Skip to main content

Abstract

Mechanical transduction is the most widespread sensory modality in animals. Specialized organs of the cochlea (Hudspeth, 1983) and vestibular system provide our sense of hearing and local gravity. Our sense of touch and vibration, particularly in the skin, is mediated by a variety of specialized mechanosensors and possibly free nerve endings (Iggo and Andres, 1982). Muscle tension is transduced by Ia afferent nerves in muscle spindles, while tendon tension is transduced by Golgi tendon organs. Joint position is transduced by poorly understood receptors in the joint capsule. The inflation of hollow organs is reported by sensory nerves of the autonomic nervous system, although the location of the actual transducers is not known and may reside in nerve cells, muscle cells, or other types of supporting cells. Inflation of blood vessels is used to measure blood pressure. Inflation of the lung, gut, bladder, mammary glands, and probably cerebrospinal fluid all provides essential feedback for autonomic regulation. Osmoregulation at the systemic level and cell volume itself (Kregenow, 1981) are likely to be controlled by feedback from membrane tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach, A., and Sachs, F., 1984, Kinetics and conductance properties of gaps within bursts of nicotinic ion channel activity, Biophys. J. 45:187–198.

    Article  PubMed  CAS  Google Scholar 

  • Brehm, P., Kullberg, R., and Moody-Corbett, F., 1984, Properties of nonjunctional acetylcholine receptor channels on innervated muscle of Xenopus Laevis, J. Physiol. (Lond.) 350:631–648.

    CAS  Google Scholar 

  • Colquhoun, D., and Hawkes, A. G., 1981, On the stochastic properties of single ion channels, Proc. R. Soc. Lond. [Biol.] 211:205–235.

    Article  CAS  Google Scholar 

  • Corey, D., and Hudspeth, A. J., 1983, Kinetics of the receptor current in bullfrog saccular hair cells, J. Neurosci. 3:962–976.

    PubMed  CAS  Google Scholar 

  • Edwards, C., 1983, The ionic mechanisms underlying the receptor potential in mechano-receptors, in The Physiology of Excitable Cells (A. D. Grinnel and W. J. Moody, eds.), Alan R. Liss, New York, pp. 497–503.

    Google Scholar 

  • Edwards, C., Ottoson, D., Rydqvist, B., and Swerup, C., 1981, The permeability of the transducer membrane of the crayfish stretch receptor to calcium and other divalent ions, Neuroscience 6:1455–1460.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E. A., and Hochmuth, R. M., 1973, Mechano-chemical properties of membrane, in Current Topics in Membrane Transport (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 1–64.

    Google Scholar 

  • Evans, E. A., Waugh, R., and Melnik, L., 1976, Elastic area compressibility modulus of red cell membrane, Biophys. J. 16:585–595.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D., Williams, W. S., and Connor, J. A., 1983, Theory of electromechanical effects in nerve, Cell. Mol. Neurobiol. 3:89–111.

    Article  PubMed  CAS  Google Scholar 

  • Guharay, F., and Sachs, F., 1984a, Stretch activated single ion-channel currents in tissue-cultured embryonic chick skeletal muscle, J. Physiol. (Lond.) 352:685–701.

    CAS  Google Scholar 

  • Guharay, F., and Sachs, F., 1984b, Mechano-transducer ion channels in chick skeletal muscle: The effects of extracellular pH, J. Physiol. (Lond.) 363:119–134.

    Google Scholar 

  • Guharay, F., and Sachs, F., 1985, Mechano-receptor ion channels are not nicotinic, Biophys. J. 47:2039.

    Google Scholar 

  • Hamill, O. P., 1983, Potassium and chloride channels in red blood cells, in Single-Channel Recording (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 451–471.

    Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.

    Article  CAS  Google Scholar 

  • Helfrich, W., 1973, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. 28C:693–703.

    Google Scholar 

  • Hudspeth, A. J., 1983, Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system, Annu. Rev. Neurosci. 6:187–215.

    Article  PubMed  CAS  Google Scholar 

  • Iggo, A., and Andres, K. H., 1982, Morphology of cutaneous receptors, Annu. Rev. Neurosci. 5:1–31.

    Article  PubMed  CAS  Google Scholar 

  • Kistler, J., Stroud, R. M., Klymkowsky, M. W., Lalancette, R. A., and Fairclough, R. H., 1982, Structure and function of an acetylcholine receptor, Biophys. J. 37:371–383.

    Article  PubMed  CAS  Google Scholar 

  • Kregenow, F., 1981, Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotropic media, Annu. Rev. Physiol. 43:493–505.

    Article  PubMed  CAS  Google Scholar 

  • Kwok, R., and Evans, E. A., 1981, Thermoelasticity of large lecithin bilayer vesicles, Biophys. J. 35:637–652.

    Article  PubMed  CAS  Google Scholar 

  • Lis, L. J., McAlister, M., Fuller, N., Rand, R. P., and Parsegian, V. A, 1982, Measurement of the lateral compressibility of several phospholipid bilayers, Biophys. J. 37:667–672.

    PubMed  CAS  Google Scholar 

  • Naftalin, L., 1965, Some new proposals regarding acoustic transmission and transduction, Cold Spring Harbor Symp. Quant. Biol. 30:169–180.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori, H., 1984, Studies of ionic currents in the isolated vestibular hair cell of the chick, J. Physiol. (Lond.) 350:561–581.

    CAS  Google Scholar 

  • O’Leary, D. P., 1970, An electrokinetic model of transduction in the semicircular canal, Biophys. J. 10:859–875.

    Article  PubMed  Google Scholar 

  • Sachs, F., 1984, The noise produced by patch electrodes: A model, Biophys. J. 45:57a.

    Article  Google Scholar 

  • Sachs, F., Neil, J., and Barkakati, N., 1982, Automated analysis of single channel data, Pfluegers Arch. 395:331–340.

    Article  CAS  Google Scholar 

  • Sakmann, B., and Neher, E., 1983, Geometric parameters of pipettes and membrane patches, in Single-Channel Recording (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 37–51.

    Google Scholar 

  • Teorell, T., 1971, A biophysical analysis of mechano-electrical transduction, in Principles of Receptor Physiology, (W. R. Loewenstein, ed.), Springer-Verlag, New York, pp. 291–339.

    Chapter  Google Scholar 

  • Weber, K., and Osborne, M., 1981, Microtubule and intermediate filament networks in cells viewed by immunofluorescence microscopy, in Cytoskeletal Elements and Plasma Membrane Organization, (G. Poste and G. Nicholson, eds.), Elsevier/North-Holland, Amsterdam, pp. 1–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Sachs, F. (1986). Mechanotransducing Ion Channels. In: Latorre, R. (eds) Ionic Channels in Cells and Model Systems. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5077-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5077-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5079-8

  • Online ISBN: 978-1-4684-5077-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics