physiol. Rev. 58:106–173.

    PubMed  CAS  Google Scholar 

  84. Seifter, J. L., and R. C. Harris. 1984. Chronic K depletion Na-H exchange in rat renal cortical brush border membrane vesicles. Kidney Int. 25:282a.

    Google Scholar 

  85. Shuldiner, S., and E. Rozengurt. 1982. Na+/H+ antiport in Swiss 3T3 cells: Mitogenic stimulation leads to cytoplasmic al-kalinization. Proc. Natl. Acad. Sci. USA 79:7778–7782.

    Article  Google Scholar 

  86. Siesjo, B. K., and K. Messeter. 1971. Factors determining intracellular pH. In: Ion Homeostasis of the Brain. B. K. Siesjo and S. C. Sorensen, eds. Munksgaard, Copenhagen, pp. 244–262.

    Google Scholar 

  87. Steinmetz, P. A., and O. S. Andersen. 1982. Electogenic proton transport in epithelial membranes. J. Membr. Biol. 65:155–174.

    Article  PubMed  CAS  Google Scholar 

  88. Thomas, J. A., R. N. Buchsbaum, A. Zimniak, and E. Racker. 1979. Intracellular pH measements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218.

    Article  PubMed  CAS  Google Scholar 

  89. Thomas, R. C. 1974. Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode. J. Physiol. (London) 238:159–180.

    PubMed  CAS  Google Scholar 

  90. Thomas, R. C. 1976. Ionic mechanism of the H+ pump in a snail neurone. Nature (London) 262:54–55.

    Article  CAS  Google Scholar 

  91. Thomas, R. C. 1976. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J. Physiol. (London) 255:715–735.

    CAS  Google Scholar 

  92. Thomas, R. C. 1977. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J. Physiol. (London) 273:317–338.

    PubMed  CAS  Google Scholar 

  93. Trivedi, B., and H. Danforth. 1966. Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241:4110–4112.

    PubMed  CAS  Google Scholar 

  94. Tsai. C. J., H. E. Ives, R. J. Alpern, V. J. Yee, D. G. Warnock, and F. C. Rector, Jr. 1984. The Vmax for Na+/H+ antiporter activity in rabbit brush border vesicles (BBV) is increased in metabolic acidosis. Kidney Int. 25:284a.

    Google Scholar 

  95. Van Slyke, D. 1922. On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J. Biol. Chem. 52:525–570.

    Google Scholar 

  96. Vaughan-Jones, R. D. 1979. Regulation of chloride in quiescent sheep heart Purkinje fibres studied using intracellular chloride and pH-sensitive microelectrodes. J. Physiol. (London) 295:111–137.

    PubMed  CAS  Google Scholar 

  97. Vaughan-Jones, R. D. 1982. Chloride-bicarbonate exchange in the sheep cardiac Purkinje fiber. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. R. Nuccitelli and D. Deamer, eds. Liss, New York. pp. 239–252.

    Google Scholar 

  98. Vaughan-Jones, R. D., W. J. Lederer, and D. A. Eisner. 1983. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature (London) 301:522–524.

    Article  CAS  Google Scholar 

  99. Vigne, P., C. Frelin, E. J. Cragoe, Jr., and M. Lazdunski. 1983. Ethyl-isopropyl-amiloride: A new and highly potent derivative of amiloride for the inhibition of the Na + /H+ exchange system in various cell types. Biochem. Biophys. Res. Commun. 116:86–90.

    Article  PubMed  CAS  Google Scholar 

  100. Vigne, P., C. Frelin, and M. Lazdunski. 1982. The amiloride sensitive Na+/H+ exchange system in skeletal muscle cells in culture. J. Biol. Chem. 257:9394–9400.

    PubMed  CAS  Google Scholar 

  101. Weinman, S. A., and L. Reuss. 1982. Na+ /H+ exchange at the apical membrane of Necturus gallbladder. J. Gen. Phvsiol. 80:299–321.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Boron, W.F. (1987). Intracellular pH Regulation. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Membrane Transport Processes in Organized Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5404-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5404-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42698-8

  • Online ISBN: 978-1-4684-5404-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics