Skip to main content

Genetic Control of Schistosomiasis: A Technique Based on the Genetic Manipulation of Intermediate Host Snail Populations

  • Chapter
Parasitic and Related Diseases

Part of the book series: Comparative Pathobiology ((CPATH,volume 8))

Abstract

In this contribution I support the contention (Woodruff, 1978) that it may be possible to reduce the size of human-infecting schistosome populations by the genetic manipulation of their intermediate host snails. The proposed technique is based on the finding that snail-schistosome compatibility is variable and that some of this variation is under relatively simple genetic regulation. If the proportion of intermediate host snails that are resistant to infection by the local larval schistosome can be increased, then the rate at which the parasite is transmitted to the final host will decrease. Such genetically resistant snails can be isolated by artificial selection procedures, mass-reared, and their descendants returned to the population from which they were isolated. If sufficient numbers of resistant snails are released, the resultant genetic perturbation will be too great for the local schistosome population to adjust coevolutionarily. Under certain local ecological circumstances it may be possible to break the transmission cycle within a few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. M. (1974). Population dynamics of the cestode Caryophyllaeus Zaticeps (Pallas, 1781) in the bream (Abramis brama L.). J. Anim. Ecol., 43, 305–321.

    Article  Google Scholar 

  • Anderson, R. M. (1978a). Population dynamics of snail infection by miracidia. Parasitology, 77, 201–224

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. M. (1978b). The regulation of host population growth by parasitic species. Parasitology, 76, 119–157.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. M. (ed.) (1982). “Population Dynamics of Infectious Diseases”. Chapman and Hall, London.

    Google Scholar 

  • Anderson, R. M. and May, R. M. (1979). Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions. Parasitology, 79, 63–94.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. M. and May, R. M. (eds.). (1982). “Population Biology of Infectious Diseases.” Springer-Verlag, New York.

    Google Scholar 

  • Anderson, R. M., Whitfield, P. J., and Mills, C. A. (1977). An experimental study of the population dynamics of an ectoparasitic digenean Transversotrema patialense (Soparker): the cercarial and adult stages. J. Anim. Ecol., 46, 555–580.

    Article  Google Scholar 

  • Barbosa, F. S. and Barreto, C. (1960). Differences in susceptibility of Brazilian strains of Australorbis glabratus to Schistosoma mansoni. Exp. Parasitol., 9, 137–140.

    Article  CAS  Google Scholar 

  • Barr, A. R. 1975. Evidence for genetical control of invertebrate immunity and its field significance. In “Invertebrate Immunology” ( K. Maramorosch, and R. E. Shope, eds.) Academic Press, New York.

    Google Scholar 

  • Basch, P. F. 1975. An interpretation of snail-trematode infection rates: specificity based on concordance of compatible phenotypes. Int. J. Parasitol., 5, 449–452.

    Article  PubMed  CAS  Google Scholar 

  • Basch, P. F. 1976. Intermediate host specificity in Schistosoma mansoni. Exp. Parasitol., 39, 150–169.

    Article  CAS  Google Scholar 

  • Bastos, O. de C., Guaraldo, A. M. A., and Magahlaes, L. A. (1978a). Suscetibilidade de Biomphalaria glabrata, variante albina, oriunda de Belo Horizonte, MG, a infeccao por Schistosoma mansoni, parasita em codicoes naturais, de roedores silvestres do Vale do Rio Paraiba do Sul, SP (Brasil). Rev. Saude Publ., Sao Paulo, 12, 179–183.

    Google Scholar 

  • Bastos, O. de C., Magahlaes, L. A., Rangel, H. de A., and Pidrabuena, A. E. (1978b). Alguns dados sobre o comportamento parasitologico das linhagens humana e silvestre do Schistosoma mansoni, no Vale do Rio Paraibaa do Sul, SP (Brasil). Rev. Saude Pubi., Sao Paulo, 12, 184–199.

    Google Scholar 

  • Bayne, C. J. (1982). Recognition and killing of metazoan parasites, particularly in molluscan hosts. In “Developmental Immunology: Clinical Problems and Aging.” pp. 109–114, Academic Press, New York.

    Google Scholar 

  • Berg, C. O. (1973). Biological control of snail-borne diseases: a review. Exp. Parasitol., 33, 318–330.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, J. A. and Cook, L. M. (1975). Moths, melanis and clean air. Sci. Am., 232, 90–99.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D. J. (1982). Epidemiological models–theory and reality. In Anderson ( 1982 ) pp. 320–333.

    Google Scholar 

  • Brown, D. S. (1980). “Freshwater Snails of Africa and Their Medical Importance.” Taylor and Francis, London.

    Google Scholar 

  • Bruce, J. I. and Radke, M. G. (1971). Cultivation of Biomphalaria giabrata and maintenance of Schistosoma mansoni in the laboratory. Rio-Medical Rep. 406th Med. Lab., 19, 1–84.

    Google Scholar 

  • Carvalho, O. S., Milward-De-Andrade, R., and Souza, C. P. (1979). Susceptibilidade de Biomphalaria tenagophila (d’Orbigny, 1835), de Itajuba (MG), a infeccao pela cepa “LE” de Schistosoma mansoni Sambon, 1907, de Belo Horizonte, MG (Brasil). Rev. Saude Pubi., Sao Paulo, 13, 20–25.

    CAS  Google Scholar 

  • Cheng, T. C. (1970). Immunity in mollusca, with special reference to reactions to transplants. Transplant. Proc., 2, 226–230.

    PubMed  CAS  Google Scholar 

  • Chu, K. Y., Sabbaghian, H., and Massoud, J. (1966). Host-parasite relationship of Bulinus truncatus and Schistosoma haematobium in Iran. 2. Effect of exposure dosage of miracidia on the biology of the snail host and the development of the parasites. Bull. WHO, 34, 121–130.

    PubMed  CAS  Google Scholar 

  • Clarke, B. C. (1979). The evolution of genetic diversity. Proc. R. Soc. London (B), 205, 453–474.

    Article  CAS  Google Scholar 

  • Coelho, P. M. Z., Diaz, M., Mayrink, W., Magahlaes, P., Mello, M. N., and Costa, C. A. (1979). Wild reservoirs of Schistosoma mansoni from Caratinga, an endemic schistosomiasis area of Minas Gerias State, Brazil. Am. J. Trop. Med. Hyg., 28, 163–164.

    PubMed  CAS  Google Scholar 

  • Correa, M. C. dos R., Coelho, P. M. Z., and Freitas, J. R. (1979). Susceptibilidade de linhagen de BiomphaZaria tenagophila e B. glabrata a duas cepas de Schistosoma mansoni (LE-Belo Horizonte: M.G., SJ-San Jose dos Campos, SP). Rev. Inst. Med. Trop. Sao Paulo, 21, 72–76.

    Google Scholar 

  • Cummins, K. W. and Klug, M. J. (1979). Feeding ecology of stream invertebrates. Ann. Rev. Ecol. Syst., 10, 147–172.

    Article  Google Scholar 

  • Davidson, G. 1974. “Genetic Control of Insect Pests.” Academic Press, New York.

    Google Scholar 

  • Davis, G. M. (1971). Mass cultivation of Oncomelania (Prosobranchia: Hydrobiidae) for studies of Schistosoma japonicum. Bio-Medical Rep. 406th Med. Lab., 19, 85–161.

    Google Scholar 

  • Davis, G. M. (1980). Snail hosts of Asian Schistosoma infecting man: evolution and coevolution. In “The Mekong Schistosome” ( C. Harinasuta, and J. L. Bruce, eds.) Univ. of Michigan Publ. Ann Arbor.

    Google Scholar 

  • Davis, G. M. and Iwamoto, Y. (1969). Factors influencing productivity of cultures of Oncomelania hupensis nosophora (Prosobranchia: Hydrobiidae). Am. J. Trop. Med. Hyg., 18, 629–637.

    PubMed  CAS  Google Scholar 

  • Davis, G. M. and Ruff, M. D. (1973). Oncomelania hupensis (Gastropoda: Hydrobiidae) hybridization, genetics and transmission of Schistosoma japonicum. Malacol. Rev., 6, 181–197.

    Google Scholar 

  • Day, P. R. (1974). “Genetics of Host Parasite Interaction.” W. H. Freeman, San Francisco.

    Google Scholar 

  • Debath, P. (1974). “Biological Control by Natural Enemies.” Cambridge Univ. Press, London.

    Google Scholar 

  • Donges, J. (1974). A formula for the mean infection success per miracidium and a method of proving the homogenous susceptibility of snail populations to trematode infection. Int. J. Parasitol., 4, 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Duke, B. O. L. and Moore, P. J. (1976a). The use of a molluscicide in conjunction with chemotherapy to control Schistosoma haematobium at the Barombi Lake foci in Cameroon. I. The attack on the snail hosts using N-tritylmorpholine, and its effects on transmission from snail to man. Tropenmed. ParasitoZ., 27, 297–313.

    CAS  Google Scholar 

  • Duke, B. O. L. and Moore, P. J. (1976b). The use of a molluscicide in conjunction with chemotherapy to control Schistosoma haematobium at the Barombi Lake foci in Cameroon. II. Urinary examination methods, the use of Niridazole to attack the parasite in man, and the effect of transmission from man to snail. Tropenmed. Parasitol., 27, 489–504.

    PubMed  CAS  Google Scholar 

  • El-Hassan, A. A. (1974). Laboratory studies of the direct effect of temperature on Bulinus truncatus and Biomphalaria alexandrina, the snail intermediate hosts of schistosomes in Egypt. Folia Parasitol. (Praha), 21, 181–187.

    CAS  Google Scholar 

  • Etges, F. J. (1963). Effect of Schistosoma mansoni infection upon fecundity in Australorbis glabratus. J. Parasitol., 49 (suppl.), 26.

    Google Scholar 

  • Files, V. S. 1951. A study of the vector-parastie relationships in Schistosoma mansoni. Parasitology, 41, 264–269.

    CAS  Google Scholar 

  • Fine, P. E. M. (rapporteur) (1976). “Mathematical Models of Schistosomiasis.” Proceed. Workshop, Bellagio, Italty, 9–14 May 1976. Edna McConnell Clark Foundation, New York.

    Google Scholar 

  • Fletcher, M. (1984). Genetic control of schistosomiasis: a mathematical model. Comp. Pathobiol.,8. In this volume.

    Google Scholar 

  • Frandsen, F. (1978). Hybridization between different strains of Schistosoma intercalatum Fisher, 1934 from Cameroun and Zaire. J. Helminth., 52, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Frandsen, F. (1979). Studies of the relationships between Schistosoma and their intermediate hosts. III. J. Helminth., 53, 321–348.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, G. K., Lemma, A., and Haile, T. (1979). Schistosomiasis in Omo National Park in southwest Ethiopia. Am. J. Trop. Pled. Hyg., 28, 526–530.

    CAS  Google Scholar 

  • Hairston, N. G. (1962). Population ecology and epidemiological problems. In “Ciba Foundation Symposium on Bilharziasis” ( M. O’Connor, and G. Wolstenholm, eds.) pp. 36–62. Churchill, London.

    Chapter  Google Scholar 

  • Hairston, N. G. (1965). On the mathetical analysis of schistosome populations. Bull. WHO, 33, 45–62.

    PubMed  CAS  Google Scholar 

  • Hairston, N. G. (1973). The dynamics of transmission. In “Epidemiology and Control of Schistosomiasis (Bilharziasis).” ( H. Ansari, ed.) pp. 250–336. University Park Press, Baltimore.

    Google Scholar 

  • Hairston, N. G., Wrzinger, K. -H., and Burch, J. B. (1975). Non-chemical methods of snail control. World Health Organization. WHO/VBC/75.573; WHO/SCHISTO/75.40. 30 p.

    Google Scholar 

  • Harris, K. R. (1975). The fine structure of encapuslation in BiomphaZaria gZabrata. In “Pathology of Invertebrate Vectors of Disease.” (L. A. Bulla and T. C. Cheng eds.). Ann. N.Y. Acad. Sci., 266, 446–464.

    Google Scholar 

  • Harrison, G. 1978. “Mosquitoes, Malaria and Man.” E. P. Dutton, New York.

    Google Scholar 

  • Hoffman, D. B., Lehman, J. H., Scott, V. C., Warren, K. S., and Webbe, G. (1979). Control of schistosomiasis. Am. J. Trop. Med. Hyg., 28, 249–259.

    PubMed  Google Scholar 

  • Hubendick, B. (1958). A possible method of schistosome-vector control by competition between resistant and susceptible strains. BUZZ. WHO, 18, 1113–1116.

    CAS  Google Scholar 

  • Jelnes, J. E. (1977). Evidence of possible molluscicide resistance in Schistosoma intermediate hosts from Iran. Trans. R. Soc. Trop. Med. Hyg., 71, 451.

    Article  PubMed  CAS  Google Scholar 

  • Jobin, W. R., Brown, R. A., Valez, S. P., and Ferguson, F. F. (1977). Biological control of Biomphalaria glabrata in major reservoirs of Puerto Rico. Am. J. Trop. Med. Hyg., 26, 1018–1024.

    PubMed  CAS  Google Scholar 

  • Jobin, W. R. and Laracuente, A. (1979). Biological control of schistosome transmission in flowing water habitats. Am. J. Trop. Med. Hyg., 28, 916–197.

    PubMed  CAS  Google Scholar 

  • Jordan, P. (1977). Schistosomiasis–research to control. Am. J. Trop. Med. Hyg., 26, 877–886.

    PubMed  CAS  Google Scholar 

  • Jordan, P. and Webbe, G. (1969). “Human Schistosomiasis.” C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Kagan, I. G. and Geiger, S. (1965). The susceptibility of three strains of Australorbis glabratus to Schistosoma mansoni from Brazil and Puerto Rico. J. ParasitoZ., 51, 622–627.

    Article  CAS  Google Scholar 

  • Kuris, A. M. (1973). Biological control, implications of the analogy between the trophic interactions of insect pestparasitoid and snail-trematode systems. Exp. Parasitol., 33, 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Laracuente, A., Brown, R. A., and Jobin, W. (1979). Comparison of four species of snails as potential decoys to intercept schistosome miracidia. Am. J. Trop. Med. Hyg., 28, 99–105.

    PubMed  CAS  Google Scholar 

  • Liang, Y. -S. (1974). Cultivation of Bulinus (Physopsis) gZobosus (Morelet) and Biomphalaria pfeifferi pfeifferi

    Google Scholar 

  • Kruass), snail hosts of schistosomiasis. Sterkiana,53, 1–75.

    Google Scholar 

  • Lie, K. J., Heyneman, D., and Richards, C. S. (1979). Specificity of natural resistance to trematode infections in Biomphalaria glabrata. Int. J. Parasitol., 9, 529–531.

    Article  CAS  Google Scholar 

  • Lo, C. T. (1972). Compatibility and host-parasite relationship

    Google Scholar 

  • between species of the genus BuZinus (Basommatophora: Planorbidae) and an Egyptian strain of Schistosoma haematobium (Trematoda: Digenea). Malacologia,11, 225–280.

    Google Scholar 

  • Loker, E. S. (1983). A comparative study of the life-histories of mammalian schistosomes. Parasitology, 87, 343–369.

    Article  PubMed  Google Scholar 

  • Loverde, P. T. (1976). Host-Parasite Interrelationships Between the Trematode Schistosoma haematobium from Egypt and Polyploid Snails of the Genus Bulinus. Ph.D. Dissertation, Univ. Michigan, Ann Arbor, Michigan.

    Google Scholar 

  • MacDonald G. (1965). The dynamics of helminth infections with special reference to schistosomes. Trans. R. Soc. Trop. Med. Hyg., 59, 489–506.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, G. (1973). Measurement of the clinical manifestations of schistosomiasis. In “Epidemiology and Control of Schistosomiasis.” ( N. Ansari, ed.). pp. 354–387. University Park Press, Baltimore, Maryland.

    Google Scholar 

  • MacDonald, W. W. (1976). Mosquito genetics in relation to filarial infections. Symp. Br. Soc. Parasitol., 14, 1–24.

    Google Scholar 

  • Malek, E. A. (1978). Realistic goals in the use of molluscicides in different endemic areas of schistosomiasis. Proc. Intl. Conf. Schistosomiasis, Cairo, Egypt, October 18–25, 1975, 1 359–391.

    Google Scholar 

  • Malek, E. A. (1980). “Snail-Transmitted Parasitic Diseases.” Vol. I. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Mansour, N. S. (1973). Schistosoma mansoni and Schistosoma haematobium natural infection in the Nile rat Arvicanthis n. nicoticus from an endemic area in Egypt. J. Egypt. Public. Health Assoc., 48, 94–100.

    CAS  Google Scholar 

  • Markel, S. F., Loverde, P. T., and Birtt, E. M. (1979). Prolonged latent schistosomiasis. J. Am. Med. Assoc., 240, 1746–1747.

    Article  Google Scholar 

  • McClelland, W.F.J. (1965). Development of Schistosoma haematobium in BuZinus (Physopsis) nasutus. E. Afr. Inst. Med. Res. Ann. Rep., 1963–64, Mwanza, 1965. pp. 15–17.

    Google Scholar 

  • Michelson, E. H. and Dubois, L. (1978). Susceptibility of Bahian populations of Biomphalaria gZabrata to an allopatric strain of Schistosoma mansoni. Am. J. Trop. Med. Hyg., 27, 782–786.

    CAS  Google Scholar 

  • Minchella, D. J. (1983). Laboratory comparison of the relative success of Biomphalaria glabrata stocks which are susceptible and insusceptible to infection with Schistosoma mansoni. Parasitology, 86, 335–344.

    Google Scholar 

  • Morais, J.A.D. (1975). Schistosomiase mansoni em Angola: notas sobre a sua recente difusao. An. Inst. Hig. Med. Trop., 3, 405–423.

    CAS  Google Scholar 

  • Mulvey, M. and Vrijenhoek, R. C. (1981). Multiple paternity in the hermaphroditic snail Biomphalaria obstructa. J. Hered., 72, 308–312.

    Google Scholar 

  • Mulvey, M. and Vrijenhoek, R. C. (1982). Population structure in Biomphalaria glabrata: examination of an hypothesis for the patchy distribution of susceptibility to schistosomes. Am. J. Trop. Med. Hyg., 31, 1195–1200.

    PubMed  CAS  Google Scholar 

  • Newton, W. L. (1952). The comparative tissue reaction of two strains of Australorbis glabratus to infection with Schistosoma mansoni. J. Parasitol., 38, 362–366.

    Article  CAS  Google Scholar 

  • Newton, W. L. (1953). The inheritance of susceptibility to infection with Schistosoma mansoni in Australorbis glabratus. Exp. ParasitiZ., 2, 242–257.

    Google Scholar 

  • Newton, W. L. (1955). The establishment of a strain of Australorbis glabratus which combines albinism and high susceptibility to infection with Schistosoma mansoni. J. Parasitol., 41, 526–528.

    Article  CAS  Google Scholar 

  • Otori, Y. Ritchie, L. S., and Hunter, G. W. (1956). The incubation period of the egg of Oncomelania nosophora. Am. J. Trop. Med. Hyg., 5, 559–561.

    Google Scholar 

  • Pal, R. and Whitten, M. J. (eds.) (1974). “The Use of Genetics in Insect Control.” Elsevier, London.

    Google Scholar 

  • Paperna, I. (1968). Susceptibility of BuZinus (Physopsis) gZobosus and Bulinus truncatus rohlfsi from different localities in Ghana to different local strains of Schistosoma haematobium. Ann. Trop. Med. ParasitoZ., 62, 12–26.

    Google Scholar 

  • Paraense, W. L. (1955). Self-and cross-fertilization in Australorbis glabratus. Mem. Inst. Oswaldo Cruz, Rio de Janeiro, 53, 285–291.

    Google Scholar 

  • Paraense, W. L. and Correa, L. R. (1963). Variation in susceptibility of populations of Australorbis glabratus to a strain of Schistosoma mansoni. Rev. Inst. Med. Trop. Sao Paulo, 5, 1522.

    Google Scholar 

  • Paraense, W. L. and Correa, L. R. (1978). Differential susceptibility of Biomphalaria tenagophila populations to infection with a strain of Schistosoma mansoni. J. ParasitoZ., 64, 822–826.

    Article  CAS  Google Scholar 

  • Pesigan, T. P., Hairston, N. G., Jauregui, J. J., Garcia, E. G., Santos, A. T., Santos, B. C., and Besa, A. A. (1958). Studies on Schistosoma japonicum infection in the Philippines. Bull. WHO, 18, 481–578.

    PubMed  CAS  Google Scholar 

  • Plapp, F. W. (1976). Biochemical genetics of insecticide resistance. Annu. Rev. EntomoZ., 21, 179–197.

    Article  CAS  Google Scholar 

  • Rachford, F. W. (1977). Oncomelania hupensis quadrasi from Mindoro (Victoria), Leyte (Palo), and Mindanaao (Davao del Norte) of the Philippines: susceptibility to infection with Philippine isolates of Schistosoma japonicum. J. ParasitoZ., 63, 1129–1130.

    CAS  Google Scholar 

  • Richards, C. S. (1970). Genetics of a molluscan vector of schistosomiasis. Nature, 227, 806–810.

    Article  PubMed  CAS  Google Scholar 

  • Richards, C. S. (1973a). Susceptibility of adult Biomphalaria glabrata to Schistosoma mansoni infection. Am. J. Trop. Med. Hyg., 22, 748–756.

    PubMed  CAS  Google Scholar 

  • Richards, C. S. (1973b). Genetics of Biomphalaria glabrata (Gastropoda: Planorbidae). Malacol. Rev., 6, 199–202.

    Google Scholar 

  • Richards, C. S. (1975a). Genetics factors in susceptibility of Biomphalaria glabrata for different strains of Schistosoma mansoni. Parasitology, 70, 221–241.

    Google Scholar 

  • Richards, C. S. (1975b). Genetic studies on variation in infectivity of Schistosoma mansoni. J. Parasitol., 61, 233–236.

    Article  CAS  Google Scholar 

  • Richards, C. S. (1975c). Genetic studies of pathologic conditions and susceptibility to infection in Biomphalaria glabrata. Ann. N.Y. Acad. Sci., 266, 394–410.

    Article  CAS  Google Scholar 

  • Richards, C. S. (1976). Genetics of the host-parasite relationship between Biomphalaria glabrata and Schistosoma mansoni. Symp. Br. Soc. Parasitol., 14, 45–54.

    Google Scholar 

  • Richards, C. S. (1977). Schistosoma mansoni: susceptibility reversal with age in the snail host Biomphalaria glabrata. Exp. Parasitol., 42, 165–168.

    CAS  Google Scholar 

  • Richards, C. S. (1983). Influence of snail age on genetic variations in susceptibility of Biomphalaria glabrata for infection with Schistosoma mansoni. Malacologia, 25, 493–502.

    Google Scholar 

  • Richards, C. S. and Merritt, J. W. (1972). Genetic factors in the susceptibility of juvenile Biomphalaria glabrata to Schistosoma mansoni infection. Am. J. Trop. Med. Hyg., 21, 425–434.

    PubMed  CAS  Google Scholar 

  • Santana, J. V. de, Magahlaes, L. A. and Rangel, H. de A. (1978). Selecao de linhagens de Biomphalaria tenagophila e Biomphalaria glabrata visando maior suscetibilidade ao Sehistosoma mansoni. Rev. Saude Publ., Sao Paulo, 12, 67–77.

    CAS  Google Scholar 

  • Saoud, M.F.A. 1965. Susceptibilities of various snail intermediate hosts of Schistosoma mansoni to various strains of the parasite. J. Helminth., 39, 363–376.

    Article  Google Scholar 

  • Southgate, V. R., Van Wijk, H. B., and Wright, C. A. (1976). Schistosomiasis at Loum, Cameroun; Schistosoma haematobium, S. intercalatum and their natural hybrid. Z. Parasitenk., 49, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Stunkard, H. W. (1946). Possible snail host of human schistosomes in the United States. J. Parasitol., 32, 539–552.

    Article  PubMed  CAS  Google Scholar 

  • Sturrock, B. M. (1966). The influence of infection with Schistosoma mansoni on the growth rate and reproduction of Biomphalaria pfeifferi. Ann. Trop. Med. Parasitol., 60, 187–197.

    PubMed  CAS  Google Scholar 

  • Sturrock, R. F. (1973). Field studies on the transmission of Schistosoma mansoni and on the bionomics of its intermediate host, Biomphalaria glabrata, on St. Lucia, West Indies. Int. J. Parasitol., 3, 175–194.

    Article  PubMed  CAS  Google Scholar 

  • Sudds, R. H. (1960). Observations of schistosome miracidial behavior in the presence of normal and abnormal snail hosts and subsequent tissue studies of the hosts. J. Elisha Mitchell Sci. Soc., 76, 121–123.

    Google Scholar 

  • Sullivan, J. T., Cheng, T. C., and Chen, C. C. (1984). Genetic selection for tolerance to niclosamide and copper in Biomphalaria glabrata (Mollusca: Pulmonta). Tropenmed. Parasit., 35, 189–192.

    CAS  Google Scholar 

  • Theron, A., Pointier, J.-P., and Combes, C. (1978). Approche ecologique du probleme de la responsabilite de l’homme et du rat dans le functionement d un site de transmission a Schistosoma mansoni en Guadeloupe. Ann. Parasitol. (Paris), 53, 223–234.

    CAS  Google Scholar 

  • Thomas, J. D. (1973). Schistosomiasis and the control of molluscan hosts of human schistosomes with particular reference to possible self-regulatory mechanisms. Adv. Parasitol., 11, 307–338.

    Article  PubMed  CAS  Google Scholar 

  • Uhazy, L. S., Tanaka, R. D., and MacIngis. A. J. (1978). Schistosoma mansoni: identification of chemicals that attract or trap its snail vector, Biomphalaria glabrata. Science, 201, 924–926.

    CAS  Google Scholar 

  • Upatham, E. S. (1972). Interference by unsusceptible aquatic animals with the capacity of the miracidia of Schistosoma mansoni Sambon to infect Biomphalaria glabrata (Say) under field-simulated conditions in St. Lucia, West Indies. J. Helminth., 66, 277–283.

    Article  Google Scholar 

  • Upatham, E. S. and Sturrock, R. F. (1973). Field investigations on the effect of other aquatic animals on the infection of Biomphalaria glabrata by Schistosoma mansoni miracidia. J. Parasitol., 59, 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Van Den Bosch, R. and Messenger, P. S. (1973). “Biological Control.” Intext, New York.

    Google Scholar 

  • Wakelin, D. (1978). Genetic control of susceptibility and resistance to parasitic infections. Adv. Parasitol., 16, 219–308.

    Article  PubMed  CAS  Google Scholar 

  • Walton, B. C., Winn, M. M., and Williams, J. E. (1958). Development of resistance to molluscicides in OncomeZania nosophora. Am. J. Trop. Med. Hyg., 7, 618–619.

    PubMed  CAS  Google Scholar 

  • Warren, K. S., Mahmoud, A.A.F., Cummings, P., Murphy, D. J., and Houser, H. B. (1974). Schistosomiasis mansoni in Yemeni in California: duration of infection, presence of disease, therapeutic management. Am. J. Trop. Med. Hyg., 23, 902–909.

    CAS  Google Scholar 

  • Webbe, G. (1978). Epidemiology of schistosomiasis and prospects for control. Proc. Int. Conf. Schistosomiasis, Cairo, Egypt, October 18–25, 1975, 1, 13–22.

    Google Scholar 

  • Woodruff, D. A. (1978). Biological control of schistosomiasis by genetic manipulation of intermediate-host snail populations. Proc. Int. Conf. Schistosomiasis, Cairo, Egypt, October 18–25, 1975, 2, 755.

    Google Scholar 

  • Woodruff, D. S. (1983). An approach to epidemiology. Science, 222, 1321–1322.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization. (1954). Study group on bilharzia snail vector identification and classification. WHO Tech. Rep. Ser. No. 90.

    Google Scholar 

  • Wright, C. A. (1968). Some views on the biological control of trematode diseases. Trans. R. Soc. Trop. Med. Hyg., 62, 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Wright, C. A. (1971a). Review of “Genetics of a Molluscan Vector of Schistosomiasis” by C. S. Richards. Trop. Dis. Bunt., 68, 333–335.

    Google Scholar 

  • Wright, C. A. (1971b). “Flukes and Snails.” Allen and Unwin, London.

    Google Scholar 

  • Wright, C. A. (1974). Snail susceptibility or trematode infectivity? J. Nat. Hist., 8, 545–548.

    Article  Google Scholar 

  • Wright, C. A. and Southgate, V. R. (1976). Hybridization of schistosomes and some of its implications. Symp. Br. Soc. ParasitoZ., 14, 55–86.

    Google Scholar 

  • Wright, C. A. and Southgate, V. R. (1981). Coevolution of digeneans and molluscs, with special reference to schistosomes and their intermediate hosts. In “The Evolving Biosphere” ( P. L. Forey, ed.). pp. 191–205. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Wright, C. A., Southgate, V. R., Van Wijk, H. B., and Moore, P. J. (1974). Hybrids between Schistosoma haematobium and S. intercalatum in Cameroun. Trans. Roy. Soc. Trop. Med. Hyg., 68, 413–414.

    Article  PubMed  CAS  Google Scholar 

  • Wright, W. H. (1973). Geographical distribution of schistosomes and their intermediate hosts. In “Epidemiology and Control of Schistosomiasis (Bilharziasis).” ( N. Ansari, ed.). pp. 32–249. University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Yasuraoko, K. (1972). Studies of the resistance of Oncomelania snails to molluscicides. In Research in Filariasis and Schistosomiasis in Japan.“ ( M. Yokogawa, ed.). pp. 103–111. University Park Press, Baltimore, Maryland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Woodruff, D.S. (1985). Genetic Control of Schistosomiasis: A Technique Based on the Genetic Manipulation of Intermediate Host Snail Populations. In: Cheng, T.C. (eds) Parasitic and Related Diseases. Comparative Pathobiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5027-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5027-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5029-3

  • Online ISBN: 978-1-4684-5027-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics